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Abstract BReast Cancer Associated proteins 1 and 2 (BRCA1, �2) and Partner and Localizer of

BRCA2 (PALB2) protein are tumour suppressors linked to a spectrum of malignancies, including

breast cancer and Fanconi anemia. PALB2 coordinates functions of BRCA1 and BRCA2 during

homology-directed repair (HDR) and interacts with several chromatin proteins. In addition to

protein scaffold function, PALB2 binds DNA. The functional role of this interaction is poorly

understood. We identified a major DNA-binding site of PALB2, mutations in which reduce RAD51

foci formation and the overall HDR efficiency in cells by 50%. PALB2 N-terminal DNA-binding

domain (N-DBD) stimulates the function of RAD51 recombinase. Surprisingly, it possesses the

strand exchange activity without RAD51. Moreover, N-DBD stimulates the inverse strand exchange

and can use DNA and RNA substrates. Our data reveal a versatile DNA interaction property of

PALB2 and demonstrate a critical role of PALB2 DNA binding for chromosome repair in cells.

DOI: https://doi.org/10.7554/eLife.44063.001

Introduction
Breast cancer associated proteins 1 and 2 (BRCA1, �2) regulate an efficient non-mutagenic pathway

of chromosome break repair and are described as guardians of chromosomal integrity (Venkitara-

man, 2014). They initiate RAD51-mediated homologous recombination (HR) (Davies et al., 2001;

Moynahan et al., 2001; Sharan et al., 1997; Venkitaraman, 2000) and facilitate restart of stalled

replication (Badie et al., 2010; Lomonosov et al., 2003; Schlacher et al., 2011). BRCA2 belongs to

a ubiquitous family of Recombination Mediator Proteins (RMPs), which stimulate formation of recom-

binase filament on single-stranded (ss) DNA protected by ssDNA-binding proteins, like SSB and RPA

(Beernink and Morrical, 1999; Cox, 2007; Kowalczykowski, 2005). The Partner and Localizer of

BRCA2 (PALB2) protein was discovered as a protein forming a complex with BRCA2 and regulating

BRCA2 activity (Xia et al., 2006). Like BRCA proteins, PALB2 is an essential mammalian protein

linked to a similar spectrum of cancers and Fanconi anemia (Ducy et al., 2019; Pauty et al., 2014;

Xia et al., 2007). The PALB2 C-terminal WD40 domain interacts with BRCA2 (Oliver et al., 2009;

Xia et al., 2006) while the N-terminus forms a complex with BRCA1 (Zhang et al., 2009a;

Zhang et al., 2009b). The latter localizes at double-stranded DNA break (DSB) sites at earlier stage

of repair, inhibiting an alternative pathway of non-homologous end joining and initiating homology-

directed repair (HDR) through recruitment of PALB2/BRCA2/RAD51 (Prakash et al., 2015).
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PALB2 is often described as the hub for a network of tumor suppressors (Park et al., 2014b;

Sy et al., 2009b). In addition to BRCA1 and �2 interactions, it contains a chromatin-association

motif (ChAM) that interacts with histones H3 and H2B (Bleuyard et al., 2012). PALB2 binds MRG15

protein, a component of histone acetyltransferase-deacetylase complexes (Hayakawa et al., 2010;

Sy et al., 2009a); RAD51 and its paralogs RAD51C, RAD51AP1 and XRCC3 (Dray et al., 2010;

Park et al., 2014a); translesion DNA polymerase h (Polh) during recombination-associated DNA syn-

thesis (Buisson et al., 2014); an oxidative stress response protein KEAP1 (Ma et al., 2012); and

RNF168 ubiquitin ligase (Luijsterburg et al., 2017). PALB2 is ubiquitinylated in G1 phase of the cell

cycle by KEAP1 and CUL3, leading to its degradation, and, thereby, restraining its activity in S/G2

(Orthwein et al., 2015).

Furthermore, PALB2 is an RMP itself as it promotes the assembly of RAD51-ssDNA presynaptic

nucleofilaments in the absence of BRCA2 in vitro (Buisson et al., 2010; Dray et al., 2010). PALB2

recruits Polh to DSB sites and stimulates recombination-associated DNA synthesis by Polh

(Buisson et al., 2014).

Apart from protein-protein interaction domains, BRCA1, �2 and PALB2 proteins also contain

DNA binding domains (DBDs), the function of which is poorly understood (Buisson et al., 2010;

Dray et al., 2010; Paull et al., 2001; Pellegrini et al., 2002). Recently, studies of BRCA1/BARD1

complex interaction with DNA and RAD51 led to the discovery of the BRCA1/BARD1 role in RAD51-

mediated strand invasion and D-loop formation (Zhao et al., 2017). Most missense mutations in the

BRCA2 DBD are pathogenic (Guidugli et al., 2013; Wu et al., 2005). Disruption of DNA binding in

a BRCA2 truncation variant lacking the PALB2-binding motif leads to a significant HDR reduction

(Siaud et al., 2011). However, deletion of the BRCA2 DBD has a negligible effect when interaction

with PALB2 is preserved, highlighting the functional importance of the previously reported DNA-

binding property of PALB2 (Buisson et al., 2010; Dray et al., 2010). Two truncation fragments of

PALB2, T1 (residues 1–200) and T3 (residues 372–561), bind DNA (Buisson et al., 2010). While the

precise mechanism of DNA interaction and its functional role remain unknown, several reports

eLife digest DNA in a cell is under constant stress from environmental factors, such as

ultraviolet light, or from damage caused by the replication process. These sources of stress can

cause breaks in the genome, which if left unrepaired can lead to cancer or cell death. One of the

most accurate ways to repair a broken fragment of DNA is through recombination – whereby an

undamaged copy of the sequence is located in another DNA molecule and used as a template to

replace the missing fragment.

DNA recombination is regulated by more than a dozen proteins that help recruit the enzyme

RAD51 to sites of DNA damage, and trigger its search for complementary sequences of DNA. A

molecule known as PALB2 binds to these DNA repair proteins and coordinates their activity. If

PALB2, or these other proteins become mutated, this can increase the risk cancerous growths in

various tissues, including the breasts and ovaries. Having a better understanding of how this group

of proteins control the repair process could therefore improve prognosis and advance cancer

treatments.

Now, Deveryshetty et al. have discovered a new and unexpected role for PALB2 within the

recombination pathway. As well as binding to other repair proteins, PALB2 interacts directly with

DNA, and this interaction was found to be an important part of the repair process. Even in the

absence of RAD51, PALB2 was still able to recombine short fragments of DNA sequence. PALB2

achieves this by initiating recombination using single strands of DNA or a DNA-like molecule known

as RNA. This latter property may be particularly important if the molecular machines needed to

replicate DNA and synthesize RNA collide on the same DNA molecule.

This new role for PALB2 could lead to the discovery of other DNA repair mechanisms, and could

be used to predict which PALB2 mutations are more likely to cause cancer. Patients who are at

greater risk of cancer could then be treated with more advanced therapies, in order to increase their

chances of recovery.

DOI: https://doi.org/10.7554/eLife.44063.002
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indirectly support its importance in DNA repair. For example, PALB2 truncation of 500 amino acids

situated between the BRCA1 and BRCA2 binding motifs and containing both DBDs does not sup-

port BRCA2 and RAD51 foci formation in cells during DNA damage (Sy et al., 2009b). Since both

the BRCA1-binding N-terminal and the BRCA2-interacting WD40 C-terminal domains are retained in

this mutant, the results points to the potential importance of DBDs in PALB2 function. The impor-

tance of DNA binding was demonstrated for other RMPs, including bacterial RecFOR (Koro-

lev, 2017; Morimatsu and Kowalczykowski, 2003; Ryzhikov et al., 2014; Sakai and Cox, 2009;

Umezu et al., 1993) and eukaryotic RAD52 (Arai et al., 2011; Seong et al., 2008).

In the current study, we identified a major DBD of PALB2 (N-DBD) and specific amino acids

involved in DNA binding. Mutations of only four amino acids significantly reduce RAD51 foci forma-

tion and the efficiency of HDR in a model cell system. PALB2 N-DBD by itself stimulates RAD51

strand exchange reactions. Surprisingly, we found that the PALB2 N-DBD supports both forward

and inverse strand exchange even in the absence of RAD51 and can use RNA as a substrate. Alto-

gether, our data reveal a novel activity of PALB2 and highlight the importance of PALB2 DNA bind-

ing in chromosome maintenance.

