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Abstract: Tissue-resident memory T cells (TRM) stay in the peripheral tissues for long periods of time,
do not recirculate, and provide the first line of adaptive immune response in the residing tissues.
Although TRM originate from circulating T cells, TRM are physiologically distinct from circulating T
cells with the expression of tissue-residency markers, such as CD69 and CD103, and the characteristic
profile of transcription factors. Besides defense against pathogens, the functional skew of skin TRM

is indicated in chronic skin inflammatory diseases. In psoriasis, IL-17A-producing CD8+ TRM are
regarded as one of the pathogenic populations in skin. Although no licensed drugs that directly and
specifically inhibit the activity of skin TRM are available to date, psoriatic skin TRM are affected in
the current treatments of psoriasis. Targeting skin TRM or using TRM as a potential index for disease
severity can be an attractive strategy in psoriasis.
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1. Introduction

Once the immune system encounters antigens, memory T cells are generated from
the naïve T cells and facilitate a prompt response to the re-exposure of the same antigens.
Two populations of memory T cells have been defined from human blood circulation:
effector memory T cells (TEM) and central memory T cells (TCM) [1]. TEM are also dominant
in peripheral non-lymphoid tissues and TCM have an affinity for secondary lymphoid
organs [2,3]. Furthermore, research on murine infectious disease models has revealed that a
subpopulation of TEM found in peripheral tissues remain in the same tissues for long periods
without recirculation after cure of infection [4–6]. These findings led to the establishment of
the new population of memory T cells, tissue-resident memory T cells (TRM).

TRM are superior to their circulating memory counterparts in their ability to provide
the local adaptive cellular defense [7–11]. They can respond to the local antigen re-exposure
without the recruitment of circulating T cells to the tissue [12]. In addition, recent studies
suggest TRM also contribute to systemic immune responses upon subsequent exposure
to specific antigens by proliferating and baring circulating populations, such as TCM and
TEM [13,14].

The existence and functional activities of TRM were initially investigated in barrier
tissues, such as the gut [6,15], skin [4,5,12,16,17], respiratory tract [18,19], and reproduc-
tive tract [20,21], in the context of local defense against pathogens in infectious diseases.
However, their roles are now recognized in various conditions, including cancer immunity,
tissue-specific autoimmune diseases, and chronic inflammatory diseases both in barrier
and non-barrier tissues [22].

Skin TRM are among the intensively studied TRM populations not only in murine
models but also in humans. The human skin contains an estimate of 20 billion T cells,
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doubling those in the circulation [23], and over half of these T cells show the TRM pheno-
type [24]. Besides infectious diseases, the involvement of skin TRM has been reported in
allergic contact hypersensitivity [25]; fixed drug eruption [26]; cutaneous malignancies,
including malignant melanoma [27,28] and cutaneous T-cell lymphoma [24,29]; and chronic
inflammatory diseases, such as vitiligo, alopecia, and psoriasis [30,31].

In this review, we provide an overview of the general characteristics of TRM. Then,
narrowing our focus to skin TRM in humans, we summarize the involvement of skin TRM
in cutaneous disorders, especially psoriasis. We also mention the possibility of engaging
TRM as a disease index and treatment target in psoriasis. Since CD8+ TRM are the best-
characterized population, we focus on CD8+ TRM and describe this population as TRM in
this review unless otherwise mentioned.

2. The Characteristics of TRM

T cells in the neonatal murine skin are predominant with dendritic epidermal T cells
(DETCS) with restricted antigenic specificity [32], and neonatal human skin holds only
a few T cells [24]. Thus, TRM are assumed to develop from circulating T cells according
to repeated antigen exposure. In the local inflammation caused by specific antigens, the
robustly expanded effector T cells emerge in the circulation and the affected tissues, and
both TCM and TRM are assumed to arise from a part of these effector T cells [25,33].

The general characteristics of TRM across the tissues include the loss of migration and
the gain of retention. The development and maintenance of these characteristics in TRM are
driven by complex factors, such as cytokine and chemokine receptors, the other cell-surface
molecules being responsible for tissue homing and retention, and transcription factors
(Figure 1).
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Figure 1. A. Surface markers, intracellular molecules, and transcription factors of TRM. The expression
levels of these molecules on TRM are shown by upward arrows (increased expressions) and downward
arrows (decreased expressions). Created with BioRender.com (accessed on 21 August 2021).

