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Background-—Environmental health risks for individuals with heart failure (HF) have been inadequately studied, as these individuals
are not well represented in traditional cohort studies. To address this we studied associations between long-term air pollution
exposure and mortality in HF patients.

Methods and Results-—The study population was a hospital-based cohort of individuals diagnosed with HF between July 1, 2004
and December 31, 2016 compiled using electronic health records. Individuals were followed from 1 year after initial diagnosis until
death or the end of the observation period (December 31, 2016). We used Cox proportional hazards models to evaluate the
association of annual average fine particulate matter (PM2.5) exposure at the time of initial HF diagnosis with all-cause mortality,
adjusted for age, race, sex, distance to the nearest air pollution monitor, and socioeconomic status indicators. Among 23 302 HF
patients, a 1 lg/m3 increase in annual average PM2.5 was associated with an elevated risk of all-cause mortality (hazard
ratio 1.13; 95% CI, 1.10–1.15). As compared with people with exposures below the current national PM2.5 exposure standard
(12 lg/m3), those with elevated exposures experienced 0.84 (95% CI, 0.73–0.95) years of life lost over a 5-year period, an
observation that persisted even for those residing in areas with PM2.5 concentrations below current standards.

Conclusions-—Residential exposure to elevated concentrations of PM2.5 is a significant mortality risk factor for HF patients.
Elevated PM2.5 exposures result in substantial years of life lost even at concentrations below current national standards. ( J Am
Heart Assoc. 2020;9:e012517. DOI: 10.1161/JAHA.119.012517.)
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L ong-term air pollution exposure remains one of the most
significant risk factors for mortality worldwide, a trend

that may be increasing despite improvements in air quality in
many nations.1 Reasons for this increasing mortality burden
from poor air quality include advancing age and the increasing

prevalence of chronic disease conditions, both of which can
increase sensitivity to poor air quality. Heart failure (HF) is one
of the most severe forms of cardiovascular disease, with HF
patients having a median life expectancy <5 years.2,3

Improvements in care, combined with an aging population
and stable incidence, result in an increasing prevalence of HF
in the United States, with a projected 8 million adults to have
HF in 2030 (46% increase over 2012).4 Still, recent gains in
survival rates for HF patients lag behind those for many other
common chronic diseases.5

Individuals with HF have substantial environmental health
risks,6-10 which are generally elevated as compared with the
general population or with individuals with less severe heart
disease.10-12 HF-related deaths may account for nearly 1 out
of every 3 deaths due to airborne particulate matter
exposure,11 and elevated particulate matter air pollution
(primarily particles <2.5 lm in diameter [PM2.5]) contributes
to hundreds of millions of dollars in HF-related morbidity and
mortality costs and several thousand HF-related hospital
admissions.9

Most environmental health studies of individuals with HF
have focused on short-term exposures, and, to date, no study
has examined associations with long-term air pollution
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exposures exclusively in the HF patient community.13 Existing
knowledge on the long-term exposure effects is currently
extrapolated from studies of the general population that
conduct secondary stratified (ie, subgroup) analyses on HF
deaths.12 This results in a lack of knowledge of health risks
based on exposures at the time of HF diagnosis and on the
modification of these health risks by factors such as systolic
versus diastolic HF, preexisting conditions such as type 2
diabetes mellitus or hypertension, and demographic factors
such as age and sex. The Environmental Protection Agency
Clinical and Archived Records Research for Environmental
Studies (EPA CARES) research program is a collaborative
effort between the EPA and the North Carolina Translational
and Clinical Sciences Institute at the University of North
Carolina at Chapel Hill (UNC) to utilize electronic health
records (EHRs) to examine health effects in the hospital-going
population of North Carolina. Using EPA CARES, we have
examined the relationship between long-term exposure to
PM2.5 and mortality among individuals with HF.

Methods
The data that support the findings of this study are available
from the corresponding author on reasonable request and
appropriate approval from the UNC–Chapel Hill Institutional
Review Board.

Study Cohort
All participants in this study were sourced from the Carolina
Data Warehouse for Health, the enterprise data warehouse for

the UNC Health Care System. The Carolina Data Warehouse
for Health contains clinical and administrative data from both
UNC Health Care System’s Epic EHR (2014–present) and its
homegrown legacy EHR, WebCIS (2004–2014). This study
was approved by UNC–Chapel Hill Institutional Review Board
(IRB 17-0150). As a secondary analysis of already collected
data, written, informed consent was waived.

The study cohort was composed of individuals with a
recorded diagnosis of HF between July 1, 2004 and December
31, 2016. HF was defined according to the International
Classification of Diseases, Ninth Revision (ICD-9) codes 428.x
and the International Classification of Diseases, Tenth Revision
(ICD-10) codes I50.x. We also identified whether individuals
were diagnosed with diastolic HF (ICD-10 I50.3, I50.81; ICD-9
428.3) versus systolic HF (ICD-10 I50.1, I50.2; ICD-9 428.1,
428.2). Individuals were then linked to demographics, address
history, hospital and state death records, and disease
diagnosis history. Records with inconsistent birth, death, or
visit dates were removed. Addresses were cleaned for spelling
mistakes as well as addresses that could not be geocoded.
We considered an address to be successfully geocoded at the
zip code level or better and successfully geocoded 99.9% of all
addresses. The full geocoding procedure is given in Data S1
(Expanded Methods—Geocoding Procedure). We assigned
annual average PM2.5 values based on the nearest ground-
based monitor to the listed primary residential address at the
time of the heart failure diagnosis, defined as the first visit
where heart failure was listed in the medical history, as well
as based on an ensemble model of daily PM2.5 concentrations
at a 191-km resolution, which were then averaged to create
an annual average.14 We restricted the study to participants
who resided in North Carolina. To remove HF cases likely to
be due to congenital disease, we removed any participants
diagnosed with HF at age 20 or younger.

