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The immune system’s ability to resist the invasion of foreign pathogens and the tolerance
to self-antigens are primarily centered on the efficient functions of the various subsets of T
lymphocytes. As the primary organ of thymopoiesis, the thymus performs a crucial role in
generating a self-tolerant but diverse repertoire of T cell receptors and peripheral T cell
pool, with the capacity to recognize a wide variety of antigens and for the surveillance of
malignancies. However, cells in the thymus are fragile and sensitive to changes in the
external environment and acute insults such as infections, chemo- and radiation-therapy,
resulting in thymic injury and degeneration. Though the thymus has the capacity to self-
regenerate, it is often insufficient to reconstitute an intact thymic function. Thymic
dysfunction leads to an increased risk of opportunistic infections, tumor relapse,
autoimmunity, and adverse clinical outcome. Thus, exploiting the mechanism of thymic
regeneration would provide new therapeutic options for these settings. This review
summarizes the thymus’s development, factors causing thymic injury, and the
strategies for improving thymus regeneration.
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INTRODUCTION

The thymus is the primary lymphoid organ for T lymphocyte development and maturation that
mediates immune defense against foreign antigens, immune tolerance to self-antigens, and immune
surveillance on tumor cells (1). The thymic stromal cells include the thymic epithelial cells (TECs),
dendritic cells (DCs), macrophages, fibroblasts, vascular endothelial cells (ECs), and connective
tissue cells that form an extracellular matrix (2). The network-like structure formed by thymic
stromal cells regulates the development, differentiation, maturation, migration of thymocytes, and
functional T-cells (3, 4).

Both cTEC and mTEC are morphologically and functionally distinct and mediate different
aspects of T cell development. For instance, cTECs are required to commit early thymocyte
precursors to the T cell lineage and induce a positive selection of diverse and functionally distinct T
cells by unique antigen-processing systems and thymus-specific proteasome subunit (5). While
mTECs regulate the migration of positively selected thymocytes from the cortex into the medulla via
Abbreviations: TECs, thymic epithelial cells; CCL, chemokine ligands; Allo-HCT, Allogeneic hematopoietic cell
transplantation; KGF, keratinocyte growth factor; RANK, receptor activator of NF-kB; TEPC, thymic epithelial progenitor
cells; TSC, thymic stromal cells; EGF, epidermal growth factor receptor; FGFR, fibroblast growth factor receptor; FOXN1, fork-
head box protein-N1; AIRE, autoimmune regulator.
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chemokines CCL19 and CCL21 and are also crucial for
establishing T cell tolerance via ectopic expression of
peripheral tissue-restricted antigens and cooperation with
dendritic cells (6). Thus, the interactions between the cTEC,
mTEC, and developing thymocytes are necessary to ensure a
functional, self-tolerant T cell repertoire.

The thymus, as a highly complex structure, is constantly
undergoing acute stresses and regeneration cycles. Regardless of
its regenerative capacity, the thymus undergoes aged-related
involution, a process that includes reductions in thymic mass,
loss of thymic structure, and disorganization to thymic
architecture (7). The thymus is also very sensitive to insults,
including infections, stress, and cytoreductive therapies. Thymus
dysfunction results in T-cell mediated cellular immunity defects
predisposing to infections and autoimmune diseases (8, 9).
Studies showed that insults to the thymus negatively affect
TCR repertoire, diminish peripheral T cell pool with
subsequent detrimental consequences on immunity and
immunotherapies, implicating that rejuvenating an injured
thymus to recover immunocompetence is crucial not only for
efficient immune responses against pathogens and tumor
antigens but also for optimal responses to immunotherapies
(10). Several new strategies to improve thymus regeneration
were proposed with the finding of mechanisms governing
thymus repair. Thus, an improved understanding of thymus
structure, development, and involution can enhance our
knowledge of current and prospective therapies on thymus
regeneration. This review will highlight reported research data
on thymic degeneration and the recent advances in
thymic rejuvenation.
THYMUS DEVELOPMENT