Results

The DNA-binding mechanism of PALB2 and its function in DNA repair
The major DNA-binding site of PALB2 is localized in the N-terminal domain
(N-DBD)
A functional significance of PALB2 interaction with DNA was suggested by several studies described

above, including a deletion encompassing both DBDs, the T1 (1–200) and T3 (372–561) fragments

(Sy et al., 2009b). However, this deletion also removed several protein interaction sites. In two pub-

lished studies the T1 and T3 fragments displayed different DNA binding activities measured by gel

shift assays, but the cause remains unclear (Buisson et al., 2010; Dray et al., 2010). We used a

quantitative fluorescence polarization (FP) method to investigate interaction of PALB2 fragments

with ss- and dsDNA oligonucleotides of different lengths. Both T1 and T3 fragments and the frag-

ment consisting of amino acids 1–573 (PB2-573 in text), which includes both the T1 and T3, were

cloned and purified (Figure 1—figure supplement 1). T1 fragment alone interacts with all tested

substrates with similar affinities as of PB2-573, while the T3 fragment has significantly lower affinity

for DNA (Figure 1). For example, the apparent equilibrium dissociation constant of T1 binding to

ss49 Kd(T1/ss49) is 4.0 ± 1.3 nM, of 573 fragment Kd(573/ss49) is 4.8 ± 0.4 nM, while that of the interac-

tion of T3 with ss49 Kd(T3/ss49) is 484 ± 80 nM, which is likely an overestimation due to weak binding.

Hill coefficient values are close to one, suggesting non-cooperative interactions. The only exception

is T1 binding to 49 bp dsDNA, however, the binding of PB2-573 to the same substrate is not coop-

erative. The only difference between T1 and PB2-573 was observed at an elevated salt concentration

of 250 mM NaCl, where the PB2-573 fragment retained partial DNA binding activity (Figure 1—fig-

ure supplement 2). In both cases, interactions were inhibited by in 500 mM NaCl. The T1 fragment

will be referred to as N-DBD in the text below. Interestingly, N-DBD binds long ssDNA substrates

with significantly higher affinity than short ones with Kd(T1/ss20) = 80 ± 8.5 nM for 20 nt ssDNA versus

Kd(T1/ss49) = 4.0 ± 1.3 nM for ss49. This suggests an interaction with ssDNA through multiple binding

sites, potentially formed by the PALB2 oligomerization, as previously described (Buisson and Mas-

son, 2012; Sy et al., 2009c), or through interaction with multiple binding sites within a monomer

(see below). Interaction with dsDNA was length-independent, suggesting that more rigid dsDNA

interacts with a single site.

Identification of DNA-binding residues
Since PALB2 DNA binding is salt-dependent (Figure 1—figure supplement 2), we performed an

alanine scanning mutagenesis of several clusters of positively charged amino acids to identify the

DNA binding site in the N-DBD (Figure 2—figure supplement 1). The main DNA-binding cluster is

formed by amino acids R146, R147, K148, and K149. Alanine substitution at these residues reduced

binding affinity to ss49 by two orders of magnitude with a change in an apparent Kd from 4.0 ± 1.3

nM to 316 ± 59 nM in the case of N-DBD and from 4.8 ± 0.4 nM to 187 ± 55 nM in the case of PB2-

573 (Figure 2). DNA binding was moderately affected by mutations of two other clusters, including
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Figure 1. Interaction of T1, T3 and PB2-573 fragments with ss- and dsDNA. (A) Domain structure of PALB2. The PALB2 truncations used in the present

study are shown below by magenta, blue and dark grey lines. (B–E) Equilibrium binding of PALB2 fragments, including T1 (blue), T3 (dark grey) and

PB2-573 (magenta), to 20 nt ssDNA (ss20) (B), 49 nt ssDNA (ss49) (C), 20 bp dsDNA (ds20) (D), and 49 bp dsDNA (ds49) (E) monitored by fluorescence

anisotropy of FAM-labelled ssDNA (5 nM). Each data point is an average of six readings from two different experiments. Reactions were performed in

assay buffer with 20 mM Tris-acetate pH 7.0, 100 mM NaCl, 5% glycerol, 10% DMSO in a 40 mL reaction volume.

DOI: https://doi.org/10.7554/eLife.44063.003

The following source data and figure supplements are available for figure 1:

Source data 1. Table with Hill coefficients (n) and equilibrium dissociation constants (Kd, nM) values for graphs in Figure 1B–E.

DOI: https://doi.org/10.7554/eLife.44063.004

Figure supplement 1. SDS PAGE analysis of purified proteins used in this study: (A) T1 and T1 146AAAA mutant, (B) T3, (C) PB2-573 and PB2-573

146AAAA, (D) RAD51, and (E) RPA.

DOI: https://doi.org/10.7554/eLife.44063.005

Figure supplement 2. Effect of increasing salt concentration on PALB2 fragments binding to DNA.

DOI: https://doi.org/10.7554/eLife.44063.006
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K45A/K50A, for which the Kd was increased to 28 ± 5.2 nM (Figure 2—figure supplement 2), and

the triple mutant R170A/K174A/R175A with similar change in Kd. From these experiments, we con-

cluded that the main DNA binding site is formed by residues 146–149, with a potential minor contri-

bution from other basic amino acids of the N-DBD.

Impairment of DNA repair in cells with the PALB2 DNA-binding mutant
The mutations described above were used to separate the DNA-binding function from other macro-

molecular interactions of PALB2 during DNA repair in HeLa cells. Positively charged residues 146–

149 were mutated to alanines in the full-length PALB2 protein and the effect of these mutations was

measured in two assays. First, we evaluated RAD51 foci formation in cells after gamma irradiation

(Figure 3A). Endogenous PALB2 was depleted by siRNA and cells were transformed with either wild

type PALB2 or the DNA-binding site mutant (Figure 3C). PALB2 depletion leads to a severe defect

in RAD51 foci formation. WT PALB2 restores RAD51 foci formation, while the DNA-binding site

PALB2 mutant restores only ~50% of RAD51 foci formation. Similar effect was observed for the time

frames between 1 to 8 hr after DNA damage (Figure 3—figure supplement 1). Therefore,

Figure 2. Mutation of DNA binding residues. Isotherms of fluorescence anisotropy of FAM-ss49 (5 nM) titrated by

PALB2 T1 (blue, open circles) and PB2-573 (magenta, open triangles) fragments and their mutants: T1 146-RK/AA

(filled blue circles), T1 146-RRKK/AAAA (crossed open blue circles), and 573 146-RRKK/AAAA (filled magenta

triangles) under conditions identical to those in Figure 1.

DOI: https://doi.org/10.7554/eLife.44063.007

The following source data and figure supplements are available for figure 2:

Source data 1. Table with Hill coefficients (n) and equilibrium dissociation constants (Kd, nM) values.

DOI: https://doi.org/10.7554/eLife.44063.008

Figure supplement 1. Amino acid sequence alignment of PALB2 T1 from different organisms with residues

colour-coded accordingly to polarity, with mutated residues identified by red boxes, and with the secondary

structure elements depicted at the bottom of alignment in cartoon representation as predicted by the Phyre

server.

DOI: https://doi.org/10.7554/eLife.44063.009

Figure supplement 2. DNA binding of T1 mutants.

DOI: https://doi.org/10.7554/eLife.44063.010
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Figure 3. Effect of a PALB2 DNA-binding site mutation on homologous recombination. (A) Representative immunofluorescence images of RAD51 foci

in PALB2 knockdown HeLa cells complemented with the indicated YFP construct and synchronized in S/G2 by double thymidine block, as determined

by cyclin A staining. (B) RAD51 foci quantification in control siRNA (blue), siPALB2 (red) and with siPALB2 with subsequent complementation by siRNA-

resistant constructs YFP-PALB2 (magenta) and 146AAAA DNA-binding site mutant PALB2 (green) at 2 hr after irradiation. (C) Western blotting of the

samples shown in (B) to monitor knockdown and complementation efficiency. (D) Quantification of the gene-targeting efficiency of siRNA PALB2 cells

complemented with wild-type and 146AAAA siRNA-resistant constructs mClover positive/iRFP cells. (E) Western blotting of the samples shown in (D) to

monitor knockdown and complementation efficiency. ***p<0.001 and ****p<0.0001.

DOI: https://doi.org/10.7554/eLife.44063.011

The following figure supplements are available for figure 3:

Figure supplement 1. Time dependence of RAD51 foci formation after DNA damage in the experiment described in Figure 3.