Air Pollution Data
Daily PM2.5 values were obtained from the EPA National
Ambient Air Quality Standards (NAAQS) ground-based mon-
itoring network. Data were obtained for the period July 1,
2003 through December 31, 2016. After geocoding the study
cohort and determining the nearest monitor, the annual
average was defined as the average daily PM2.5 exposure over
the 365 days preceding the examination based on the date
and primary address at the time of initial heart failure, based
on the patient’s EHR. Monitors were required to have a
minimum of 100 days measured for analysis. We also
obtained daily air quality data from an ensemble model
incorporating satellite measurements, land use regression
variables, and several other predictors. The model uses 3
machine learning algorithms to integrate predictors and
estimate daily PM2.5 exposure at 191-km grids for the

Clinical Perspective

What Is New?

• The environmental health risks of heart failure have been
understudied despite evidence that these patients are at
increased risk relative to the general population.

• We observe that among individuals with heart failure, long-
term exposure to particulate matter air pollution at their
primary residence conferred a significant mortality risk and
is associated with substantial years of life lost.

• Mortality risk differed slightly by heart failure subtype
(systolic versus diastolic) in some models.

What Are the Clinical Implications?

• The robust association between increasing mortality and
increasing concentrations of ambient particulate matter
raises the question of whether clinical interventions to lower
residential exposures to particulate matter would result in
improved clinical outcomes.
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continental United States. The model had an r2 of 0.89 for the
Middle Atlantic region of the United States (which would
include North Carolina) for the years 2000-2015.14 Data were
obtained for the years 2003-2016 for the state of North
Carolina.

In addition to the annual average air pollution, we also
examined associations with an indicator variable for residence
within areas with annual averages below the current NAAQS
for annual average PM2.5 of (12 lg/m3). Because the
implementation of national regulations has caused air quality
to trend downwards over the study period in a roughly linear
fashion, air quality data were detrended before analyses to
remove the linear time trend and potential confounding from
non–air quality–related variables that also trended over time.

Statistical Analysis
We used a Cox proportional hazards model to model the
association between annual average PM2.5 exposure at the
time of HF diagnosis and all-cause mortality. We used a
nested confounder adjustment strategy composed of a
basic model, which adjusted for age, sex, race, and distance
to the nearest monitor, and a full model that adjusted for
age, sex, race, distance to the nearest monitor, and
neighborhood level socioeconomic variables assessed at
the census block group based on the 2000 Census. The
socioeconomic variables included were median income,
median house value, percentage of individuals on public
assistance, urbanicity, and percentage of households below
the federal poverty line. Confounders were chosen a priori.
In visualizing the follow-up time for participants, an excess
of participants had a recorded death with a follow-up time
<1 year. This excess does not follow typical mortality
patterns for HF patients5 and is likely due either to late
diagnosis of HF in patients who had had the disease for
years, a failure of the EHR to properly capture earlier
diagnoses, or patients diagnosed at other hospital systems
and coming to the UNC Health Care System only as their
condition worsened. When models were compared with all
patients, excluding deaths (and associated person-time)
within 1 year, it was seen that the proportional hazards
assumption was better met in models where the year after
diagnosis was excluded as an at-risk time and was
consistently violated in models with all person-time
included. Thus, we excluded the year after diagnosis as
time at risk for all individuals. This had the effect of
potentially making estimates applicable only to medium- to
long-term mortality as opposed to potential mortality
immediately after diagnosis.

Our primary outcome was all-cause mortality. We used
stratified (ie, subgroup) analyses to examine potential effect
modification by age at HF diagnosis (20-50, 50-65, and 65+),

sex, race, and previous diagnosis of chronic obstructive
pulmonary disorder, type 2 diabetes mellitus, ischemic heart
disease, lipid disorders, pulmonary disease, primary essential
hypertension, and peripheral arterial disease. Definitions of
the disease outcomes by ICD-9 and ICD-10 codes appear in
Data S1 (Expanded Methods, comorbid disease ICD-9 and
ICD-10 codes). We also stratified individuals on diagnosis of
systolic versus diastolic HF to determine if associations
differed by HF subtype. Because the 191-km grids had
complete representation across the state, whereas the
monitors were typically placed in urban centers, we used
the modeled PM2.5 data to examine associations in urban
versus rural areas, defining urban areas as year 2000 census
block groups that were 100% urban (which captured slightly
more than the top third of the distribution), and rural areas as
those in the bottom third of the urbanicity distribution (<37%
urban).

To examine the sensitivity of our results to individuals
residing far from a ground-based monitor, we considered 2
levels of monitor radius restriction, individuals within 30 km of
a monitor versus individuals within 8 km. Results were
equivalent for the primary analyses, so we present results for
the 30-km restriction. We also used the 191-km modeled
PM2.5 data as a robustness check for this, as the modeled
data cover all participants. Potential geographic heterogeneity
was evaluated via a mixed-effects Cox regression model that
included a random intercept for county of residence. This type
of mixed-effects Cox regression model is also called a shared
frailty model. To evaluate effects below the current PM2.5

annual average NAAQS, we performed an analysis restricted
to those individuals with annual average PM2.5 exposure
<12 lg/m3.

We estimated years of life lost by first estimating the
baseline hazard for the participants. We then model associ-
ations using a binary indicator for annual average PM2.5

<12 lg/m3 to estimate the mortality risk conferred by
residing in areas above this cutoff. The years of life lost were
determined by the excess number of deaths seen from 2 to 5
years (excluding year 1, as this was not counted in person-
time at risk in models) based on a mortality hazard
proportionally increased by the amount estimated from the
aforementioned model. We evaluated sensitivity to diagnoses
near the December 31, 2016 study end date by examining a
subcohort of those with a HF diagnosis before January 1,
2014. Failing to observe a death can result in “immortal
person time,” which could bias analyses. To examine this
potential bias, we performed 1 sensitivity analysis that
removed individuals who were outliers (+3SD) for age at the
end of observation (death or December 31, 2016) and 1 in
which we removed individuals with an age at end of
observation >100 years. Results are reported as the hazard
ratio (HR) and associated 95% CI.
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Software
All analyses were run in R (R Foundation, Vienna, Austria)
version 3.5.3.15 A relational database constructed in part
using FDTool (https://github.com/USEPA/FDTool)16 and
implemented in Microsoft SQL Server was used to manage
the data, with database documentation managed using
Dataedo (Gdansk, Poland). Maps were created using ArcGIS
version 10.7 (Esri, Redlands, CA), and geocoding was
performed using SAS version 9.4 (SAS Institute, Cary, NC).