The thymus is a bi-lobed organ located in the thorax, comprising
of two similarly sized lobes. Each lobe of the thymus is
subdivided into lobules, each containing an outer cortex and
an inner medulla (2, 4, 11). The thymus and parathyroid
originate from third pharyngeal pouches, with their
development involving a series of epithelial/mesenchymal
inductive interactions between neural crest-derived
mesenchyme and endoderm. During the 6th week of gestation,
the endodermal lining of the ventral wing of the third pharyngeal
pouch forms a pronounced sacculation that subsequently
detaches from the pharyngeal wall, giving rise to the thymic
primordia. The thymic primordia, along with the lower
parathyroid glands, migrate in a caudal and medial direction as
development continues from the 6th to the 9th week (1, 2, 4).
After the migration is completed, the thymic endodermal-
derived epithelial cells develop into stellate elements, forming a
sparsely fibrous reticular meshwork. The surrounding
mesenchymal elements form a capsule around it and later
form a trabecular, dividing the organ into lobules. By the 10th
week, small lymphoid cells originating from the fetal liver and
the bone marrow populate the thymus, forming a cortex and a
medulla. Concurrently, small tubular structures called medullary
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duct epithelium develops and later matures into Hassall’s
corpuscles (1, 11, 12).

Notably, the formation of cTEC and mTEC is crucial for
thymus development, providing a home for recruited lymphoid
progenitor cells (11, 12). Recent studies in birds and mice have
shown that cTEC and mTEC originate from common endoderm
dual-potent progenitor cells (13–15). Bleul et al. also proved that
cTEC and mTEC could be induced from a common progenitor
cell in the thymus after birth (12). Various transcription factors,
including FoxN1, Tbx1, Pax1, Pax3, Pax9, Hoxa3, Eya1, and
Six1, regulate the TEC development and thymus organogenesis;
the most critical is fork-head box protein-N1 (FOXN1) which
has been shown to modulate TEC patterning in the fetal stage
and TEC homeostasis in the post-natal thymus (16). Foxn1
regulates the transcription of various target genes essential for
thymic function, including Notch ligands (17). FoxN1 deficiency
disrupts the thymic architecture and thymic T cell development
(18). Interestingly, administration of recombinant FOXN1
protein (rFOXN1) into HSCT recipient mice increased the
number of TECs, resulting in enhanced thymopoiesis and
increased number of functional T cells in the periphery (19).

It is also documented that abnormalities of other
transcription factors such as Pax1 or Pax9, Hoxa3, and
Tbx1also lead to impaired thymus organogenesis (20),
implicating the essential role of these factors in thymus
development. Further studies are therefore necessary to
elucidate tissue specific expression of these genes, their roles in
TECs development and how they can be employed to boost
thymic function.

Several issues on thymopoiesis and the transcriptional factors
that regulate T cell development and repertoire remain to be
further explored. Fortunately, recent advances in the field of
thymus biology using new single-cell transcriptomic and
epigenomic technologies have enhanced our understanding of
mouse and human T cell development. Notably, postnatal
thymopoiesis is dependent on the steady migration of bone
marrow-derived hematopoietic progenitors to the thymic
parenchyma via the blood circulation and their cell surface
adhesion molecules (21). The thymic microenvironment
gradually drives these multipotent progenitor cells to the T cell
lineage and induces proliferation to increase the pool of T cell
precursors. A recent study examining immature postnatal
thymocyte populations in humans using single-cell RNA
sequencing (scRNA-seq) provided insight into the
heterogeneity of early T cel l precursors and their
transcriptional dynamics. Their studies identified two non-
proliferative populations that are present in the thymus; TSP1
and TSP2. Of these, the TSP1 population (Lin-CD34+

CD44hiCD7-CD10+) transcriptionally corresponds to murine
TSPs based on the expression of chemokine receptors (CCR7
and CCR9) and transcription factors (HOXA9, MEIS1, and
MEF2C) and is postulated to represent the canonical T cell
precursors that differentiate into early T cell precursors (ETPs)
when they encounter Notch activating signals within the thymic
microenvironment. In contrast, the TSP2 population expressed
the Notch target genes CD7 and CD3E before thymic entry,
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contributes to the T lineage differentiation process (22).As
thymocytes progress from the multipotent ETP stage, they lose
non-T cell lineage potential and commit to the T cell fate. A
recent study by Shin et al. showed that Runt domain-related
(Runx1 and Runx3); are essential for early T cell development in
mice from uncommitted to committed stages, mostly activating
T-lineage and repressing multipotent progenitor genes. Runx1
and Runx3 are coexpressed in the thymic T progenitor cells, bind
to highly overlapping genomic sites, and have redundant,
collaborative functions regulating genes pivotal for T cell
development (23).