DOI: https://doi.org/10.7554/eLife.44063.012

Figure supplement 2. Representative images and schematic representation of CRISPR-Cas9/mClover-LMNA1 mediated HR assay.

DOI: https://doi.org/10.7554/eLife.44063.013

Figure supplement 3. YFP-PALB2 and YFP-PALB2 146AAAA binds RAD51 equally.

DOI: https://doi.org/10.7554/eLife.44063.014
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Figure 4. PALB2 promotes strand exchange between homologous DNA substrates. (A) Schematic representation of the strand exchange activity assay.

ss90 (120 nM) was incubated with RecA (2 mM) or RAD51 (2 mM) for 5’, then with PALB2 fragment (2 mM) for 5’, then dsDNA (100 nM) was added and the

Cy5 fluorescence was measured on a plate reader using 635 nm excitation and 680 nm emission wave-lengths. (B) Continuously measured Cy5

fluorescence after initiating reactions with RecA (blue), RAD51 (red), PALB2 N-DBD (magenta), RAD51 and PALB2 N-DBD (green), and without proteins

(dark red). Each point is an average of three measurements. (C) Reaction products from (B) were deproteinized and separated on a native PAGE gel.

Control in lane one represent Cy5-labelled dsDNA without IOWA quencher and in lane 2 Cy5-labelled ssDNA annealed with ss90. (D) Percentage of

Cy5 fluorescence of the final reaction in (B).

DOI: https://doi.org/10.7554/eLife.44063.015

The following figure supplements are available for figure 4:

Figure supplement 1. RAD51 activity under optimized conditions.

DOI: https://doi.org/10.7554/eLife.44063.016

Figure supplement 2. PALB2 strand exchange activity with dsDNA with alternative fluorophores.

DOI: https://doi.org/10.7554/eLife.44063.017

Figure supplement 3. PALB2 strand exchange activity with longer dsDNA.

DOI: https://doi.org/10.7554/eLife.44063.018

Figure supplement 4. PALB2 N-DBD cannot form D-loops with supercoiled dsDNA plasmid.

DOI: https://doi.org/10.7554/eLife.44063.019

Deveryshetty et al. eLife 2019;8:e44063. DOI: https://doi.org/10.7554/eLife.44063 7 of 25

Research article Biochemistry and Chemical Biology Cancer Biology

https://doi.org/10.7554/eLife.44063.015
https://doi.org/10.7554/eLife.44063.016
https://doi.org/10.7554/eLife.44063.017
https://doi.org/10.7554/eLife.44063.018
https://doi.org/10.7554/eLife.44063.019
https://doi.org/10.7554/eLife.44063


mutagenesis of only four positively charged residues in PALB2 has a major effect on efficiency of

RAD51 recruitment to DNA damage sites.

Similarly, we tested the role of PALB2 interaction with DNA for the efficiency of HDR in U2OS

cells using a novel LMNA-Clover based assay, where DNA breaks at a specific gene are introduced

by the CRISPR-Cas9 system (Figure 3—figure supplement 2) (Buisson et al., 2017). As in case of

RAD51 foci formation, complementation of PALB2-depleted cells with the DNA-binding PALB2

mutant restores only 50% of HDR efficiency, in contrast to WT PALB2, which restores more than 90%

of activity (Figure 3D). The N-DBD fragment also possesses a RAD51 interaction site, which can be

potentially affected by mutations. We verified that the 146AAAA mutant interacts with RAD51 simi-

larly to wild type PALB2 (Figure 3—figure supplement 3). Therefore, the cellular effect of the

146AAAA mutant is defined exclusively by the inability of PALB2 to interact with DNA. Altogether,

these studies show that PALB2 DNA binding plays a critical role in HR and DNA repair in vivo.

PALB2 promotes DNA and RNA strand exchange
PALB2 stimulates RAD51-mediated strand exchange and promotes a similar
reaction without RAD51
PALB2 stimulates RAD51 filament formation even in the absence of BRCA2 (Buisson et al., 2010).

Here, we investigated the ability of the PALB2 N-DBD to stimulate the strand exchange activity of

RAD51 using a fluorescence-based strand exchange assay similar to the one previously published

(Figure 4A) (Jensen et al., 2010; Ryzhikov et al., 2014). Under solution conditions used in the

DNA-binding assays in Figure 1 and even with reduced NaCl concentration, RAD51 displayed a low

activity, in contrast to E. coli RecA (Figure 4). RAD51 activity was stimulated by addition of 5 mM

CaCl2 (Figure 4—figure supplement 1). RMPs stimulate recombinase activity even at unfavourable

solution conditions, such as in the case of Rad52 (Krejci et al., 2002; New et al., 1998), BRCA2

(Jensen et al., 2010)(Liu et al., 2010; Thorslund et al., 2010) and the Hop2-Mnd1 complex

(Chi et al., 2007). Similar to the previously published finding that the full length PALB2 stimulates

RAD51 function (Buisson et al., 2010; Dray et al., 2010), we found that the PALB2 N-DBD alone

stimulates RAD51-mediated strand exchange (Figure 4).

Surprisingly, the N-DBD promotes strand exchange at a comparable rate even without RAD51.

Reaction products were further analysed by EMSA gel shift to rule out an artefact of protein-specific

fluorophore quenching (Figure 4C). The results were confirmed using DNA with different fluorescent

labels (Figure 4—figure supplement 2). The strand exchange activity of N-DBD was even more effi-

cient with longer dsDNA substrates (Figure 4—figure supplement 3). The reaction does not require

ATP, resembling those promoted by RAD52 (Mazina et al., 2017). The strand exchange activity was

not observed by full length PALB2 in previous publications (Buisson et al., 2010; Dray et al., 2010).

This difference could be due to significantly lower concentrations of PALB2 used in the referred

studies as well as different experimental conditions. Currently, the low solubility of the full-length

protein prevents recapitulation of assays in Figures 5 and 6 at comparable concentrations.

Since N-DBD stimulates a similar reaction on its own, it is unclear whether the N-DBD fragment

stimulates RAD51 activity or if the two proteins function independently. In a limited titration experi-

ment shown in Figure 5, the efficiency of the strand exchange increases proportionally to N-DBD

concentration. In the presence of 2 mM of RAD51, the activity at T1 concentration of 0.5 mM

increases four times and the maximum rate of strand exchange is reached at 1 mM of N-DBD. These

data suggest a synergistic effect of two proteins in a strand exchange reaction. The DNA-binding

mutant fragment (146AAAA) did not support strand exchange on its own and in the presence of

RAD51 (Figure 5—figure supplement 1).

Full length PALB2 promotes D-loop formation by RAD51 (Buisson et al., 2010; Dray et al.,

2010). However, we found that N-DBD did not support D-loop formation with ssDNA oligonucleo-

tide and supercoiled dsDNA (Figure 4—figure supplement 4).

RPA inhibits PALB2-mediated strand exchange
RPA inhibits formation of the presynaptic RAD51 filament on ssDNA and recombination mediator

proteins RAD52 and BRCA2/DSS1 overcome this inhibitory effect (Benson et al., 1998;

Jensen et al., 2010; Liu et al., 2010; New et al., 1998; Plate et al., 2008; Shinohara and Ogawa,

1998; Sugiyama and Kowalczykowski, 2002; Sung, 1997; Thorslund et al., 2010; Zhao et al.,
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2015). In both cases, the mediation reaction depends on protein interaction with RPA. PALB2 does

not interact with RPA. Correspondingly, we found that RPA has a strong inhibitory effect on the

strand exchange reaction by PALB2 DBD alone and in the presence of RAD51 (Figure 6).

Figure 5. The PALB2 N-DBD stimulates RAD51 strand exchange. (A) Dependence of the strand exchange activity on N-DBD concentration: 0.5 mM

(black), 1 mM (brown), 2 mM (navy) and 4 mM (dark red). (B) A reaction similar to (A) in the presence of RAD51 (2 mM, red: without N-DBD). Each point is

an average of three measurements in (A) and (B). (C) Deproteinated strand exchange activity products from (A) and (B) separated on native PAGE gel.

(D) End-point values of the strand exchange reactions shown in (A) and (B) plotted against N-DBD concentration. Buffer and DNA concentration are

identical to those in Figure 4.

DOI: https://doi.org/10.7554/eLife.44063.020

The following figure supplement is available for figure 5:

Figure supplement 1. PALB2 DNA binding site mutants do not support strand exchange.