2.1. Cell Surface Molecules

While homing molecules including chemokine receptors are diverse depending on the
target peripheral tissues, the molecules related to tissue retention seem to be shared among
various tissues. In general, TRM lack the expression of the secondary lymphoid homing
molecules CC-chemokine receptor 7 (CCR7) and L-selectin, which are expressed on TCM
and naïve T cells [1]. The tissue retention molecules CD69 and CD103 (αE integrin) are
widely recognized as the markers for TRM. CD103 is a ligand of E-cadherin that is expressed
on epithelial cells [34], and CD69 interferes with sphingosine-1-phosphate (S1P) receptor-1,
which allows the cells to exit from peripheral tissues by sensing the density of S1P [35].
CD69 also reportedly regulates the uptake of L-tryptophan and the intracellular quantity
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of L-tryptophan-derived activator of the aryl hydrocarbon receptor (AhR) [36], which is
reportedly involved in the persistence of TRM [32]. These functions would explain at least
partially the importance of these molecules in tissue retention. However, their expression
varies, possibly depending on the tissues and the causes of TRM development. TRM lacking
CD103 expression have been described in some peripheral tissues and secondary lymphoid
organs [37,38] and CD103+ TRM can be found in the dermis and adult central nervous
system where E-cadherin is absent, implying that binding to E-cadherin is not required for
the persistence of TRM in peripheral tissues [24,39]. Although CD69 is expressed on the
majority of TRM in various peripheral tissues, TRM negative for CD69 expression are also
noted [33]. We thus have to take into account that these two molecules are not able to cover
TRM universally.

2.2. Transcription Factors

Transcriptional regulation is also presumably common among TRM in various tissues.
For instance, the expression of AhR is increased in skin TRM as compared with naïve T
cells and splenic T cells, possibly favoring the maintenance of skin TRM [32]. Rapamycin
inhibits the formation of TRM in the intestinal and vaginal mucosa, highlighting a pos-
itive link of mammalian target of rapamycin and the downstream transcription factors
with the formation of TRM [40]. The maintenance of lung TRM may be related to Notch
signaling, including the upregulation of the downstream transcription factor RBPJ [41].
The augmented uptake of exogenous lipids accompanied by the upregulation of fatty
acid binding proteins (FABPs) 4 and 5 is one of the characteristic processes involved in
the generation and maintenance of skin TRM [42]. Hypoxia-inducible factor-1α, which
is a transcription factor in the downstream of FABP5 signaling, reportedly promotes the
residency and anti-tumor function of tumor-infiltrating T cells in the murine malignancy
model [43]. The downregulation of T-box transcription factors T-bet and EOMES [44] and
the upregulation of Blimp-1, Hobit [45], and Runx3 [46,47] have also been reported to be
involved in the differentiation and/or maintenance of TRM.

2.3. Skin-Homing Molecules

In addition to the shared characteristics of various TRM, skin TRM are shown to have
their own homing molecules. As one of skin’s homing molecules, cutaneous lymphocyte-
associated antigen (CLA) binds to E-selectin and P-selectin and allows the cells to migrate
into skin [23]. The chemokine receptors CCR4, CCR8, CCR10, CXCR3, and CXCR6 are also
regarded as important skin-homing and/or retention molecules for at least some skin T
cells [16,48–52].

2.4. Fate Decision of TRM

How the fate of TRM differentiation is decided remains an unsolved question. TRM
reportedly derive from circulating T cells lacking high expression of the killer cell lectin-like
receptor subfamily G member 1 (KLRG1), which is regarded as a terminal differentiation
marker [16,47]. Another report demonstrates that the effector T cells with enriched ex-
pression of TRM-associated genes, such as Itgae (CD103), Itga1 (CD49a), Cd101, Ahr, and
Fabp5, already exist as memory precursor cells and preferentially differentiate into TRM [53],
suggesting that the fate of TRM is at least partially decided in the early stage of adoptive im-
mune memory formation. On the other hand, the time-course single-cell RNA-sequencing
analysis in a murine model with lymphocytic-choriomeningitis-virus infection revealed
that the transcriptional characteristics of TRM can be detected from gut-infiltrating T cells
at the earliest 4 days after infection, and the characteristics are distinct from those found
in splenic T cells [54], implying that the TRM differentiation program is initiated after the
cells enter the specific peripheral tissues. Further elucidation of the TRM differentiation
mechanism will require further research.
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3. Human Skin TRM