cTEC
The thymic cortex provides a microenvironment that supports
the generation and T cell antigen receptor (TCR)-mediated
selection of CD4+, CD8+, and TCRab+ thymocytes. cTEC
expresses chemokine ligands such as CCL25, CXCL12 and
secretes cytokines such as IL-7, essential for the early
development and intrathymic positioning of thymocytes (24–
26). Notch signal is also implicated in mediating the interaction
between TECs and thymocytes, where Notch1 activation in T cell
progenitors is initiated through interaction with Notch1 ligands
Delta-like 4 (DL4) to activate signaling pathways, leading to the
proliferation and migration of thymocytes (27). Lymphoid
progenitor cells entering the thymus cortex express neither the
TCR complex nor the CD4 or CD8 markers, a stage termed
double negative (DN).Maturation progresses with the acquisition
of CD4 and CD8 markers, generating the CD4+, CD8+ double
positive (DP) cells. This complex process involves several stages
before DN1 (CD44+, CD25-), DN2 (CD44+, CD25+), DN3
(CD44-, CD25+), DN4 (CD44-, CD25-) proliferate and
differentiate into DP thymocytes (28).At the thymus’s cortical-
medullary junction, DP thymocytes recognize antigen peptide-
MHC-I/II molecular complexes and differentiate into CD4+ or
CD8+ single-positive (SP) thymocytes (29, 30).

cTECs expressed proteins such as the lysosomal protease
Prss16 and Cathepsin L has been demonstrated to be essential
for generating an immunocompetent repertoire of CD4+CD8− T
cells (31). Others have also posited that cTEC’s positive selection
process of CD8+ T cells is linked to its expression of
thymoproteasome b5-thymus (b5t) subunit (31). It is worth
noting that even though b5t expression was confined
predominantly within the cTEChi (32), b5t+cTECs at the
cortico-medullary junction of 1-week-old mice was identified
to serve as an efficient progenitor for the mTEC lineage,
indicating that progenitors resident efficiently enables
expansion of medulla in the thymic cortex. Yet, once the
medulla has reached its normal cellularity in the postnatal
thymus, the differentiation potential of b5t+ precursors to the
mTEC lineage is markedly restricted (33).Of note, studies using
b5t-deficient mice showed a significant decline in the number of
CD8+ SP thymocytes in the thymic architecture with subsequent
altered immune responses, suggesting that the thymoproteasome
is essential for the production of self-antigens involved in the
positive selection of functional CD4−CD8+ T cells (34).Another
transcription factor, ThPOK (encoded by Zbtb7b), has recently
been identified to promote CD4+ versus CD8+ lineage
Frontiers in Immunology | www.frontiersin.org 3
divergence and is implicated to be necessary for determining
CD4+ helper fate on TCR-signaled thymocytes and conservation
of CD4+ and regulatory T (Treg) cells and agonist-selected
lineage gene programs (35). Albeit it has been quite
challenging in the past years to investigate the heterogeneity of
the TEC population, recent studies using mass spectrometry
proteomics and single-cell RNA sequencing established the fact
that cTEC expresses Cathepsin L, TSPP, and b5t, while mTEC
expresses Cathepsin S, CD40, and Aire (5, 36, 37).

mTEC
Interaction with mTEC renders self-tolerance of T-cell as
indicated by deletion of SP thymocytes showing high avidity
with tissue restriction antigen (TRA) expressed on mTEC. In
addition to mediating negative selection, mTEC is also involved in
Treg cell differentiation. This process is dependent in part on the
autoimmune regulatory gene (AIRE) and Fez family zinc finger
protein 2 (Fezf2) (38, 39). Accumulated records indicate that the
postnatal mTECs contain two major subpopulations that are
defined according to their levels of cell surface MHC-II and
CD80 molecules: MHC-IIlowCD80low (mTEClow) cells and
MHC-IIhiCD80hi (mTEChi) cells (40). AIRE+ mTEChi subsets
are further subdivided into osteoprotegerin-positive (OPG+) and
negative (OPG−) subpopulations (41, 42). OPG regulates the
cellularity of mTECs and the size of the medullary region in the
thymus by attenuating the proliferation of mTECs. Lymphotoxin-
like b receptor (LTbR), the receptor activator of NF-kB (RANK)
and CD40, are also indispensable for the development and
maturation of AIRE+mTEC (42, 43), via interaction with
relevant ligands on the surface of thymocytes (44).