Results
Figure 1 shows the distribution of study participants in North
Carolina. A total of 35 084 HF patients had sufficient data for
analyses; however, after the restriction of observing events 1
year after HF diagnosis had been applied, only 23 302
individuals contributed person-time at risk and to the analysis.
The clinical covariates of these individuals are given in
Table 1. The distribution of PM2.5 in North Carolina using the
191-km resolution modeled values for 2004 and 2016 is
given in Figure S1.

We report results for the full model here, with results for
the basic and full model appearing in Table S1. Results were
concordant for the basic and full models, indicating little
evidence of confounding by the additional covariates in the
full model. A 1 lg/m3 higher annual average PM2.5 exposure
was associated with a HR of 1.13 (95% CI, 1.10–1.15) for all-
cause mortality (Figure 2; Table 2; Table S1). Although there
was a slight trend for increasing mortality risk with increasing
age at diagnosis, there was no substantial difference in risks
when data were stratified on sex, race, or preexisting
comorbidities including ischemic heart disease.

When we examined associations using the modeled air
pollution data at 191-km resolution, we observed similar,
often stronger, associations than when we used the monitor
data (Table S2). Use of the 191-km model allowed us to
assess if associations differed by urban versus rural areas. As
compared with 2000 Census block groups in the bottom third
of the urbanicity distribution (urbanicity <37%), individuals in
block groups that were 100% urban (39% of data) had slightly
stronger associations with mortality, but the 95% CIs
overlapped substantially. Rural residents had an HR of 1.19
(95% CI, 1.14–1.24), whereas urban residents had a HR of
1.22 (95% CI, 1.17–1.27) (Table S2).

Using the regulatory, ground-based monitor data, we
observed no differences in the associations for the sensitivity
analyses restricted by HF diagnosis date or age at end of
observation or when restricted to individuals with at least 1
prior visit (Table S3). Associations for patients diagnosed with
systolic versus diastolic HF were generally similar except in
the mixed-effects model (Table 2), where associations were

stronger for those with diastolic HF. This indicates that after
accounting for differences in baseline hazard by county,
individuals with diastolic HF might be more sensitive to long-
term PM2.5 exposure. Clinical covariates for systolic versus
diastolic HF patients are in Table S4.

When the studywas restricted to individuals residing in areas
with annual average PM2.5 <12 lg/m3, we still observed
significant associations equivalent to those seen in the full
PM2.5 distribution (Figure 2 bottom; Table 2). HF patients
residing in areas with annual average PM2.5 ≥12 lg/m3 had an
almost 2-fold higher mortality risk than HF patients with lower
exposures (HR 1.77; 95% CI, 1.66–1.89; Table S5).

Use of a mixed-effects model with a random intercept for
county to adjust for heterogeneity between counties revealed
no evidence of confounding by county-level geographic
heterogeneity (Table 2). A concentration-response curve
using either the modeled 191-km PM2.5 data (Figure 3) or
the monitor data (Figure S2) for all-cause mortality indicated
an approximately linear concentration-response function for
annual average PM2.5, particularly in the 8- to 12-lg/m3

range. There was some thresholding outside this range, but
whether this indicates a leveling off of risk or is more driven
by a relative lack of observations will need to be evaluated in
cohorts with broader ranges of observed concentrations. We
used the data from the regulatory PM2.5 monitoring network
in a mixed effects model with county-specific intercepts to
estimate the years of life lost for someone residing in an area
with PM2.5 >12 lg/m3 as compared with someone living
below this level to be 0.84 years (95% CI, 0.73–0.95) over a
5-year period. This effect persisted even when exposures
were restricted to below 12 lg/m3. Stratifying the median
exposure (10.1 lg/m3) for individuals with PM2.5 concentra-
tions <12 lg/m3, we observed 0.54 (95% CI, 0.40–0.69)
years of life lost for above-median exposures as compared
with below-median exposures.

Discussion
The increasing prevalence of HF in the United States,4 its high
risk of mortality, and its societal burden create an imperative
to identify its modifiable risk factors. The observation of a
significant association between annual average PM2.5 expo-
sure and mortality in HF patients implicates long-term
exposure to poor air quality as a risk factor for poor clinical
outcomes among HF patients. These data provide further
evidence that long-term exposure to ambient air particle
pollution contributes to heart disease and mortality17,18 and
underscore the need to better understand environmental
exposures as potentially modifiable risk factors in highly
vulnerable populations. To date, most manuscripts in air
pollution epidemiology have focused on atherosclerotic
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disease such as coronary heart disease. Here we focus on
heart failure, an understudied patient group. Patients with
both heart failure and atherosclerotic disease did not differ in
their associations from the overall analysis, and adjusting for
ischemic heart disease did not substantially alter models
(data not shown). Associations observed here are similar in
magnitude to associations between PM2.5 and myocardial
infarction in patients with atherosclerotic disease,19 suggest-
ing that both HF and atherosclerotic disease patients may
have high sensitivity to air pollution exposure.

Although air quality has improved substantially over the
past 4 decades in the United States, millions of people live,
work, and play in areas where the annual PM2.5 concentration
is near or exceeds EPA’s NAAQS for PM2.5. The need to
understand that the effects of air quality on health are
compounded by recent wildland fire–driven trends in air
pollution that have seen annual average PM2.5 increases in

the United States.20 Because wildland fire–generated PM2.5

increases HF emergency department visits,21 more frequent
and larger wildland fires may exacerbate health effects from
rising HF prevalence. Previous studies of short-term expo-
sures have indicated that associations between air pollution
and mortality are higher for HF deaths than other causes.11,12

To date, few studies have specifically examined air pollution
exposure impacts within a HF cohort. Existing studies have
focused on daily mortality with short-term exposures,7,9

leaving questions on the relationship between long-term
exposure and mortality unanswered.