DOI: https://doi.org/10.7554/eLife.44063.021
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PALB2 stimulates an inverse strand exchange and can use an RNA substrate
The strand exchange capability of PALB2 N-DBD resembles those of RAD52. RecA and Rad52 sup-

port an inverse strand exchange as well as R-loop formation (Kasahara et al., 2000; Mazina et al.,

2017; Zaitsev and Kowalczykowski, 2000). Functional significance of this was demonstrated for an

RNA-templated DSB repair (Mazina et al., 2017). Therefore, we tested the PALB2 N-DBD for similar

activities. The PALB2 N-DBD supported both forward and inverse strand exchange with similar effi-

ciencies (Figure 7B,E). Furthermore, PALB2 supported both reactions with a ssRNA substrate

(Figure 7C,F). RAD52 was shown to have different efficiencies of forward and inverse reactions with

relatively low forward and a more efficient inverse reactions (Mazina et al., 2017). We did not

observe this difference with PALB2. The inverse strand exchange was slower than in case of RAD52

and comparable to that of RAD51 under optimal conditions. However, the substrates used in current

work and in RAD52 studies are different.

Mechanism of the PALB2 stimulated strand exchange
To rule out a potential effect of DNA melting by PALB2, which may lead to nonspecific reannealing

of a separated strands with complementary ssDNA in solution, the N-DBD was incubated with

dsDNA without ssDNA (Figure 8A). The N-DBD does not melt dsDNA as there was no change in

fluorescence of Cy5/Iowa-ds35 upon incubation with the protein in the absence of ssDNA, addition

of which triggers the reaction. Moreover, N-DBD stimulates annealing of complementary ssDNA

(Figure 8B). Therefore, the observed strand exchange is not a consequence of a nonspecific dsDNA

melting by the protein.

Both RecA and RAD52 proteins, which support strand exchange, simultaneously interact with ds-

and ssDNA through distinct binding sites located next to each other (Arai et al., 2011; Chen et al.,

2008; Honda et al., 2011; Kagawa et al., 2002; Mazin and Kowalczykowski, 1998; Seong et al.,

Figure 6. The plot of end points of strand exchange reactions with and without 0.5 mM RPA by (A) N-DBD and (B) N-DBD in the presence of 2 mM

RAD51. Reactions are performed identically to those in Figure 5.

DOI: https://doi.org/10.7554/eLife.44063.022
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Figure 7. PALB2 promotes forward and inverse strand exchange with ssDNA and RNA substrates. Schematic representation of forward (A) and inverse

(D) reactions. Cy5 fluorescence change for the forward reaction with ssDNA is shown in (B) and with RNA in (E) at different concentrations of T1

fragment ranging from 4 mM (brown in B, magenta in E) to 0.5 mM (blue) and without protein in orange. Similar time courses of inverse reactions for

ssDNA are shown in (C) and for RNA in (F). Buffer and DNA concentration are identical to those in Figure 4. Each point is an average of three

measurements.

DOI: https://doi.org/10.7554/eLife.44063.023
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2008). PALB2 also interacts with both ss- and dsDNA (Figure 1 and Buisson et al., 2010;

Dray et al., 2010), although the structure and the molecular details of PALB2 interaction with DNA

remain unknown. To verify if other proteins characterized by comparable affinities to both ss- and

dsDNA also support strand exchange, we tested prokaryotic RMPs, RecO and RecR. E. coli RecO

alone stimulates strand annealing (Kantake et al., 2002; Luisi-DeLuca and Kolodner, 1994) and, in

complex with RecR, stimulates RecA-mediated strand exchange with ssDNA bound to SSB

(Ryzhikov et al., 2014; Umezu et al., 1993; Umezu and Kolodner, 1994). Both RecO and RecOR

interact with ss- and dsDNA (Ryzhikov et al., 2014). However, neither RecO nor RecOR complex

promote strand exchange in the absence of RecA (Figure 8—figure supplement 1). Therefore, the

simple ability of a protein to interact with ss- and dsDNA is not enough to promote strand exchange

and even RMPs, which stimulate the reaction by RecA recombinase, do not support it in the absence

of recombinase.

RecA/RAD51 and RAD52 proteins form oligomeric structures, such as recombinase-DNA filament

(Chen et al., 2008; Egelman and Stasiak, 1986; Yang et al., 2001) or Rad52 ring structure

(Shinohara et al., 1998; Singleton et al., 2002). Both N-DBD (Figure 8—figure supplement 2) and

the full length PALB2 form oligomeric structures (Buisson and Masson, 2012; Sy et al., 2009c). The

oligomerization is partially mediated by the N-terminal coiled-coil motif (Sy et al., 2009c). Thirty

N-terminal amino acids form an antiparallel coiled-coil dimer (Song et al., 2018). However, gel filtra-

tion experiments suggest a tetrameric form (Figure 8—figure supplement 2A). The titration of dou-

ble-labelled Cy5/Cy3 ssDNA performed similar to the experiment reported in Grimme et al. (2010)

revealed maximum FRET value at 1:4 or 1:5 ratio for both 70 nt and 40 nt long ssDNA (Figure 8—

figure supplement 2B). The titration of ss49 by the N-DBD also suggests a stoichiometry of four or

five N-DBD monomers per ss49 (Figure 8—figure supplement 2C,D). Importantly, the elution vol-

ume of the full length PALB2 in previous report also corresponds to a significantly higher molecular

weight than that of a dimer, and the molecular weight of PALB2 with truncated coiled-coil domain

higher than that of a monomer. Therefore, we expect to identify a secondary oligomerization site in

N-DBD which should support a tetrameric structure.

Figure 8. PALB2 does not unwind dsDNA and anneals complementary DNA strands. (A) Strand exchange reaction

where Cy5/Iowa ds35 DNA (100 nM) was first incubated with three different concentrations of N-DBD for 30’. The

complementary ss90 DNA (100 nM) was added at 30’ to initiate the strand exchange. (B) Annealing of Cy5- and

Iowa-labelled complementary ss35 strands (100 nM) in the presence of different concentrations of PALB2 N-DBD.

Buffers are identical to those in Figure 4.

DOI: https://doi.org/10.7554/eLife.44063.024

The following figure supplements are available for figure 8:

Figure supplement 1. RecO and RecOR do not support strand exchange without RecA.

DOI: https://doi.org/10.7554/eLife.44063.025

Figure supplement 2. Oligomerization and DNA-binding stoichiometry of PALB2 N-DBD.

DOI: https://doi.org/10.7554/eLife.44063.026
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Discussion
We identified major DNA-binding residues of PALB2 and demonstrated their critical role for HDR in

cells. PALB2 is described as a scaffold protein linking BRCA1 with BRCA2 during HDR and interact-

ing with many other chromatin proteins. However, the truncation variant with the preserved BRCA1

and BRCA2 binding motifs but without the middle portion of the protein, which contains DBDs,

does not support BRCA2 and RAD51 recruitment to DSBs (Sy et al., 2009b). Recent studies suggest

an alternative BRCA1-independent recruitment of PALB2 to DSB through direct interaction with

RNF168 (Luijsterburg et al., 2017; Zong et al., 2019). However, this interaction is mediated by the

C-terminal WD40 domain, which is preserved in the described above truncation mutant. A critical

role of PALB2 DNA binding was also suggested by studies of the BRCA2 (Siaud et al., 2011), where

the ‘miniBRCA2’ construct, including only DBDs with two BRC repeats, was 3–4 times less efficient

than ‘midiBRCA2’ which includes PALB2 interaction motif. Moreover, interaction with PALB2 allevi-

ates the requirement of BRCA2 DNA binding, including a deletion of the entire BRCA2 DBD. Here,

we demonstrate that mutation of only four DNA-binding residues of PALB2 reduces both RAD51

foci and overall HDR efficiency by 50% in the presence of endogenous BRCA1 and BRCA2. Even at

8 hr post-IR siRNA PALB2 cells complemented with PALB2-146AAAA still display a defect in HR. We

suggest that the mutant display a failure to repair a subset of DSBs due to its defective DNA bind-

ing. Therefore, PALB2 interaction with DNA is critical for recruitment of the BRCA2 and RAD51 to

DSB sites and efficient DNA repair in cells.

Secondly, we demonstrate that the PALB2 N-DBD stimulates RAD51-mediated strand exchange

in vitro. N-DBD encompasses the RAD51 binding site, therefore, it can recruit RAD51 to ssDNA to

initiate nucleation of nucleoprotein filament. DNA-binding of N-DBD plays a critical role in this pro-

cess, as the DNA-binding mutant (146AAAA) retains interaction with RAD51 (Figure 3—figure sup-

plement 3) but is unable to stimulate RAD51 binding to ssDNA (Figure 5—figure supplement 1).