AIRE promiscuous gene expression of TRAs by mTEC is
required to delete self-reactive thymocytes (39). AIRE’s
significant role in T cell tolerance is evident from the
autoimmune manifestations in AIRE-deficient mice (45).
Accumulating evidence from studies has also demonstrated
AIRE and Fezf2 co-expression in mTEChi cells, suggesting
their similar mechanistic function to permit the expression of
TRAs in the thymus to ensure immune tolerance (39, 46, 47).
However, Hiroyuki Takaba et al. in a study showed that Fezf2
directly regulates various TRA genes in mTECs independently of
AIRE, as mice lacking Fezf2 in mTECs displayed severe
autoimmune symptoms, including the production of
autoantibodies and inflammatory cell infiltration targeted to
peripheral organs, interestingly, these responses varied from
those spotted in AIRE-deficient mice (48).

The exact mechanism of the interaction between mTECs and
thymocytes and their subsequent regulatory impact on the fate of
TCRs, either toward clonal deletion or Treg cell specification, is
still ambiguous and requires further investigation. It is depicted
in studies that thymic dendritic cells (DCs), mainly conventional
DC (cDC), subsets signal regulatory protein a (SIRPa+) and
CD8a+ readily acquired MHC class I and II from TECs to delete
self-antigen–specific thymocytes and drive the development of
Foxp3-Tregs to mediate negative selection. The study also
pointed out that inhibiting PI3K signaling pathway reduced
MHC acquisition by thymic CD8a+cDC and plasmacytoid DC
but not SIRPa+ cDC, signifying that multiple parameters
September 2021 | Volume 12 | Article 706244
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influence the mechanisms that drive intercellular MHC transfer
by thymic DC subsets (49). Likewise, a new subset of medullary
SIRPa+ cDCs that express CD301b (SIRPa+CD301b+ cDC2s)
was reported by Elise Breed et al. to have potent transcriptional
signatures for MHC class II antigen processing. Interestingly,
this population depended on signaling via the IL-4Ra, and their
ablation resulted in decreased clonal deletion, implicating the
impact of cytokines from innate-like T cells on self-
tolerance (50).

Moreover, a recent study by Tom Sidwell et al. on the
developmental lineages of thymic Treg cells and transcription
factor BAH2, revealed that loss of BACH2 enhanced the TCR-
and IRF4-dependent selection of CD25+Foxp3–Treg cell
precursors but attenuated the generation of CD25–Foxp3+
Treg ce l l precursors , demonstra t ing that the two
developmental pathways have discrete transcriptional and
stimulus requirements (51). Masashi Watanabe and colleagues
on the roles of the B7–CD28 costimulatory axis on thymic APCs
also reported that self-antigen-specific clonal deletion was not
impacted by B7 deficiency in any single APC population, but
Treg cell development substantially decreased with the absence
of B7 on dendritic cells, highlighting the distinct contributions of
APCs to the two fates. Their study also showed that different
CD28 intracellular cytoplasmic tail motifs were required for
clonal deletion versus Treg cell development (52). Indeed, Treg
cells, as specialized T cell lineage, have a pivotal function in
Frontiers in Immunology | www.frontiersin.org 4
controlling self-tolerance and inflammatory responses, however,
several areas on how mTECs mediate Treg development and its
crosstalk with tissue-specific genes expressed on mTEC need
further investigation (53). A concentrated effort is also required
to clarify the factors and mechanisms that regulate thymic DC
subsets to acquire MHC and stimulate thymocytes in
negative selection.
THYMIC INJURY: FACTORS AND AGENTS

The thymus is extremely sensitive to various factors and agents,
including acute insults, such as stress, acute infection,
glucocorticoids, cytoreductive therapies, or chronic damage,
such as chronic infection and age-related thymic involution
(Figure 1). These factors have a diverse effect on the thymus;
for instance, while acute thymic involution results primarily
from the loss of cortical thymocytes; chronic atrophy, such as
that induced by age-related thymic decline, leads to loss of
Foxn1+TECs and thymic atrophy, resulting in the functional
deterioration of the TEC compartment (54, 55).