In this study an increase of 1 lg/m3 in annual average
PM2.5 at the patient’s residence was associated with a 13%
higher mortality risk (95% CI, 10–15). Residential exposure to
annual average PM2.5 above 12 lg/m3, the current PM2.5

NAAQS, was associated with 0.84 years (95% CI, 0.73–0.95)
of life lost as compared with exposures below this level. Even

Figure 1. Map of HF patients. A map of the density of HF patients in CARES by census block group. Darker shading indicates a higher density
of observed HF patients. Also indicated are the UNC-affiliated hospitals (blue circles) with the flagship hospital, located in Chapel Hill, NC, given
as a blue star. EPA PM2.5 monitors are represented as yellow triangles. CARES indicates Clinical and Archived Records Research for
Environmental Studies; EPA, Environmental Protection Agency; HF, heart failure; PM2.5, particulate matter <2.5 lm in diameter; UNC, University
of North Carolina.
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when we restricted data collection to HF patients with
residential exposures below the current PM2.5 standard, we
observed substantial years of life lost for those with elevated
exposures (above the median; 10.1 lg/m3) as compared with
patients with lower exposure. This suggests that the protec-
tive effect of lower residential PM2.5 exposure persists at
levels well below current PM2.5 standards.

Diastolic and systolic HF differ substantially in clinical
presentation. Diastolic HF is characterized by improper filling of
the left ventricle during diastole, typically due to a stiffening and

abnormal relaxation of the left ventricle, which result in
ventricular pressure overload despite the ejection fraction
being largely preserved. In contrast, systolic HF is characterized
by inefficient contraction during systole due to decreased
contractility (typically with enlargement) of the left ventricle. In
models accounting for differential baseline mortality rates by
county, we observed differences in PM2.5-relatedmortality risks
by systolic versus diastolic HF diagnosis with PM2.5 potentially
more strongly associated with all-cause mortality among those
with diastolic HF than among those with systolic HF. Several
mechanisms may account for links between PM2.5 exposure
and mortality among those with HF, and in particular diastolic
HF. One such mechanism goes through the differential role of
reactive oxygen species (ROS) in each HF subtype. ROS
dysfunction is typical in HF, and individuals with diastolic HF
may have ROS dysfunction primarily linked to endothelial cells,
which can then lead to prohypertrophic signaling and sarcom-
ere stiffness. In systolic HF, ROS dysfunction may more closely
be tied to myocyte function/dysfunction.22 PM2.5 exposure is
strongly linked to oxidative stress and ROS production23–26 and
may exacerbate ROS dysfunction in HF patients. Autonomic
dysfunction may be an additional mechanism linking PM2.5

exposure and mortality among HF patients. In a study of 31 HF
patients, higher PM2.5 exposure was associated with lower
oxygen saturation (measured by pulse oximetry) and higher
heart rate,27 both of which would be impacted by autonomic
dysfunction. Other mechanisms linking PM2.5 exposure and
mortality in individuals with HF are dysfunction in vasocon-
striction and blood pressure regulation. Long-term air pollution
exposure is associated with elevated systolic and diastolic
blood pressure.28-30 HF, particularly diastolic HF, is marked by
blood pressure regulation dysfunction and is often accompa-
nied by hypertension, and PM2.5 exposure may worsen this
dysfunction. We also cannot ignore the possibility of metabolic
dysfunction. Type 2 diabetes mellitus is a risk factor for HF,31

and PM2.5 exposure is associated with metabolic dysfunc-
tion,32-34 providing another means by which exposure may
exacerbate existing organ system dysfunction, thereby increas-
ing mortality risk. Both hypertension and type 2 diabetes
mellitus were more prevalent in diastolic HF patients, offering
another potential means bywhich associationsmay differ by HF
subtypes. Because much of our population resided in urban
areas, combustion-related exposures may also have played a
large role. Combustion-related PM2.5, typically derived from
traffic in urban areas, is strongly associated with cardiovascular
disease35 and many of the risk factors related to HF.

Strengths
This large study of over 23 000 patients is the largest
environmental health study to focus exclusively on HF
patients. As far as the authors are aware, this is the first

Table 1. Clinical Covariates

Clinical Covariates (N=23 302) Mean SD IQR

Age (y) 66.9 15.2 22.2

Follow-up time (y) 4.23 3.14 4.05

Distance to monitor (km) 21.6 18.3 21.9

PM2.5 (Monitor) (lg/m
3) 10.2 2.11 3.36

PM2.5 (191-km model) (lg/m3) 10.3 1.70 2.45

Households below federal
poverty line (%)

18.6 15.0 19.4

Median home value ($) 177 041 106 435 114 100

Median household income ($) 51 881 25 924 29 962

Urbanicity (%) 62.7 42.2 89.9

Households receiving
public assistance (%)

2.00 3.01 2.94

N %

Black 7063 30.3

White 14 216 61.0

Other race 2023 8.7

Male 11 224 48.2

Within 30 km of monitor 17 212 73.9

Within 8 km of monitor 4849 20.8

Death (all cause) 4496 19.3

Type 2 diabetes mellitus 7853 33.7

IHD 13 260 56.9

COPD 8293 35.6

PAD 8195 35.2

Hypertension 17 027 73.1

Dyslipidemia 17 215 73.9

Systolic HF 7120 30.6

Diastolic HF 6385 29.3

Clinical covariates for the HF patients. Units of measurement for continuous variables
given in parentheses. Households below federal poverty line, median home value,
median household income, urbanicity, and households receiving public assistance
assessed at the block-group level based on the 2000 US Census. Numbers of systolic
and diastolic HF patients do not sum to the total because many had an unspecified HF
subtype in their medical record. COPD indicates chronic obstructive pulmonary disorder;
HF, heart failure; IHD, ischemic heart disease; IQR, interquartile range; PAD, peripheral
arterial disease; PM2.5, particulate matter <2.5 lm in diameter.
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study to estimate mortality risks for HF patients stratified on
demographic and clinical characteristics. The use of EHRs
makes extensive information available on disease diagnosis
history, which has allowed us to examine differences by HF
subtype and to estimate mortality risks based on residential

exposure at initial indication of HF in the medical record.
Much of North Carolina is exposed to PM2.5 near or below the
EPA-mandated annual average standard, which gives us the
ability to explore associations at and below the mandated
ambient concentrations.