Alternatively, the PALB2 N-DBD can support a DNA conformation favourable for RAD51 binding to

ssDNA or/and nucleation of RAD51 filament, similarly to the prokaryotic RecOR proteins (Bell et al.,

2012; Ryzhikov et al., 2014; Sakai and Cox, 2009).

The most unexpected finding is the ability of PALB2 to stimulate strand exchange between

homologous ss- and dsDNA fragments in the absence of recombinase. This process is protein-spe-

cific and is not a consequence of simple DNA melting and reannealing of separated strands in solu-

tion, since the PALB2 N-DBD does not unwind the DNA helix and promotes DNA annealing. PALB2-

mediated strand exchange differs from that of supported by RAD51, as it does not require ATP

binding and hydrolysis and it is less efficient and not unidirectional. This reaction resembles that of

the RAD52 (Mazina et al., 2017). In the cited manuscript, RAD52 promotes inverse reaction much

more efficiently than forward and seemingly faster than that by PALB2 in our hands. However, the

substrates used in RAD52 studies differ from those used in the current work by the presence of the

ssDNA tail in dsDNA. The reaction with a no-tail substrate appears to be less efficient than the one

supported by PALB2. Another distinction from RAD52 is the initial reaction rate, which was much

faster in case of inverse reaction even with no-tail substrate for RAD52. PALB2-mediated reactions

are slower with no difference between forward and inverse reactions.

Proteins supporting strand exchange, such as RecA and RAD52, share several common features.

They interact with both ss- and dsDNA through distinct sites located next to each other, they form

oligomeric structures, such as recombinase-DNA filament or Rad52 ring structure, and they distort

the dsDNA helix to initiate strand exchange with the bound complementary ssDNA. RecA stretches

dsDNA (Chen et al., 2008; Leger et al., 1998), while Rad52 bends the DNA helix bound to the

toroidal oligomeric ring (Brouwer et al., 2017). The PALB2 N-DBD interacts with both ss- and

dsDNA. Previously, we demonstrated that PALB2 immobilized on ssDNA beads efficiently pulls

down non-homologous dsDNA (Buisson et al., 2010). It is unclear whether ss- and dsDNA sub-

strates are bound to the same sites of different subunits of a PALB2 oligomer or two different DNA

binding sites on the same monomer. The presence of at least two other minor DNA-binding sites in

the N-DBD suggests such a possibility. Higher affinity towards longer ssDNA (Figure 1) and the

FRET experiment (Figure 8—figure supplement 1B) support a model of wrapping long flexible

ssDNA around an oligomer. In contrast, interaction with dsDNA is less length dependent (Figure 1).

We can speculate that binding of dsDNA to more than one monomer in PALB2 oligomer can trigger

DNA helix distortion. Thus, PALB2 shares several specific structural and DNA-interaction features
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with both RecA/RAD51 and Rad52 proteins and supports a protein-specific strand exchange reac-

tion. At the same time, PALB2 does not support D-loop formation with supercoiled dsDNA opposite

to a full length PALB2. This may be a consequence of the inability to efficiently bind and distort

supercoiled dsDNA plasmid through the secondary DNA-binding site.

It is important to note one distinct feature of the PALB2 N-DBD: the secondary structure predic-

tion (Figure 2—figure supplement 1) suggests a different folding of the N-DBD fragment than that

of RecA-like domains or a Rad52. The latter proteins are formed by a/b sandwich folds, while PALB2

N-DBD folding is predicted to be composed of only a-helices, which may form helical bundle-like

structure similar to that of Hop2-Mnd1 (Kang et al., 2015). Therefore, PALB2 N-DBD represents a

novel structural fold that supports strand exchange.

While the functional significance of this property remains to be investigated, it further supports

the involvement of PALB2 in specific DNA transactions during HDR, similar to the involvement of

BRCA1/BARD1 in D-loop formation (Zhao et al., 2017). It was shown that both PALB2 and BRCA2

stimulate Polh DNA synthesis within a D-loop substrate in vitro through the recruitment of the poly-

merase to the invading strand in the D-loop (Buisson et al., 2014). Interestingly, DNA synthesis was

more efficient in the presence of PALB2 than BRCA2, while both proteins were shown be equally

efficient in recruiting polymerase to DSB sites. PALB2 strand exchange may contribute to other steps

of HDR such as second-end capture (Mazloum and Holloman, 2009; McIlwraith and West, 2008;

Nimonkar et al., 2009). Interestingly, PALB2 (FANCN) and BRCA2 (FANCD) are involved in replica-

tion-dependant removal of interstrand DNA crosslinks associated with Fanconi anemia

(Howlett et al., 2002; Moldovan and D’Andrea, 2009; Xia et al., 2007). The strand exchange func-

tion of PALB2 may also be important for alternative DNA repair pathways. Indeed, PALB2 supports

strand exchange not only with ssDNA, but with ssRNA substrates, and can be involved in transcrip-

tion-initiated DNA repair. This hypothesis seems particularly attractive in light of the PALB2 interac-

tion with MRG15 and its localization at the sites of actively transcribed genes Bleuyard et al.

(2017).

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Cell line (Human) HeLa ATCC CCL-2

Cell line (Human) U2OS ATCC HTB-96

Cell line (Human) HEK293T ATCC CRL-11268

Sequence-base
reagent

siRNA sequences This paper Supplementary file 1E

Sequence-base
reagent

oligonucleotide
JYM1413

This paper Supplementary file 1C

Chemical
compound, drug

Lipofectamine
RNAiMAX

Invitrogen 13778–150

Chemical
compound, drug

Thymidine Sigma T1895-1G

Chemical
compound, drug

Lipofectamine 2000 Invitrogen 11668019

Chemical
compound, drug

Proteinase K Sigma P2308-100MG

Chemical
compound, drug

[gamma-32P] ATP Perkin Elmer NEG502A250UC

Recombinant
DNA reagent

YFP-CTL or YFP
(plasmid)

Pauty et al., 2017

Recombinant
DNA reagent

YFP-PALB2 (plasmid) Pauty et al., 2017

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Recombinant
DNA reagent

YFP-PALB2
146AAAA (plasmid)

This paper Supplementary file 1B

Recombinant
DNA reagent

pCR2.1-mClover-
LMNAdonor (plasmid)

Pinder et al., 2015

Recombinant
DNA reagent

pX330-LMNAgRNA
(plasmid)

Pinder et al., 2015

Recombinant
DNA reagent

iRFP670 (plasmid) Pinder et al., 2015

Recombinant
DNA reagent

FLAG vector (plasmid) Pauty et al., 2017

Recombinant
DNA reagent

FLAG-PALB2 (plasmid) Pauty et al., 2017

Recombinant
DNA reagent

FLAG-PALB2
146AAAA (plasmid)

This paper Supplementary file 1B

Recombinant
DNA reagent

pPB4.3 PMID:15899844

Other DAPI stain Invitrogen D1306 (1 mg/mL)

Commercial
assay, kit

SE Cell Line
4D-Nucleofector X Kit

VWR CA10064-148

Antibody anti-RAD51
(mouse monoclonal)

Novus Biologicals NB100-148 (1:1000)

Antibody anti-GFP
(mouse monolconal)

Roche 11814460001 (1:1000)

Antibody RAD51
(rabbit polyclonall)

B-Bridge International 70–001 (1:7000)

Antibody cyclin A
(mouse monoclonal)

BD Biosciences 611268 (1:400)

Antibody Alexa Fluor 568
goat anti-rabbit

Molecular Probe A11011 (1:10000)

Antibody Alexa Fluor 647
got anti-mouse

Molecular Probe A21235 (1:10000)

Software,
algorithm

Prism GraphPad Ver-6

Software,
algorithm

Volocity Quorum Technologies v6.0.1

Sequence-base
reagent

cloning primers,
DNA-binding substrates,
FRET substrates

IDT, Technology Supplementary file 1B,C,D

Strain, Strain
background (E. Coli)

BL21-star cells ThermoFisher Scientific C601003

Strain, Strain
background (E. Coli)