In general, human TRM and murine TRM share core transcriptional, phenotypic, and
functional profiles, including the almost global expression of CD69 and dominant CD103
expression in CD8 fractions [45,55–57]. In patients with cutaneous T-cell lymphoma (CTCL),
the treatment with alemtuzumab, which depletes circulating T cells and spares the TRM,
does not result in serious infection [58], implying the role of skin TRM in protective im-
munity. The TRM phenotype of the malignant cells in CTCL is related to the clinical
manifestation of well-demarcated lesions, suggesting that the sessile property of TRM also
exists in humans [24]. In vitro experiments suggest skin TRM maintain the production of
IL-17A and IFN-γ in reaction with pathogen challenges through aging [59]. Using tran-
scriptomic and functional data, human TRM are found to abolish their senescent phenotype
and survive for over 10 years in specific circumstances [46], replicating the longevity of
TRM in humans.

However, TRM in humans are presumably more diverse and widely distributed. For
instance, CD4+ TRM are found in both the epidermis and dermis in humans, although
murine skin CD4+ TRM are predominantly found in dermis [17,24,60,61]. TRM are also
found in secondary lymphoid organs, such as the spleen, lymph nodes, and tonsils in
humans [55,56].

The factors that may cause the difference between human skin TRM properties and
those observed in laboratory mice may include the following: (1) the thick epidermis with
abundant niche for TRM [24,62]; (2) the low density of hair follicles that express cytokines
important for TRM migration and survival, including IL-7 and IL-15 [63,64]; (3) the frequent
exposure to foreign antigens; (4) the small population of γδT cells with the lack of DETC
in the human epidermis [65] (however, we do not know whether the recently identified
αβγδT cell population in fetal skin can replace DETC) [66]. The longer survival period of
human TRM compared to murine life span [46] may also cause difficulty in adapting the
findings in murine models to human biology.

The involvement of skin TRM is highlighted in chronic inflammatory disorders and
cutaneous malignancies. In the lesional skin of alopecia areata, TRM with the ability to
produce granzyme B are dominant and related to disease prognosis, implying their in-
volvement in the pathogenesis [67]. Intraepidermal IFN-γ-producing TRM are enriched
in the cured sites of fixed drug eruption [26], suggesting the contribution of this fraction
to the reproducible property. In patients with atopic dermatitis, cutaneous TRM with the
production of IL-4 and IL-13 are also indicated to be involved in the disease pathogene-
sis [68]. Dermal TRM are increased with the production potential of perforin, granzyme
B, and IFN-γ in vitiligo [30,69], which are presumably specific for melanocyte antigens.
In malignant melanoma, skin TRM provide protection against tumor regrowth and are
involved in vitiligo formation, suggestive of their specific reactivity against melanoma anti-
gens [70]. Better understanding of cutaneous TRM will pave the way for novel management
and treatment of skin diseases.

The methodologies for evaluating skin TRM are summarized in Table 1. In the transla-
tional research field, one of the most popular methods for analyzing TRM is fluorescence-
activated cell sorting (FACS) analysis. However, conducting this method from biopsied
skin specimens is not practical in the daily clinical settings considering the burden for both
patients and clinicians. Immunohistochemistry (IHC) and/or immunofluorescence (IF)
for TRM-related molecules, such as CD3, CD8, CD69, and CD103, on the residual biopsy
specimens carried out for diagnosis is probably more feasible to date. To establish non-
invasive methods for predicting the activities of skin TRM, such as analyzing tape-stripped
or surface-swabbed samples, will require further research.

4. Skin TRM in the Pathogenesis of Psoriasis

Psoriasis, hereafter referred to as plaque psoriasis, is an immune-mediated chronic in-
flammatory skin disorder characterized by well-demarcated persistent scaly indurated ery-
thematous plaques. The contributions of environment [71], hereditary predisposition [72],
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and autoantigens [73] are implied to be involved in disease development. Circulating T
cells were previously regarded as responsible for the lesion formation in psoriasis. How-
ever, the inhibition of E-selectin, which is required for T-cell migration from the blood
stream to skin, was noted to be ineffective [74]. Another blocking strategy of T-cell migra-
tion by the biologics targeting CD11a also did not show dramatic efficacy [75]. However,
in a humanized murine model where psoriatic nonlesional skin specimens are grafted to
immunodeficient mice [76], the healthy-appearing nonlesional skin grafts spontaneously
develop psoriatic disease, suggesting that the cells residing in the nonlesional skin are
sufficient for the development of psoriatic disease. These results have led to the theory that
TRM may play a crucial role in the pathogenesis of psoriasis.