Figure 2. Associations between annual average PM2.5 exposure and all-cause mortality among HF patients. The top graph gives the
association for all exposure levels, and the bottom graph is restricted to residences with exposure below the 12 lg/m3 NAAQS for annual
average PM2.5. The full-adjustment model was used, and the association in the entire population is given on the far left (“Overall”). The gray bar
indicates the 95% CI for the “overall” association, and stratified analyses are listed based on age, sex, race, and existing comorbidities. Tabular
results are given in Table S3. BP indicates hypertension; COPD, chronic obstructive pulmonary disorder; DL, dyslipidemia; HF, heart failure; HR,
hazard ratio; IHD, ischemic heart disease; NAAQS, National Ambient Air Quality Standard; PAD, peripheral arterial disease; PM2.5, particulate
matter <2.5 lm in diameter; T2D, type 2 diabetes mellitus.

Table 2. Sensitivity Analyses for Association Between PM2.5 Exposure Estimated From Regulatory Monitoring Network and
All-Cause Mortality Stratified by HF Subtype

All Individuals Diastolic HF Systolic HF

HR (95% CI) N (Deaths) HR (95% CI) N (Deaths) HR (95% CI) N (Deaths)

Primary analysis 1.13 (1.10–1.15) 23 012 (4445) 1.09 (1.05–1.13) 6315 (1449) 1.07 (1.03–1.11) 7041 (1055)

Restricted to exposures
with PM2.5 <12 lg/m3

1.11 (1.08–1.15) 18 055 (2151) 1.08 (1.02–1.15) 4853 (687) 1.08 (1.02–1.15) 6228 (696)

Restricted to participants <30 km
from monitor

1.12 (1.09–1.15) 16 787 (3460) 1.07 (1.03–1.12) 4883 (1224) 1.08 (1.03–1.13) 5113 (836)

Primary analysis with random
intercept for county

1.16 (1.13–1.19) 23 012 (4445) 1.12 (1.07–1.16) 6315 (1449) 1.07 (1.03–1.11) 7041 (1055)

We conducted a series of sensitivity analyses to understand the robustness of our primary analysis for all individuals, those with diastolic HF, and those with systolic HF. All results are from
the full model adjusted for age, sex, race, distance to the nearest monitor, median income, median house value, percentage of individuals on public assistance, urbanicity, and percentage
of households below the federal poverty line. HF indicates heart failure; HR, hazard ratio; PM2.5, particulate matter <2.5 lm in diameter.
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Limitations
A primary limitation of this study is the incomplete capture of
individual-level confounders in EHR systems. This means that
potentially important confounders such as smoking were not
included in the models. This is an unfortunate but common
limitation of studies such as these. However, previous studies of
air quality andmortality, using similar resources, have indicated
that associations are robust to the omission of such con-
founders.36 Another limitation of this study is that patients may
use multiple hospital systems, resulting in uncertainty in the
determination of the initial HF diagnosis. This date of diagnosis
uncertainty is unlikely to be related to air quality and thus would
not be expected to bias our associations, although it would still
increase the standard error of the estimated HRs. Bias
introduced by misclassification of initial HF diagnosis date
would be expected to be larger for those diagnosed later in life,
where there is a greater chance of previous diagnosis in a
different hospital system. Additionally, sensitivity analyses
restricted to individuals with a visit before their HF diagnosis,
which should limit the potential for date-of-diagnosis misclas-
sification, showed similar association as the primary model
(Table S3). Still, analyses would be improved by expanding

existing EHR resources to incorporate medical records over the
complete life course.

As a hospital-based cohort, this population may not
generalize to the entire population of North Carolina; however,
as most people with HF are likely to visit the hospital, this
cohort is largely reflective of the HF population, particularly
for more urban areas where much of the study cohort resides
(Figure 1). Limited individual-level information on socioeco-
nomic status is available in the medical record; however,
publicly available data on the socioeconomic condition of the
census block group of participants were used as proxy for
individual-level socioeconomic status and thus supplemented
the information available in the medical record. A final
limitation was our use of ground-based monitors for air quality
assessments. Although monitor data are widely utilized for air
pollution studies, they offer incomplete geographic coverage.
Both the monitors and hospitals are often located near urban
areas, and most of our population lived within 30 km of a
monitor. However, we overcame this limitation by examining
associations using modeled air quality at 1-km resolution for
the entire study period. Associations were similar and often
even stronger using the modeled air quality data, something
that has been observed in other studies.37

Conclusions
Long-term residential exposure to PM2.5 is associated with all-
cause mortality in HF patients, even for exposures below the
current PM2.5 NAAQS. Mortality risks may be elevated for
patients with diastolic HF as compared with systolic HF. Given
the magnitude of the associations and associated estimated
years of life lost, understanding environmental risks and
mitigating harmful exposures may provide substantial benefits
to the HF patient population. With current nationwide efforts
to reduce cardiovascular disease burden through education of
patients and clinicians, as with Million Hearts, it is imperative
that we continue to improve our understanding of the
contribution of environmental exposures to cardiovascular
mortality.
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Figure 3. Concentration-response curve for all-cause mortality
for annual average PM2.5 exposure based on modeled PM2.5

concentrations at 191-km resolution.14 Concentration-response
curve limited to PM2.5 concentrations within the inner 95% of the
distribution (values >8.0 lg/m3 and <14 lg/m3) as the confi-
dence intervals widened considerably beyond this range. The
curve is broadly similar to that seen when using the monitors
(particularly for concentrations from 9 to 12 lg/m3; Figure S2)
with perhaps better behavior toward the upper end of the
concentration distribution. PM2.5 indicates particulate matter
<2.5 lm in diameter.
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SUPPLEMENTAL MATERIAL 

 

  



 
 

Data S1. 

 

Expanded Methods 

 

Geocoding Procedure: 

 

 

We obtained patient addresses from two medical records datasets: the Epic® electronic health 

record (EHR) dataset contained 112,519 addresses from visits occurring from 2014 to 2016; the 

homegrown WebCIS (legacy) EHR dataset contained 63,856 addresses from visits prior to 2014. 