Acute Injury
Glucocorticoids
Glucocorticoid (GCs) is widely used in clinical settings.
However, elevated levels of endogenous glucocorticoids under
FIGURE 1 | Illustration of factors causing thymic injury. The thymus is a delicate organ sensitive to insults, including chemotherapeutic drugs, corticosteroids,
radiation, and pathogens. Allo-HSCT treatment regime and its complications (GVHD) likewise have detrimental effects on the thymocytes. Age-dependent thymic
atrophy naturally occurs due to a decline in the thymus’s self-renewal capacity and subsequent accumulation of toxic substances, including free radicals.
September 2021 | Volume 12 | Article 706244
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pathological conditions such as stress, infection, Cushing
syndrome, and even GCs secreted by TECs induce apoptosis
and cause acute degeneration of the thymus (56). Synthetic GCs
have previously been shown to influence immune functions by
promoting the apoptosis of immature CD4+CD8+ DP
thymocytes (57, 58). A recent study also showed that synthetic
GCs, including dexamethasone (DEX), damage thymic
cellularity and architecture, subsequently leading to thymocyte
apoptosis and progressive diminution in DP T cells (59). They
mediate these biological effects by binding to intracellular
glucocorticoid receptors (GRs) that act through mitochondrial
apoptotic pathway activation in DP thymocytes (60). Whereas
the CD4+CD8+ DP thymocytes are very sensitive to GCs, as
elevation of GCs could almost annihilate the DP population by
apoptosis and inhibition of their proliferation, Treg cells are
resistant to in vivo GCs-induced apoptosis (61, 62).

It was also shown that in vitro DEX treatment induced
upregulation of most apoptosis-related molecules (caspase-3
and 8) in thymocytes (63). However, pro-and anti-apoptotic
molecules expression was increased in Tregs compared to CD4+
T cells (61). The feasible explanation for relative apoptosis
resistance of Treg cells to GCs is likely due to the upregulated
Bcl-2 expression and basal cytosolic Ca2+ level in Tregs, as these
were downregulated in DX-induced apoptosis sensitivity CD4+
T cells. Other studies have indicated that adolescent sex
hormones such as dihydrotestosterone (DHT) and testosterone
also act on the thymus through nuclear receptors and may
directly induce thymocytes apoptosis (60). Since GCs have
been implicated to play a significant role in the pathogenesis of
aged related-thymic involution and thymus injury caused by
infection, stress, and malnutrition (64, 65), future studies should
be directed to investigate the molecular mechanism underlying
the diverse thymocytes response to GC-induced apoptosis, to
help develop a new therapeutic strategy to boost thymic function
in these settings.

Infection
The thymus as an immune organ plays a significant role in the
immune response during acute infection; however, the thymus is
also a target of multiple pathogens. These pathogens usually
enter the thymus through blood circulation, disrupting the
thymic structure and altering the T-cell repertoire. Studies
showed that acute viral infections, including influenza virus
and Epstein-Barr virus, not only affect the thymus
microenvironments and cause thymic atrophy but also
interference with thymocyte development and increased
apoptosis of thymocyte subsequently leading to acute thymic
injury (66, 67). Acute bacterial infections, including
streptococcus infection can also cause thymic involution by
triggering apoptosis in developing thymocytes, while
Mycobacterium tuberculosis infection leads to thymic atrophy
(68). Other infectious agents, including viruses, protozoa, and
fungi, can invade the thymic microenvironment, disrupting
thymocytes and peripheral T lymphocytes output to generate
central immunological tolerance of the infectious agent-derived
antigens (64). Most foreign pathogens destroy the thymic matrix,
release inflammatory mediators such as tumor necrosis factor-a,
Frontiers in Immunology | www.frontiersin.org 5
interferon-g, and induce apoptosis of DP thymocytes
(69).Toxins, pro-inflammatory mediators, and soluble factors
such as glucocorticoids secreted by these pathogens also lead to
thymic atrophy and affect thymic immune response (54). It is
worth mentioning that chronic systemic infections such as HIV
and cytomegalovirus (CMV) have long-term detrimental effects
on thymic structure and functions, leading to thymic atrophy,
reduced thymic output, and disruption of the thymic
microenvironment and subsequently leading to chronic thymic
insult. This mechanism of evading host immune clearance
requires further study to identify a better therapeutic way to
restore the damaged thymus (66).