OmniMAX cells ThermoFisher Scientific C8540-03

Recombinant
DNA reagent

pSMT3-PALB2-T1 This paper

Recombinant
DNA reagent

pSMT3-PALB2-T3 This paper

Recombinant
DNA reagent

pSMT3-PALB2-573 This paper

Other His60 Ni Superflow Clonetech 635660

Other Heparin 5 ml
HiTrap column

GE Heathcare
Lifesciences

17040701

Other Superdex-200
10/300 GL column

GE Heathcare
Lifesciences

17517501

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Recombinant
DNA reagent

pET11-Rad51 Dr. A Mazin
Lab; PMID:11751636

Recombinant
DNA reagent

pSMT3-RAD51 This paper

Recombinant
DNA reagent

p11d-tRPA AddGene,
Henricksen et al., 1994

102613

Other Affi-Gel blue affinity gel BioRad 1537301

Instrument Synergy four plate reader BioTek

Protein purification
PALB2 truncations
PALB2 N-terminal fragments PALB2-T1 (1–200 aa) and PALB2-573 (1–573 aa) were cloned into

pET28b + based pSMT3 vector (provided by Dr. R.A. Kovall, University of Cincinnati) containing the

N-terminal 6xHis-SUMO tag using SalI and NdeI cloning sites. pSMT3-PALB2 T1, pSMT3-PALB2 573

were transformed into BL21* cells. Cell cultures were grown in LB to OD600 = 0.7 and protein

expression was induced by adding 0.2 mM IPTG and carried out at 16˚C overnight. Cells were lysed

with lysozyme (0.25 mg/mL at RT for 30 min) in lysis buffer (25 mM HEPES pH 8.0, 1 M NaCl, 10%

glycerol, 0.3% Brij35, 1 mM TCEP, 2 mM CHAPS and 1 mM PMSF), followed by three rounds of soni-

cation (50% output and 50% pulsar settings for 4 min). Cell debris were removed by centrifugation

at 30,600 x g for 45 min. Supernatant was loaded on a NiNTA column (5 ml) equilibrated with bind-

ing buffer (25 mM HEPES pH 8.0, 1 M NaCl, 10% glycerol, 1 mM TCEP, 2 mM CHAPS and 10 mM

imidazole). NiNTA beads were washed with binding buffer and the protein was eluted with binding

buffer supplemented with the same buffer adjusted to 250 mM imidazole. The SUMO tag was

cleaved with Ulp1 protease while dialyzing against buffer without imidazole (25 mM HEPES pH 8.0,

1 M NaCl, 10% glycerol, 1 mM TCEP and 2 mM CHAPS) overnight and the protein was purified with

a second NiNTA column. The protein was diluted 10X by binding buffer without NaCl to the final

NaCl concentration of 100 mM, loaded to a Hi-Trap heparin affinity column (5 ml, GE health scien-

ces) and eluted with a gradient of NaCl (100 mM to 1000 mM). Protein eluted from the heparin col-

umn at ~500 mM NaCl concentration. Protein fractions were dialysed against storage buffer (25 mM

HEPES pH 8.0, 300 mM NaCl, 40% glycerol, 1 mM TCEP and 2 mM CHAPS) overnight, aliquoted

and stored at �80˚C.

PALB2 T3 fragment was purified as described in Buisson et al. (2010).

RAD51 purification
We used two expression constructs and purification protocols. (1) Human RAD51 protein was puri-

fied from the pET11-Rad51 vector (gift from Dr A. Mazin) according to the published protocol

(Sigurdsson et al., 2001). The protein was induced at 37˚C for 3 hr by supplementing LB media with

0.5 mM IPTG. Cells were suspended in 25 mM Tris-HCl pH8.0, 1 M urea, 1 M NaCl, 5 mM DTT,

0.3% Brij35% and 10% glycerol. Cells were lysed with lysozyme (0.25 mg/mL at RT for 30 min) fol-

lowed by three rounds of sonication (50% output and 50% pulsar settings for 1 min). 24 mg/ml

ammonium sulfate was gradually added to the supernatant and equilibrated overnight at 4˚C. Pre-

cipitates were centrifugation at 30,600 x g for 45 min. Pellets were solubilized in 30 ml of binding

buffer (25 mM Tris-HCl pH8.0, 1 M NaCl, 5 mM DTT, 10% glycerol and 20 mM imidazole). Insoluble

particles were removed by centrifugation at 30,600 x g for 40 min. The protein was bound to Ni

NTA beads, extensively washed with binding buffer and eluted in binding buffer supplemented with

250 mM imidazole.

(2) Alternatively, human RAD51 gene was cloned into pSMT3 vector using SalI and NdeI cloning

sites. pSMT3-Rad51 protein expression was carried out at 16˚C overnight by addition of 0.2 mM

IPTG. SUMO tagged Rad51 protein was purified according to the steps described for the PALB2

fragments. Purified Rad51 protein was dialysed against storage buffer (25 mM HEPES pH 8.0, 300

mM NaCl, 40% glycerol, 1 mM TCEP and 2 mM CHAPS) overnight, aliquoted and stored in �80˚C
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until further use. Proteins from both preparations had comparable properties. Data are shown for

experiments performed with the second construct, except for Figure 5—figure supplement 1.

E. coli RecA was purified exactly as described in Gupta et al. (2013). E. coli RecO and RecR pro-

teins were purified as described (Ryzhikov and Korolev, 2012; Ryzhikov et al., 2011). Protein con-

centration was determined by Bradford reagent (Thermo scientific).

Trimeric RPA complex was expressed using p11-tRPA vector (Addgene, plasmid #102613) and

purified accordingly to the published protocol (Binz et al., 2006; Henricksen et al., 1994). A fresh

transformant of p11d-tRPA was grown to 0.5 OD at 37˚C in a litre of LB media. Protein expression

was induced by IPTG (0.2 mM) at 16˚C overnight. Cells were harvested and suspended in lysis buffer

(25 mM HEPES pH 8.0, 0.25 mM EDTA, 1 mM PMSF, 1 mM TCEP and 0.01% NP-40). Cells were

lysed by incubation with lysozyme (0.25 mg/mL at 25˚C for 30 min) and followed by sonication (50%

output and 50% pulsar settings for 4 min). Cell debris were removed, and supernatant was loaded

on an Affi-Gel Blue column (5 ml, Biorad) equilibrated with lysis buffer. The column was washed

sequentially with five column volumes of lysis buffer containing 50 mM KCl, 0.8 M KCl, 0.5 M NaSCN

and 1.5 M NaSCN. RPA elutes in the 1.5 M NaSCN wash. This fraction was diluted ten times to a

final concentration of NaSCN to 150 mM and applied to heparin column. The column was washed

with lysis buffer followed by elution with a linear gradient of NaCl (0.1–1M). The peak fractions were

pooled, concentrated, flash frozen in liquid nitrogen and stored at �80˚C until further use.

Site-directed mutagenesis
Target amino acids were mutated by site directed mutagenesis using Stratagene QuikChange proto-

col. Single, double, triple and four residues mutants were generated by single stranded synthesis

(Supplementary file 1B). PCR samples were subjected to DpnI digestion at 37˚C for 6 hr and

annealed gradually by reducing temperature from 95˚C to 37˚C for an hour with a 1˚C drop per min-

ute. DpnI treated PCR samples were transformed into chemically competent OmniMAX cells (Ther-

moFischer). Mutations were confirmed by sequencing and plasmids were transformed into BL21(DE)

cells. Mutant proteins were expressed and purified exactly as described for wild type fragments.

DNA binding assay
Fluorescence anisotropy experiments were carried out at room temperature with 5 nM fluorescein

(6FAM)-labelled DNA substrates (Supplementary file 1C) using a Synergy four plate reader (BioTek).

Titration with protein was performed by serially diluting protein in 40 mL of assay buffer (20 mM Tris-

acetate pH 7.0, 100 mM NaCl, 5% glycerol, 1 mM TCEP and 10% DMSO) from 5000 nM to 0.3 nM

and incubating with DNA substrate for 15 min at RT. Fluorescence anisotropy was measured by exci-

tation at 485/20 nm and by monitoring emission 528/20 nm at room temperature using Gen5.0 (Bio-

Tek) software. An equilibrium dissociation constant was calculated with Prism software using one to

one binding scheme, P½ � þ D½ � ¼ DP½ �, where D is DNA and P is PALB2. Anisotropy data were fitted

by a non-linear regression analysis of Prism software using standard four-parameter logistic equation

to identify Kd

y¼ yminþ
ymax � ymin

1þ 10 logEC50�Xð Þ�n

� �

Where, ymin and ymax is the minimum and maximum anisotropy values, X represents the log con-

centration of protein, n represents Hillslope, and EC50 is equal to KD. R
2 is determined by the prism

software by computing the sum of the squares of the distances of the points from the best-fit curve

determined by nonlinear regression model.