We began cleaning data by standardizing variable formats. The variables included two text 

variables for address lines 1 (street address) and 2 (apartment or unit number), a text variable for 

city, a text variable for state, and a numeric variable for zip/postal code. We then removed 

duplicate addresses: the exact same text entered as an address two or more times for a single 

participant (“Main St” and “Main Street” would not be considered duplicates at this stage). This 

reduced our number of addresses to 86,616 in the Epic® EHR dataset and 58,905 in legacy. Both 

datasets underwent initial geocoding using proc geocode in SAS version 9.4 (SAS Institute Inc. 

Cary, NC). We matched addresses to latitude and longitude using street lookup data from SAS 

MapsOnline, which was generated from the US Census Bureau’s TIGER/Line shapefiles. SAS 

proc geocode detects and corrects for minor textual variants, such as common spelling errors and 

abbreviations. Epic® and legacy data were then merged based on level of initial geocoding 

match: street level (n = 101 594), zip code level (n = 43 285), city level (n = 500), or unmatched 

(n = 142). 

 

We then cleaned data to improve the level of matching for addresses not matched to the street 

level, where possible. We began by cleaning data with addresses that were unmatched. Various 



 
 

indicators of null address elements (“unknown”, “none”, “NA”, etc.) were standardized to all 

read “NULL”. Then, observations were separated into those with no valid address information 

and those with partial information (i.e. only zip code). Those with partial address information 

were merged to the city matched dataset, while those with no valid address information were 

kept as unmatched. 

 

For those addresses in the city matched dataset, we standardized null address elements as above, 

standardized the spelling of PO Box, and removed punctuation from text fields. PO Boxes are 

Post Office Boxes, for individuals who receive mail at a Post Office instead of their home. PO 

Box addresses can be geocoded to zip code, but not street address. We assumed that PO Boxes 

were located in the same zip code where a patient resided. We then identified likely mistakes in 

which the listed city was a near but not exact match to the listed zip code and corrected the zip 

code. We then re-geocoded city matched addresses. Those who matched to zip code at this point 

were merged with the zip code matched dataset. 

 

For those addresses matched to zip code, we standardized null address elements as above, 

standardized the spelling of PO Box, removed punctuation, corrected obvious misspellings and 

unconventional abbreviations, and standardized indicators of homelessness. Many individuals 

experiencing homelessness have listed a zip code where they typically stay, although they may 

be transient. Some participants listed both a PO Box and a street address. For those individuals, 

we attempted to geocode the street address. We then standardized text fields of data entries 

including apartments. If street address and apartment number were entered in an unconventional 

format (i.e. listing apartment number before street address), we attempted to extract the street 



 
 

address and re-geocode the address. Then, for any addresses with text on the second address line, 

we attempted to geocode the second address line. Any addresses that were re-geocoded to street 

level at this stage were merged to street level matches.  

 

For street level matches, we corrected the address of a common senior living community that 

geocoded incorrectly in some instances. At this point, we removed duplicate addresses: multiple 

addresses matched to the same street (for street level matches) or zip code (for zip code level 

matches) for the same participant. We then matched participants to their “best” address(es), by 

source and by matching level. We created a dummy dataset with one observation per participant 

(n = 41 913). We first matched participants to addresses from Epic® that were street matches. If 

there were multiple unique addresses per participant, we kept all addresses (n = 32 614 

addresses). If a participant was not matched to street in Epic™, we repeated the same procedure 

for addresses from Epic® that were zip code matches (n = 3 857 addresses). For participants still 

not matched to an address, we matched them to addresses from legacy files that were street 

matched (n = 9 006 addresses), keeping only the most recent based on account number, an 

approximate estimation of chronology. For participants still not matched, we repeated the 

procedure in order for the following sources and types of match, keeping only the most recent 

instance: legacy zip code match (n = 2 118 addresses), Epic®  city match (n=47 addresses), 

legacy city match (n = 2 addresses), and unmatched (n = 17 participants). 

 

Once participants’ address(es) were established, we endeavored to match participants to their 

nearest EPA PM2.5 monitor. We limited to participants who resided in NC and matched addresses 

to all visit dates. For each visit date, we calculated the date 365 prior to the visit. We then took 



 
 

all data from EPA monitors across the state of NC during the period from January 1, 2003 until 

December 31, 2016. We calculated the first and last dates within that period when each monitor 

had valid data. We matched all monitors that were active during the entire 365 days prior to 

participants’ visits to their addresses. We calculated the distances between the monitor and the 

addresses using the latitude and longitude of the addresses and monitors and the geodist function 

in SAS 9.4. We then kept the nearest monitor to each address for each visit date. We then 

averaged the daily mean PM2.5 value for the 365 days prior to each visit. 

 

Co-morbid disease ICD-9 and ICD-10 codes: 

 

International Classification of Disease (ICD)-9 and ICD-10 codes used to determine existing co-

morbidities are given below. A * is used as a wildcard character which was used to capture all 

subcodes for relevant disease definitions. 

Type 2 diabetes: 250, 250.0, 250.00, 250.02, 250.1, 250.10, 250.12, 250.2, 250.20, 250.22,      

250.3, 250.30, 250.32, 250.4, 250.40, 250.42, 250.5, 250.50, 250.52, 250.6, 250.60, 250.62, 

250.7, 250.70, 250.72, 250.8, 250.80, 250.82, 250.9, 250.90, 250.92, E11.* 

Hypertension: 401*, I10* 

Dyslipidemia: 272*, E78* 

Peripheral Arterial Disease: 443*, I73* 

Chronic Obstructive Pulmonary Disorder (bronchitis): 491*, J44* 

Emphysema: 492*, J43* 

Ischemic Heart Disease: 414*, I20, I21, I22, I23, I24, I25 

  



 
 

Table S1. Associations between all-cause mortality and PM2.5. 