Allogeneic Hematopoietic Stem Cell Transplantation
Application of immunosuppressive therapy, such as chemo and
radio-therapy in cancer management or prior to transplantation,
damages not only tumor cells but also has catastrophic effects on
healthy hematopoietic cells, peripheral immune cells, and thymic
microenvironment resulting in reduced T cell development and
repertoire (70, 71). Chemotherapy profoundly impairs thymus
function by causing thymus atrophy, reducing T lymphocytes,
shrinking the thymic lobules, and decreasing the production of
naïve T cells (72, 73). In clinical settings, a substantial decline in
CD31+ recent thymic emigrants (RTE) counts and single-joint
T-cell receptor excision circles (sjTREC) levels in the peripheral
blood were found after chemotherapy. Specifically, both
CD31+ RTE counts and sjTREC levels decreased to the nadir
at the end of chemotherapy and recovered within one year of
follow-up (74). Similarly, the combination of total body
irradiation with cyclophosphamide chemotherapy damaged the
thymocytes and distorted T cell repertoire (75).Certain
immunomodulatory medications such as rabbit anti-thymocyte
globulin (rATG) also decrease TECs expression and secretion of
interleukins with increased thymocytes apoptosis and delayed
immune regeneration (76).

Although thymic epithelial cells possess the anti-radiation
ability, studies have shown that under hypoxic conditions, the
expression of pro-apoptotic factor Bim is usually up-regulated,
mTECs apoptosis increases, radiation resistance is impaired, and
cTEC becomes less effective (77). In the early stage of radiation
injury, endothelial cells (EC) secrete bone morphogenetic protein
4 (BMP4), which acts on the corresponding receptor BMPR2 on
the surface of cTEC and promotes the expression of the FOXN1
gene (78). Conversely, certain chemotherapeutic drugs reduce
these factors’ production and further damage the thymus (77,
78). Our recent study demonstrated that JAK inhibitor blocked
thymus regeneration after irradiation-induced injury. This effect,
dependent on the JAK-STAT pathway, inhibited growth factors
and their receptors, subsequently suppressed the proliferation of
TECs (79).

Additionally, it is reported graft-versus-host disease (GVHD)
has a tremendous damaging insult on the thymus. The known
postulated mechanism of thymus GVHD is that allot-reactive T
lymphocytes recognize the allogeneic tissue antigen and attack
the recipient’s thymus to mediate tissue injury (80), which
subsequently leads to DN thymocytes differentiation inhibition
with an increase in apoptosis of DP thymocytes (81). Preclinical
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studies have shown that GVHD impaired the size and function of
mature Aire+mTEChi, impacting the normal expression of TRAs,
thus negatively affecting the maintenance of central tolerance
(81). Data from early studies (82, 83) indicate that GVHD-
associated thymic damage decreases thymic cellularity and loss
of thymic negative selection and persistence of self-reactive T
cells. In the murine Allo-HSCT model, GVHD induced TECs
apoptosis by IFNg secreted from donor T cells in a STAT -1 and
caspase-dependent manner (84).