DNA annealing assay
DNA annealing assays were performed with Cy5-labelled ss35 and compl IOWA-labelled ss35 (100

nM, Supplementary file 1D). The protein at 1, 2 and 4 mM concentrations was mixed and incubated

with Cy5-labelled ssDNA for 5 min at 37˚C in 40 mL reaction buffer (40 mM HEPES pH 7.5, 20 mM

NaCl and 1 mM TCEP). Reactions were initiated by addition of compl IOWA-labelled ss35 (100 nM)

in 40 mL of reaction buffer. Decrease in Cy5 fluorescence was monitored by measuring fluorescence

at 680 nm by excitation at 635 nm on a Synergy four plate reader (BioTek).
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Strand exchange fluorescent assay
DNA strand exchange assays (80 ml) were performed with 35 bp dsDNA obtained by annealing of 5’-

Cy5- and 3’-IOWA-labelled compl strands (Supplementary file 1D) and a 90mer ssDNA (ss90) with a

region homologous to the plus strand. Alternatively, FAM/Dabsyl 49 bp DNA was used. For the for-

ward reaction, ss90 (100 nM) was incubated with 2 mM (or as mentioned in the figure legends) pro-

tein for 10 min in 40 mL reaction buffer (40 mM HEPES pH 7.5, 20 mM NaCl, 5 mM MgCl2, 1 mM

TCEP and 0.02% Tween 20) at 37˚C. Strand exchange was initiated by addition of 100 nM Cy5/

IOWA-dsDNA35 (or FAM/Dabsyl-dsDNA49), the plate was immediately placed in plate reader and

the intensity of Cy5 (or FAM) fluorescence was measured at 30 s intervals for 1 hr with excitation at

635 nm and emission at 680 nm. For reactions with RecA and Rad51, an ATP regeneration system (2

mM ATP, 3 mM phosphoenol pyruvate and 30 U of pyruvate kinase) was used (Sigma-Aldrich, USA).

Experiments without RecA and RAD51 were performed without ATP. For the inverse reaction, pro-

tein was incubated with Cy5/IOWA-dsDNA35 (or FAM/Dabsyl-dsDNA49) substrate and reaction was

initiated by addition of ss90. The strand exchange assay with ssRNA substrate was performed as

described above using a 60 ribonucleotide RNA (Supplementary file 1D) compl to that of 35 bp

DNA. Alternatively, Cy3- and Cy5-labelled DNA oligonucleotides were used to prepare dsDNA sub-

strate and the products were analysed by EMSA PAGE (below).

EMSA PAGE
Fluorescent-labelled DNA products of strand exchange reactions were also analysed on EMSA

PAGE. After fluorescence measurement on plate reader, the final reaction mix (80 ml) products were

deproteinated by incubation with proteinase K (0.5 mg/ml) with 0.5 mM EDTA and 1% w/v SDS for

20 min at 37˚C and the DNA fragments were separated on 10% PAGE gel in TBE buffer. The gel was

imaged using a Typhoon 9400 image scanner (GE) and analysed with ImageJ software.

FRET assay
FRET assay was performed in 96 well plate format. 100 nM of dual labelled dT70 or ss40 (Cy5 at 5’

end and Cy3 at 3’ end) was dispensed into 80 mL assay buffer identical to the buffer in the strand

exchange assay (Supplementary file 1D). Excitation was at 540/25 nm bandpass. Emission for both

Cy3 at 590/35 nm bandpass and Cy5 at 680/30 nm were measured. PALB2 was added with final con-

centration between 4000 and 15.6 nM and incubated for 10 min. FRET efficiency was calculated by

using the formula FRET ¼ 1:51�Icy5

1:51�Icy5þ0:669�Icy3ð Þ, where 1.51 and 0.669 are correction factors for fraction

of Cy5 and Cy3 intensities in Cy3 and Cy5 channels respectively. Protein concentrations were as

described in the figure legends.

D-loop assay
D-loop buffer (25 mM Tris-acetate pH 7.5, 100 mg/mL bovine serum albumin, 2 mM CaCl2, 2 mM

ATP, 1 mM DTT), containing 1 mM of radiolabelled oligonucleotide JYM1413 (homologous sequence

to the plasmid pPB4.3, Supplementary file 1C) was incubated for 5 min at 37˚C with the indicated

concentration of RAD51 or PALB2-T1 fragment. CsCl- purified pPB4.3 replicative form I DNA (300

mM) was added and the reaction and incubated for 5 min. Finally, the reaction was stopped with the

addition of 0,6% SDS, 20 mM Tris-HCl pH 7.5, 20 mM MgCl2 and 2 mg/mL proteinase K following

by incubation for 30 min at 37˚C. Labelled DNA products were analysed by electrophoresis through

a 0.8% TAE1X/agarose gel, ran at 65V for 1 hr, dried onto DE81 filter paper at 85˚C, and visualized

by autoradiography.

RAD51 foci assay
HeLa cells were seeded on glass coverslips in 6-well plates at 225 000 cells per well. Knockdown of

PALB2 was performed 18 hr later with 50 nM PALB2 siRNA (Supplementary file 1E) using Lipofect-

amine RNAiMAX (Invitrogen). After 5 hr, cells were subjected to double thymidine block. Briefly,

cells were treated with 2 mM thymidine for 18 hr and released after changing the media.

After a release of 9 hr, PALB2 silenced cells were complemented using transfection with the indi-

cated YFP constructs using Lipofectamine 2000. Cells were then treated with 2 mM thymidine for 17

hr and protected from light from this point on. After 2 hr of release from the second block, cells

were X-irradiated with 2 Gy and processed for immunofluorescence 1 hr, 2 hr, 4 hr, 6 hr and 8 hr
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post-irradiation. All immunofluorescence dilutions were prepared in PBS and incubations performed

at room temperature with intervening washes in PBS. Cell fixation was carried out by incubation with

4% paraformaldehyde for 10 min followed by 100% ice-cold methanol for 5 min at �20˚C. Cells were

then permeabilized in 0.2% Triton X-100 for 5 min and quenched using 0.1% sodium borohydride

for 5 min. After blocking for 1 hr in a solution containing 10% goat serum and 1% BSA, cells were

incubated for 1 hr with primary antibodies to RAD51 (B-bridge International, #70–001) and to cyclin

A (BD Biosciences, # 611268) diluted in 1% BSA. Secondary antibodies, Alexa Fluor 568 goat anti-

rabbit (Invitrogen, #A-11011) and Alexa Fluor 647 goat anti-mouse (Invitrogen, #A-21235), were

used in PBS containing 1% BSA for 1 hr. Nuclei were stained for 10 min with 1 mg/mL 4, 6-diami-

dino-2-phenylindole (DAPI) prior to mounting onto slides with 90% glycerol containing 1 mg/ml par-

aphenylenediamine anti-fade reagent. Z-stack images were acquired at 63X magnification on a Leica

DM6000 microscope, then deconvoluted and analysed for RAD51 foci formation with Volocity soft-

ware v6.0.1 (Perkin-Elmer Improvision). The number of RAD51 foci per cyclin A-positive cells

(n = 300), among the transfected population, was manually scored and reported in a scatter dot plot

representing the SEM. An Anova test (Kruskal-Wallis-test for multiple comparison) was performed

followed by a non-parametric Mann-Whitney test.

CRISPR-Cas9/mClover-LMNA1 mediated HR assay (Pinder et al., 2015)
U2OS cells were seeded in 6-well plates. Knockdown of PALB2 (Buisson et al., 2017) was performed

6–8 hr later using Lipofectamine RNAiMAX (Invitrogen). Twenty-four hours post-transfection, 1.5�2

� 106 cells were pelleted for each condition and resuspended in 100 mL complete nucleofector solu-

tion (SE Cell Line 4D-Nucleofector X Kit, Lonza) to which 1 mg of pCR2.1-mClover-LMNAdonor, 1 mg

pX330-LMNAgRNA, 0.1 mg of iRFP670 and 1 mg of pcDNA3 empty vector or the Flag-PALB2 con-

structs, and 20 nM of each siRNA were added. Once transferred to a 100 ml Lonza certified cuvette,

cells were transfected using the 4D-Nucleofector X-unit, program CM-104 and transferred to a 10

cm dish. After 48 hr, cells were trypsinized and plated onto glass coverslips. Expression of the

mClover was assayed the next day by fluorescence microscopy (63X), that is 72 hr post-nucleofec-

tion. Data are represented as mean percentages of mClover-positive cells over the iRFP-positive

population from five independent experiments (total n > 100 iRFP-positive cells) and reported in a

scatter dot plot representing SEM, and a classical one-way Anova test was performed.