 

 

Stratification Model HR LCI UCI N N 

deaths 

None basic 1.12 1.10 1.15 23302 4496 

None full 1.13 1.10 1.15 23012 4445 

Males basic 1.12 1.09 1.16 11224 2229 

Males full 1.13 1.09 1.16 11075 2208 

Females basic 1.12 1.09 1.16 12078 2267 

Females full 1.12 1.09 1.16 11937 2237 

European Americans basic 1.11 1.09 1.14 14216 2953 

European Americans full 1.12 1.09 1.15 14090 2926 

African Americans basic 1.13 1.09 1.18 7063 1322 

African Americans full 1.13 1.08 1.18 6934 1300 

<50 y basic 1.10 1.01 1.19 3253 383 

<50 y full 1.09 1.00 1.18 3182 376 

50-65 y basic 1.11 1.06 1.16 6943 1126 

50-65 y full 1.11 1.06 1.16 6825 1110 

>65 y basic 1.13 1.11 1.16 13106 2987 

>65 y full 1.14 1.11 1.16 13005 2959 

PM2.5 < 12 µg/m3 basic 1.11 1.07 1.14 18268 2166 

PM2.5 < 12 µg/m3 full 1.11 1.08 1.15 18055 2151 

Type 2 diabetes basic 1.12 1.08 1.16 7853 1768 

Type 2 diabetes full 1.12 1.08 1.16 7741 1743 

PAD basic 1.12 1.08 1.15 8195 1767 

PAD full 1.12 1.08 1.16 8100 1749 

COPD basic 1.13 1.09 1.17 8293 1772 

COPD full 1.13 1.10 1.17 8177 1747 

Dyslipidemia basic 1.13 1.10 1.16 17215 3402 

Dyslipidemia full 1.13 1.10 1.16 17017 3367 

Hypertension basic 1.12 1.09 1.15 17027 3482 

Hypertension full 1.12 1.10 1.15 16815 3442 

IHD basic 1.13 1.10 1.16 13260 2871 

IHD full 1.13 1.10 1.16 13093 2842 

 

Associations are given per 1 µg/m3 increase in PM2.5. Associations were stratified on sex, race, 

Hispanic ethnicity, age at heart failure diagnosis, exposure level, and pre-exiting co-morbidities. 

The "basic" model adjusted for age, race, sex, and distance to the nearest monitor while the "full" 



 
 

model adjusted for age, sex, race, distance to the nearest monitor, median income, median house 

value, percent of individuals on public assistance, urbanicity, and percent of households below 

federal poverty line.  

* COPD = chronic obstructive pulmonary disorder; HR = hazard ratio; IHD = Ischemic heart 

disease; LCI = lower 95% confidence interval; PAD = peripheral arterial disease; UCI = upper 

95% confidence interval 

 

 

 

  



 
 

Table S2. Associations between all-cause mortality and PM2.5 assessed using modeled PM2.5 

data at 1x1 km resolution. 

 

Stratification Model HR LCI UCI N N 

deaths 

None basic 1.18 1.15 1.21 23127 4480 

None full 1.19 1.16 1.22 22841 4429 

Males basic 1.17 1.13 1.21 11146 2219 

Males full 1.18 1.14 1.22 11001 2198 

Females basic 1.19 1.15 1.23 11981 2261 

Females full 1.20 1.15 1.24 11840 2231 

European 

Americans 

basic 1.17 1.14 1.21 14113 2945 

European 

Americans 

full 1.18 1.15 1.22 13988 2918 

African 

Americans 

basic 1.18 1.13 1.24 7004 1315 

African 

Americans 

full 1.19 1.13 1.24 6877 1293 

<50 y basic 1.17 1.06 1.28 3214 381 

<50 y full 1.16 1.05 1.27 3146 374 

50-65 y basic 1.17 1.11 1.23 6883 1124 

50-65 y full 1.18 1.12 1.24 6766 1108 

>65 y basic 1.19 1.15 1.22 13030 2975 

>65 y full 1.19 1.16 1.23 12929 2947 

PM2.5 < 12 µg/m3 basic 1.18 1.14 1.22 18109 2152 

PM2.5 < 12 µg/m3 full 1.19 1.15 1.24 17900 2137 

T2D basic 1.18 1.14 1.23 7812 1765 

T2D full 1.19 1.14 1.24 7702 1740 

PAD basic 1.16 1.12 1.21 8135 1760 

PAD full 1.17 1.13 1.22 8042 1742 

COPD basic 1.19 1.15 1.24 8241 1767 

COPD full 1.20 1.15 1.25 8127 1742 

Dyslipidemia basic 1.18 1.15 1.21 17093 3391 

Dyslipidemia full 1.19 1.15 1.22 16899 3356 

Hypertension basic 1.17 1.13 1.20 16903 3468 

Hypertension full 1.18 1.14 1.21 16694 3428 

IHD basic 1.18 1.14 1.21 13169 2863 

IHD full 1.19 1.15 1.22 13003 2834 

rural full 1.19 1.14 1.24 7634 1534 

urban full 1.22 1.17 1.27 8840 1697 



 
 

Associations are given per 1 µg/m3 increase in PM2.5 with PM2.5 as assessed using the ensemble 

model values which have a 1x1 km resolution. Associations were stratified on sex, race, 

Hispanic ethnicity, age at heart failure diagnosis, exposure level, pre-exiting co-morbidities, and 

urban (100% urban block group) vs rural (bottom 3rd of urbanicity distribution; ~ < 39% urban) 

residence based on the 2000 Census block group urbanicity assessment. The "basic" model 

adjusted for age, race, sex, and distance to the nearest monitor while the "full" model adjusted for 

age, sex, race, distance to the nearest monitor, median income, median house value, percent of 

individuals on public assistance, urbanicity, and percent of households below federal poverty 

line.  

* COPD = chronic obstructive pulmonary disorder; HR = hazard ratio; IHD = Ischemic heart 

disease; LCI = lower 95% confidence interval; PAD = peripheral arterial disease; UCI = upper 

95% confidence interval 

  



 
 

Table S3. Sensitivity analyses based on visit and age at end of observation. 