Yet, in other previous studies (85, 86), a systemic abrogation
of IFNg signaling in transplant recipients exert variable and
unpredictable effects on the outcome of GVHD on the thymus,
implicating the need for further investigation to underpin the
molecular mechanisms by which GVHD exert insult on
thymocytes. Interestingly, Dudakov et al. demonstrated that
murine-GVHD results in depletion of intrathymic group 3
innate lymphoid cells (ILC3s) necessary for thymic
regeneration. Loss of thymic ILC3s resulted in a deficiency of
intrathymic IL-22, thereby inhibiting IL-22-mediated protection
of TECs and impairing recovery of thymopoiesis (80).
Notwithstanding the benefits of chemo and radiation-therapy
in Allo-HSCT, these therapies’ detrimental consequences impair
the thymic function and inhibit the thymus ’s ability
to rejuvenate.
Chronic Injury
Aging
Immune system functionality declines significantly with
advancing age, increasing susceptibility to infections and other
chronic inflammatory disorders. Age-related involution is
characterized mainly by progressive regression of thymic size
and structure, resulting in impaired thymopoiesis, restricted
TCR repertoire, ineffective central tolerance, and accumulation
of senescent memory T cells, consequentially leading to innate
immune cell-induced chronic inflammation (87–90). Generally,
aging also affects various stages of T cell development, from age-
re la ted a l tera t ions in HSC, d i s rupt ion in thymic
microenvironment niche, changes in key signaling molecules
that modulate thymopoiesis, reduction of T cell differentiation
activity, to the subsequent decline in T cell output and immune
function (91). Firstly, concerning HSC, increasing age is
associated with a decreased ratio of lymphoid-to-myeloid cells,
resulting in fewer early T-cell progenitors (ETP) entering the
thymus from the BM, consequently causing thymic atrophy with
decreased thymic output (92). In addition, in aging thymic
epithelial cells, the expression of some critical regulatory genes
is down-regulated. FOXN1, fibroblast growth factor 21 (fgf21),
IL-7, and the growth factors of TECs declined significantly (93).
These contribute enormously to age-dependent thymic
involution and consequently deteriorate senile immunity.

What is more, the aged thymus declines in both TECs and
thymocytes as age-related involution negatively affect thymocyte
development and selection, leading to the diminution in DP and
SP thymocytes (88, 90). Animal model studies evaluating the
impact of age-involution on stromal compartment depicted an
atrophied thymus due to substantial loss of TECs, predominantly
Frontiers in Immunology | www.frontiersin.org 6
CD205+ cTEC and UEA-1+ mTEC, in addition to significant
down regulation of various TEC markers such keratin and MHC
class II (89, 94). With age, the atrophied thymus also declines in
its capacity to establish central tolerance, thereby causing
increased self-reactive T cells to escape to the periphery and
participate in the process of inflammaging. Moreover, the
reduced thymic output and peripheral oligo-clonal expansion
of memory T cells in the aging thymus result in an overall
contracted TCR repertoire diversity thereby inducing immune
insufficiency (immunosenescence) (95).

Several studies reported age-dependent thymic atrophy abates
bone marrow hematopoietic stem cells’ function to differentiate
into T lymphoid progenitor cells (96, 97). TEC’s self-renewal
ability in the thymic matrix of the elderly decreases sharply,
whiles the number of fibroblasts and adipocytes increases (98,
99). Due to aerobic metabolites’ accumulation in the aging
thymus, TEC trans-differentiates into fibroblasts and
adipocytes through epithelial-stromal trans-differentiation.
Another explanation is that the intestinal tract’s ability to
absorb trace element zinc (Zn) decreases with age, increasing
free radicals production (87). Additionally, the thymic stromal
cells lack hydrogen peroxide reductase and are sensitive to
oxygen free radicals, which may further damage the thymic
matrix (100).

COVID-19 and the Aged-Thymus
Studies on the global pandemic of coronavirus disease 2019
(COVID-19 have reported a higher frequency of severe
symptoms and mortality in elderly patients, implicating a
direct relationship between age and COVID-19 prognosis
(101). Similar observations were also shown in SARS-CoV-1
(102), MERS (103),and experimental models of SARS-CoV-2
infection (104). It is proposed that immunosenescence and
inflammaging are high-risk factors for severe COVID-19 in the
elderly, suggesting that the age-related clinical severity of
COVID-19 is due to impaired antiviral immune function and
excessive self-damaging immune reactions in the elderly (101,
105). Others also posited that the advanced age population is
highly prone to viral infection because of a lower functional
capacity of phagocytes to eliminate pathogens and activate the
adaptive immune response (106, 107). Functional impairment of
T and B-lymphocytes, coupled with an increase in exhausted T
cells, contributes to poor clinical outcomes of COVID-19 (108,
109). This is consistent with studies that reported lymphopenia
in patients over the age of 60 with severe COVID-19 (110),
although this could also be due to SARS-CoV-2 spike proteins
directly interacting with CD26 on T cells, leading to T cell
apoptosis and immune dysfunction (111).