GFP-Trap pulldown
HEK293T were plated to 80% confluency and transfected with YFP-CTL, YFP-PALB2 or YFP-PALB2-

146AAAA vector using Lipofectamine RNAiMAX Reagent (Thermo Fisher Scientific). 24 hr after, cells

were irradiated with 5 Gy and processed for GFP-Trap Pulldown 2 hr post-irradiation. Briefly, cells

were washed twice with ice cold PBS and lysed in lysis buffer (50 mM Tris-HCl, pH 7.5, 150 mM

NaCl, 0,5% NP40, containing PMSF, Aprotinin, Leupeptin, NaF, and Na2VO4). Lysates were soni-

cated (three times 10 s at 30% amplitude on ice) and centrifuged at 16000 g, for 30 min at 4˚C. Pro-

tein lysates (3 mg) were incubated with GFP-Trap beads (Chromotek) for 1 hr at 4˚C. Beads were

washed three times with lysis buffer (without NP40) and bound proteins were resuspended in 35 mL

of Laemmli SDS-sample buffer and heated to 95˚C for 10 min.

Samples were run on NuPAGE 4–12% bis-Tris Protein Gels (Invitrogen) in NuPAGE MOPS SDS

Running Buffer according to the manufacturer’s protocol and transferred to Nitrocellulose mem-

brane (Amersham) using XCell II Blot Module (Invitrogen) in 20% methanol transfer buffer. Immuno-

blots were performed using the following antibodies: anti-RAD51(14B4) (Novus Biologicals, #NB100-

148) and anti-GFP (Roche, #11814460001).

Plasmids and siRNA
peYFP-C1-PALB2 was modified to be resistant to PALB2 siRNA by Q5 Site-Directed Mutagenesis Kit

(NEB, E0554) using primers JYM3892/3893 (Supplementary file 1E). The resulting siRNA-resistant

construct was then used as a template to generate the mutant construct YFP-PALB2 146AAAA with

the primers JYM3909/JYM3910. Flag-tagged PALB2 146AAAA mutant was also obtained via site-

directed mutagenesis on pcDNA3-Flag PALB2 (Pauty et al., 2017).
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Cell lines
U2OS (HTB-96) and HEK293T (CRL-11268) were purchased from ATCC and HeLa were authenticated

using Short Tandem Repeat (STR) analysis by ATCC services (100% match). All the cells lines used

were uninfected with Mycoplasma, as routinely verified using the e-Myco Mycoplasma kit from

FroggaBio.
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Buisson R, Dion-Côté AM, Coulombe Y, Launay H, Cai H, Stasiak AZ, Stasiak A, Xia B, Masson JY. 2010.
Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination.
Nature Structural & Molecular Biology 17:1247–1254. DOI: https://doi.org/10.1038/nsmb.1915, PMID: 20
871615

Buisson R, Niraj J, Pauty J, Maity R, Zhao W, Coulombe Y, Sung P, Masson JY. 2014. Breast cancer proteins
PALB2 and BRCA2 stimulate polymerase h in recombination-associated DNA synthesis at blocked replication
forks. Cell Reports 6:553–564. DOI: https://doi.org/10.1016/j.celrep.2014.01.009, PMID: 24485656

Buisson R, Niraj J, Rodrigue A, Ho CK, Kreuzer J, Foo TK, Hardy EJ, Dellaire G, Haas W, Xia B, Masson JY, Zou L.
2017. Coupling of homologous recombination and the checkpoint by ATR. Molecular Cell 65:336–346.
DOI: https://doi.org/10.1016/j.molcel.2016.12.007, PMID: 28089683

Buisson R, Masson JY. 2012. PALB2 self-interaction controls homologous recombination. Nucleic Acids Research
40:10312–10323. DOI: https://doi.org/10.1093/nar/gks807, PMID: 22941656

Chen Z, Yang H, Pavletich NP. 2008. Mechanism of homologous recombination from the RecA-ssDNA/dsDNA
structures. Nature 453:484–489. DOI: https://doi.org/10.1038/nature06971, PMID: 18497818

Chi P, San Filippo J, Sehorn MG, Petukhova GV, Sung P. 2007. Bipartite stimulatory action of the Hop2-Mnd1
complex on the Rad51 recombinase. Genes & Development 21:1747–1757. DOI: https://doi.org/10.1101/gad.
1563007, PMID: 17639080

Cox MM. 2007. Regulation of bacterial RecA protein function. Critical Reviews in Biochemistry and Molecular
Biology 42:41–63. DOI: https://doi.org/10.1080/10409230701260258, PMID: 17364684

Davies AA, Masson JY, McIlwraith MJ, Stasiak AZ, Stasiak A, Venkitaraman AR, West SC. 2001. Role of BRCA2 in
control of the RAD51 recombination and DNA repair protein. Molecular Cell 7:273–282. DOI: https://doi.org/
10.1016/S1097-2765(01)00175-7, PMID: 11239456

Dray E, Etchin J, Wiese C, Saro D, Williams GJ, Hammel M, Yu X, Galkin VE, Liu D, Tsai MS, Sy SM, Schild D,
Egelman E, Chen J, Sung P. 2010. Enhancement of RAD51 recombinase activity by the tumor suppressor
PALB2. Nature Structural & Molecular Biology 17:1255–1259. DOI: https://doi.org/10.1038/nsmb.1916,
PMID: 20871616

Deveryshetty et al. eLife 2019;8:e44063. DOI: https://doi.org/10.7554/eLife.44063 21 of 25

Research article Biochemistry and Chemical Biology Cancer Biology

https://doi.org/10.7554/eLife.44063.027
https://doi.org/10.7554/eLife.44063.028
https://doi.org/10.1074/jbc.M110.216739
http://www.ncbi.nlm.nih.gov/pubmed/21454474
https://doi.org/10.1038/nsmb.1943
http://www.ncbi.nlm.nih.gov/pubmed/21076401
https://doi.org/10.1016/S0968-0004(99)01451-6
http://www.ncbi.nlm.nih.gov/pubmed/10500302
https://doi.org/10.1038/nature11598
http://www.ncbi.nlm.nih.gov/pubmed/23103864
https://doi.org/10.1038/34937
http://www.ncbi.nlm.nih.gov/pubmed/9450758
https://doi.org/10.1016/S0076-6879(05)09002-6
http://www.ncbi.nlm.nih.gov/pubmed/16793393
https://doi.org/10.1038/embor.2011.243
http://www.ncbi.nlm.nih.gov/pubmed/22193777
https://doi.org/10.1073/pnas.1620208114
http://www.ncbi.nlm.nih.gov/pubmed/28673974
https://doi.org/10.1016/j.celrep.2017.02.068
http://www.ncbi.nlm.nih.gov/pubmed/28329678
https://doi.org/10.1038/nsmb.1915
http://www.ncbi.nlm.nih.gov/pubmed/20871615
http://www.ncbi.nlm.nih.gov/pubmed/20871615
https://doi.org/10.1016/j.celrep.2014.01.009
http://www.ncbi.nlm.nih.gov/pubmed/24485656
https://doi.org/10.1016/j.molcel.2016.12.007
http://www.ncbi.nlm.nih.gov/pubmed/28089683
https://doi.org/10.1093/nar/gks807
http://www.ncbi.nlm.nih.gov/pubmed/22941656
https://doi.org/10.1038/nature06971
http://www.ncbi.nlm.nih.gov/pubmed/18497818
https://doi.org/10.1101/gad.1563007
https://doi.org/10.1101/gad.1563007
http://www.ncbi.nlm.nih.gov/pubmed/17639080
https://doi.org/10.1080/10409230701260258
http://www.ncbi.nlm.nih.gov/pubmed/17364684
https://doi.org/10.1016/S1097-2765(01)00175-7
https://doi.org/10.1016/S1097-2765(01)00175-7
http://www.ncbi.nlm.nih.gov/pubmed/11239456
https://doi.org/10.1038/nsmb.1916
http://www.ncbi.nlm.nih.gov/pubmed/20871616
https://doi.org/10.7554/eLife.44063


Ducy M, Sesma-Sanz L, Guitton-Sert L, Lashgari A, Gao Y, Brahiti N, Rodrigue A, Margaillan G, Caron MC, Côté
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