 

 

Primary 

Analysis; HR 

(CI) 

pre 1/1/2015; 

HR (CI) 

Age Outlier 

Removed; HR 

(CI) 

Age at end < 100; 

HR (CI) 

At least 1 prior visit; 

HR (CI) 

1.13 (1.10, 1.15) 1.10 (1.07, 1.12) 1.13 (1.10, 1.15) 1.13 (1.11, 1.16) 1.11 (1.08, 1.14) 

 

Due to possible bias from lack of observation of deaths, which would result in individuals being 

“followed” indefinitely, we performed sensitivity analyses based on the age at the end of 

observation by removing outliers (+3*standard deviation; Age Outlier removed) and restricting 

to those < 100 years old at the end of observation time (Age at end < 100). We also performed a 

sensitivity analyses restricting to individuals seen before 1/1/2015 (pre 1/1/2015) as more 

individuals were seen in later years but due to the short follow up time would have had a much 

lower probability of death. Finally, we examined a sensitivity analysis restricting to individuals 

with at least one prior visit (At least 1 prior visit). No differences were seen across any of the 

sensitivity analyses. The full adjustment model was used. Also shown is are the results from the 

primary analysis for comparison. 

* CI = 95% confidence interval; HR = hazard ratio 

 

  



 
 

Table S4. Clinical covariates for individuals with diastolic and systolic heart failure. 

 

  
Diastolic HF (N = 6385) 

 
Systolic HF (N = 

7120) 

 

 
Mean SD IQR Mean SD IQR 

Age (y) 69.7 14.0 20.7 64.6 15.1 21.7 

Follow-up time (y) 4.3 3.12 4.07 3.69 2.69 3.06 

Distance to monitor (km) 20.0 14.3 19.9 22.0 15.1 21.1 

Monitor PM2.5 (ug/m3) 10.2 2.14 3.54 9.69 1.90 3.00 

Model PM2.5 (ug/m3) 10.4 1.72 2.62 9.95 1.45 1.40 

Households below federal 

poverty line (%) 

18.0 14.9 18.6 18.5 14.8 19.5 

Median Home Value ($) 190260 110753 122100 173793 105746 111900 

Median Household Income 

($) 

54092 26870 30996 51707 26053 29709 

Urbanicity (%) 64.1 41.7 83.6 61.1 42.5 94.8 

Households receiving public 

assistance (%) 

1.98 3.06 2.91 2.00 2.97 2.91 

 
N % 

 
N % 

 

African American 1987 31.1 
 

2177 30.6 
 

European American 3982 62.4 
 

4341 61.0 
 

Other Race 416 6.5 
 

602 8.5 
 

Male 2285 35.8 
 

4379 61.5 
 

Within 30 km of monitor 4992 78.2 
 

5255 73.8 
 

Death (All Cause) 1465 22.9 
 

1062 14.9 
 

Type 2 diabetes 2574 40.3 
 

2004 28.1 
 

IHD 3833 60.0 
 

4214 59.2 
 

COPD 2786 43.6 
 

2159 30.3 
 

PAD 2677 41.9 
 

2226 31.3 
 

Hypertension 5315 83.2 
 

4714 66.2 
 

Dyslipidemia 5303 83.1 
 

5177 72.7 
 

 

 

BMI = body mass index; COPD = chronic obstructive pulmonary disorder; CVD = 

cardiovascular disease; IHD = Ischemic heart disease; PAD = peripheral arterial disease; SD = 

standard deviation 

  



 
 

Table S5. Associations between all-cause mortality and binary PM2.5 cutoff. 

 

Stratification Model HR LCI UCI N N deaths 

None basic 1.79 1.68 1.91 23302 4496 

None full 1.77 1.66 1.89 23012 4445 

Males basic 1.76 1.61 1.93 11224 2229 

Males full 1.75 1.60 1.92 11075 2208 

Females basic 1.83 1.67 2.00 12078 2267 

Females full 1.79 1.64 1.96 11937 2237 

European Americans basic 1.78 1.64 1.92 14216 2953 

European Americans full 1.76 1.63 1.91 14090 2926 

African Americans basic 1.81 1.61 2.03 7063 1322 

African Americans full 1.76 1.57 1.98 6934 1300 

<50 y basic 2.03 1.63 2.51 3253 383 

<50 y full 1.96 1.58 2.44 3182 376 

50-65 y basic 1.74 1.53 1.97 6943 1126 

50-65 y full 1.72 1.51 1.96 6825 1110 

>65 y basic 1.78 1.65 1.93 13106 2987 

>65 y full 1.76 1.63 1.91 13005 2959 

Type 2 diabetes basic 1.80 1.63 1.99 7853 1768 

Type 2 diabetes full 1.77 1.60 1.96 7741 1743 

PAD basic 1.63 1.47 1.80 8195 1767 

PAD full 1.63 1.47 1.80 8100 1749 

COPD basic 1.83 1.66 2.02 8293 1772 

COPD full 1.81 1.64 2.00 8177 1747 

Dyslipidemia basic 1.78 1.65 1.91 17215 3402 

Dyslipidemia full 1.75 1.63 1.88 17017 3367 

Hypertension basic 1.78 1.65 1.91 17027 3482 

Hypertension full 1.75 1.63 1.88 16815 3442 

IHD basic 1.79 1.66 1.94 13260 2871 

IHD full 1.77 1.64 1.92 13093 2842 

 

Associations are given based on a binary indicator for annual average PM2.5 exposure < 12 µg/m3 

(the current EPA annual average standard for PM2.5). Associations were stratified on sex, race, 

Hispanic ethnicity, age at HF diagnosis, exposure level, and pre-exiting co-morbidities.  

* COPD = chronic obstructive pulmonary disorder; HR = hazard ratio; IHD = Ischemic heart 

disease; LCI = lower 95% confidence interval; PAD = peripheral arterial disease; UCI upper 

95% confidence interval 



 
 

Figure S1. PM2.5 annual average concentration in 2004 & 2016 using modeled estimates at 

1x1 km resolution. 

 

 
 

 

Annual PM2.5 concentration in NC for the years 2004 (top) and 2016 (bottom). 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure S2. PM2.5 concentration-response curve generated using ground-based PM2.5 

monitoring network. 

 

 

 