The fate of skin TRM is affected by the skin microenvironment, and in psoriasis,
this is also the case. Several skin-constituting factors have been reported to support the
development and persistence of IL-17A-producing TRM in psoriasis. Keratinocytes in
disease-naïve sites of psoriasis upregulate the expression of chemokines, such as CCL20
upon stimulation by skin commensal fungi [77]. Since CCL20 is a ligand for CCR6, which
is a signature molecule of IL-17A-producing T cells, the activated keratinocytes in the
disease-naïve sites of psoriasis are to recruit IL-17A-producing T cells to the disease-naïve
sites, leading to the accumulation of IL-17A-producing TRM [77]. In turn, IL-17A from
TRM stimulates keratinocytes to express CCL20, further accelerating the recruitment of
CCR6+ cells [78]. In the resolved skin, the continuous production of IL-23 and IL-15
from Langerhans cells presumably support the maintenance of IL-17A-producing TRM in
the epidermis [79]. The reduced repertoire of IL-17A-producing T cells in the resolved
skin, which has been observed in different psoriatic patients, implies the existence of
common antigens that drive the accumulation of psoriatic TRM [80]. Several potential
autoantigens have been reported in psoriasis (Figure 2). For example, cationic antimicrobial
peptide LL-37 produced by various cells including keratinocytes binds self-DNA and
triggers the activation of plasmacytoid dendritic cells (pDC) and TNF/iNOS-producing
dendritic cells (TIP-DC) [81,82]. A disintegrin-like and metalloprotease domain containing
thrombospondin type 1 motif-like 5 (ADAMTSL5) in complex with HLA-C*06:02 on the
surface of melanocytes confers epidermal CD8+ T-cell response [83]. Neo-lipid antigens
generated by phospholipase A2 group 4D (PLA2G4D) from mast cells and keratinocytes
trigger the CD1a-reactive T cells to produce IL-17A and IL-22 [84]. Keratin 17, a human
epidermal keratin that shares a sequential homology with streptococcal M protein, is
recognized by HLA-Cw*0602-restricted IFN-γ-producing CD8+ T cells [85,86]. Taken
together, these results suggest the synchronizing roles of the skin microenvironment in the
development and persistence of pathogenic cutaneous TRM.

In the lesional skin of patients with psoriasis, TRM consist of both CD4 and CD8
fractions, which synchronize the elevated immune response by the increased expression
of inflammatory cytokines, such as IL-17A, IL-22, and IFN-γ [62,80,87,88]. While IL-17A-
producing CD4+ TRM also exist in healthy skin, the enrichment of CD8+ TRM producing
IL-17A in the epidermis is one of the characteristics of psoriasis [87,88]. In disease-naïve skin
that has never experienced disease formation, IL-17A production is augmented by TRM [77],
and the increase in IL-17A-producing CD8+ TRM at the dispense of IFN-γ-producing TRM
occurs according to disease duration [88].

IFN-γ-producing TRM are also dominant in the epidermis and express the complex of
CD49a–CD29, also known as very late antigen 1 (VLA-1) or α1β1 integrin [76]. CD49a+

TRM are involved in the pathogenesis of psoriasis. The number of epidermal CD8+CD49a+

TRM correlates with the severity of the disease [89], and an experimental blockade of CD49a
in mice transplanted with psoriatic skin reduces the disease formation [76]. However, since
the blockade of whole CD8+ T cells almost completely prevents disease development in the
similar psoriatic skin-engrafted murine model [90], CD49a+ TRM with IFN-γ production are
not likely the key population for disease development, while the CD8+ T cell population
likely includes a critical fraction for disease pathogenesis. In fact, CD8+ TRM without the
expression of CD49a are defined as an IL-17A-producing TRM subset [30].



J. Clin. Med. 2021, 10, 3822 6 of 12
J. Clin. Med. 2021, 10, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 2. Development of TRM in psoriasis. TRM are activated by either autoantigens or cyto-
kines/chemokines. Autoantigens include ADMTSL5 on the surface of melanocytes, PLAG4D from 
mast cells and keratinocytes, and keratin 17 from keratinocytes. Antimicrobial peptide LL-37, also 
from keratinocytes, binds to self-DNA to activate pDC and TIP-DC, leading to the production of IL-
23/TNF-α. IL-23/15 from Langerhans cells and CCL20 from keratinocytes also activate TRM. These 
stimulated TRM produce proinflammatory cytokines, such as IL-17A and IL-22, the hallmarks of pso-
riasis. The development of pathogenic TRM can be inhibited by stopping pathways related to TRM 
activation or directly inhibiting the activity of TRM (red inhibition icon). Created with BioRender.com 
(assessed on 21 August 2021). 

In the lesional skin of patients with psoriasis, TRM consist of both CD4 and CD8 frac-
tions, which synchronize the elevated immune response by the increased expression of 
inflammatory cytokines, such as IL-17A, IL-22, and IFN-γ [62,80,87,88]. While IL-17A-pro-
ducing CD4+ TRM also exist in healthy skin, the enrichment of CD8+ TRM producing IL-17A 
in the epidermis is one of the characteristics of psoriasis [87,88]. In disease-naïve skin that 
has never experienced disease formation, IL-17A production is augmented by TRM [77], 
and the increase in IL-17A-producing CD8+ TRM at the dispense of IFN-γ-producing TRM 
occurs according to disease duration [88]. 

IFN-γ-producing TRM are also dominant in the epidermis and express the complex of 
CD49a–CD29, also known as very late antigen 1 (VLA-1) or α1β1 integrin [76]. CD49a+ 
TRM are involved in the pathogenesis of psoriasis. The number of epidermal CD8+CD49a+ 
TRM correlates with the severity of the disease [89], and an experimental blockade of CD49a 
in mice transplanted with psoriatic skin reduces the disease formation [76]. However, 
since the blockade of whole CD8+ T cells almost completely prevents disease development 
in the similar psoriatic skin-engrafted murine model [90], CD49a+ TRM with IFN-γ produc-
tion are not likely the key population for disease development, while the CD8+ T cell pop-
ulation likely includes a critical fraction for disease pathogenesis. In fact, CD8+ TRM with-
out the expression of CD49a are defined as an IL-17A-producing TRM subset [30]. 

Successful treatment with an IL-17A-targeting biologics results in a decreased num-
ber of IL-17A-producing TRM in resolved skin, but the frequency of these cells is not altered 
within the remaining T cells [91]. Another study on residual psoriasis after the use of bio-
logics revealed a decrease in keratinocyte proliferation. However, the percentage of IL-
17A-producing CD103+ TRM was not significantly reduced after the treatments [92]. Simi-
larly, a new normal in the persistence of IL-17A-producing TRM with CCR6 and IL-23R 
expression in the resolved skin has been established [62,80]. IL-17A-producing CD8+ TRM 

Figure 2. Development of TRM in psoriasis. TRM are activated by either autoantigens or cy-
tokines/chemokines. Autoantigens include ADMTSL5 on the surface of melanocytes, PLAG4D
from mast cells and keratinocytes, and keratin 17 from keratinocytes. Antimicrobial peptide LL-37,
also from keratinocytes, binds to self-DNA to activate pDC and TIP-DC, leading to the production
of IL-23/TNF-α. IL-23/15 from Langerhans cells and CCL20 from keratinocytes also activate TRM.
These stimulated TRM produce proinflammatory cytokines, such as IL-17A and IL-22, the hallmarks of
psoriasis. The development of pathogenic TRM can be inhibited by stopping pathways related to TRM

activation or directly inhibiting the activity of TRM (red inhibition icon). Created with BioRender.com
(assessed on 21 August 2021).

Successful treatment with an IL-17A-targeting biologics results in a decreased number
of IL-17A-producing TRM in resolved skin, but the frequency of these cells is not altered
within the remaining T cells [91]. Another study on residual psoriasis after the use of
biologics revealed a decrease in keratinocyte proliferation. However, the percentage of
IL-17A-producing CD103+ TRM was not significantly reduced after the treatments [92].
Similarly, a new normal in the persistence of IL-17A-producing TRM with CCR6 and IL-23R
expression in the resolved skin has been established [62,80]. IL-17A-producing CD8+ TRM
and IL-22-producing CD4+ TRM remain in the psoriatic epidermis for as long as six years
after starting the successful TNF-α-targeting treatment [62]. Taken together, these findings
highlight the essential standing point of IL-17A-producing TRM as one of the pathogenic
populations of skin TRM in psoriasis.

5. Targeting Skin TRM in the Management of Psoriasis

Regardless of the persistence of this population by various treatments in psoriasis,
many of the current and upcoming therapeutics in clinical practice presumably exert an
indirect influence on cutaneous IL-17A-producing TRM. Since the remission period after
successful treatments inversely correlates with the relative IL-17 signaling of the resolved
skin compared to IL-10 and IFN-γ signaling [93], the relative reduction, if not elimination,
of IL-17A-producing TRM may be of help in controlling psoriatic disease activity.

Biologics targeting the IL-17 pathway reportedly reduce IL-17 signaling and the
amount of T cells in the lesion [94]. Furthermore, the biologics targeting IL-23 decrease this
fraction from the lesion more strongly compared to those targeting IL-17A [95]. Ultraviolet
irradiation leads to the diminishment of IL-17A-producing T cells in skin [96], and this T-cell
fraction includes TRM. Topical vitamin D analogues and corticosteroids reportedly reduce
the lesional IL-17A-producing TRM, possibly including pathogenic TRM [97,98]. Retinoic
acid prevents Th17 differentiation and possibly promotes the properties of regulatory
T cells [99,100]. As the oral phosphodiesterase 4 inhibitor (PDE4i) diminishes the pro-
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inflammatory cytokine production from circulating T cells [101], the function of both
topical and systemic PDE4i could be revisited from the perspective of skin TRM. An AhR
agonist modulates the Th17 property of T cells, and the efficacy of its topical form possibly
affects IL-17A-producing T cells in skin, including TRM [102].

Proof-of-concept approaches that directly and exclusively target pathogenic popu-
lations of TRM should be subjected to further studies. The candidate strategies might
include the inhibition of the pathways involved in IL-15 signaling to perturb the survival
of pathogenic TRM and the blockade of the pathways processing fatty acids to suppress
the lipid metabolism of pathogenic TRM. Targeting the transcription factors specified for
differentiation and maintenance of pathogenic TRM is also an attractive strategy. However,
although the risk of targeting these populations of TRM is unknown, it may cause the loss
of local immune memory against pathogens in the skin. Since the characteristic cell surface
molecules and transcription factors found in TRM properties can be overlapped with the
sessile properties of other cell types, such as innate lymphoid cells and B cells [103,104], the
strategies targeting TRM might also affect the other tissue-sessile immunity. Specific treat-
ment targets for psoriatic dysfunctional TRM, excluding the other TRM and skin-resident
immune cells, would be ideal.

6. Conclusions

Extensive studies with rigorous methodologies have broadened our knowledge on
TRM in general and those residing in the skin in particular (Table 1). The involvement of
skin TRM in the pathogenesis of skin diseases is also being elucidated. Several key points
are highlighted below:

• TRM originate from circulating T cells, do not recirculate, and provide the first line of
adaptive cellular defense in the residing tissues.

• The functional skew of skin TRM is indicated in chronic skin inflammatory diseases.
• In psoriasis, IL-17-A-producing CD8+ TRM may be among the pathogenic populations

in the skin.
• Pathogenic populations of skin TRM can be targeted in the current and future treat-

ments of psoriasis. Skin TRM can also serve as a potential index of the disease.

Further studies on TRM will advance the management of not only psoriasis but other
diseases in which this subset of T cells plays a role.

Table 1. Several major findings related to methodologies used in research on humans.

Key Findings Major Methodologies

A role of skin TRM in protective immunity in humans FACS [58]

Skin TRM with the potential of producing cytokines are
infiltrated in the lesion of patients with GVHD FC, single-cell TCR sequencing, and IF [46]

Cells residing in nonlesional skin are sufficient, and the
recruitment of circulating cells is not necessary for the
development of psoriatic disease

Transplantation, FC, quantitative
RT-PCR, and IHC [76]

CD8+ TRM producing IL-17A in the epidermis is one of the
characteristics in psoriasis FC and IHC [87]

The increase in IL-17A-producing CD8+ TRM during the
distribution of IFN-γ-producing TRM occurs according to
psoriasis duration

FC and IF [88]

The successful treatment with IL-17A-targeting biologics
results in a decreased number of IL-17A-producing CD8+

TRM in resolved psoriatic skin, but the frequency of these
cells is not altered

FC, IHC, and IF [91]

IL-17A-producing CD8+ TRM and IL-22-producing CD4+

TRM remain in the psoriatic epidermis for as long as six
years after starting the successful TNF-α-targeting
treatment

FC, quantitative RT-PCR, and IF [62]

FC: flow cytometry, TCR: T-cell receptor, RT-PCR: reverse transcription polymerase chain reaction, IF: immunoflu-
orescence, IHC: immunohistochemistry.
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