One primary physiognomy of the immunosenescence is a
low-grade proinflammatory state, with increased levels of IL-6,
IL-1, TNF-a, and C-reactive protein (112, 113), which lead to
cytokine storm syndrome and multiple organ failure (114).
Studies have shown similarities between aging blood cytokine
profile and that observed in severely ill COVID-19 patients,
which appears to play a vital role in poor COVID-19 prognosis
(115). Interestingly, the cytokine storm syndrome in COVID-19
patients is mainly characterized by the IL-1, IL-6, and TNF-a
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(116, 117), among which the serum TNF-alevel is negatively
correlated with T cell function by downregulating the expression
of CD28 (118). Conversely, a study by Cuvelier et al. showed no
significant increase in IL-6 and IL-10 but indicated that the lack
of thymic reactivation in older SARS−CoV−2 infected patients
contributes to a worse prognosis. Their data showed that an
increase in thymic mass, partly triggered by enhanced IL-7 levels,
is a beneficial adaptation to virus-induced lymphopenia.
Unfortunately, this adaptation diminishes in advanced-aged
patients, possibly contributing to the higher mortality observed
in old individuals (119).
REGENERATION STRATEGIES
OF THE THYMUS

The human body requires a robust immune system to fight off
infections to ensure survival throughout life. Since the thymus
efficient function declines substantially due to aging and other
environmental factors, it is critical to elucidate the available
therapeutic methods of thymus regeneration. Few clinically
proven therapies have been reported to restore the thymus
function, while pre-clinical studies postulated other options to
rejuvenate it. Currently available regenerative strategies of the
thymus involve pathways that either specifically target non-
hematopoietic cells such as TECs or modulate bone marrow
hematopoietic progenitors to mediate regeneration of the
thymus (19, 120). Others have also exploited alternative
therapeutic strategies, including hormonal therapies,
transplantation of thymic tissue, thymic organoids, and
Frontiers in Immunology | www.frontiersin.org 7
artificial thymus transplantation, to boost thymic function
(121, 122). As already discussed, thymic injury is caused by
several factors with diverse mechanism resulting in different
outcomes. Normally, injury in hematopoietic origin may lead to
transit and spontaneous thymus reconstitution, whereas injury
in non-hematopoietic origin such as TECs may require both
endogenous and exogenous strategies to rejuvenate thymic
function (59, 112). This section of the review will briefly
highlight both previous and current therapeutic strategies
based on their targeted cells (Table 1).

Thymic Epithelial Cell Regeneration
TEC performs critical functions in the normal thymus and
during rejuvenation after thymic injury. In vitro synthesis of
essential molecules secreted by thymus, a recombinant
humanized chemokine (CCL25, CCL21), IL-22, IL-7, and other
cytokines have apparent efficacy in treating damaged thymus.
Studies aimed at recovering TEC function in vivo with various
hormonal or cytokine treatments are already in progress.
Moreover, several of these approaches have been tested in
phase I or phase I/II clinical trials.

Keratinocyte Growth Factor
Fibroblast growth factor 7 (FGF7), also known as a keratinocyte
growth factor (KGF), has been reported in studies to promote the
proliferation and differentiation of TEC (123). Mesenchymal-
derived cells, such as fibroblasts, can secrete KGF to bind to the
fibroblast growth factor receptor 2b (FGFR2b) to activate the
PI3K-Akt signaling pathway and promote the proliferation of
TEC cells (124). Exogenous use of KGF enhanced T-cell
TABLE 1 | Summary of thymus regeneration therapeutic strategies.

Therapies Mechanism Targeted
cells

Reference

Sex steroid inhibition
(SSI)

Application of sex hormone inhibitors or sex steroid ablation alleviates thymic apoptosis, enhances thymus
growth and proliferation of peripheral T-cells.

Thymocytes (142, 172, 174)

Precursor T-cells Direct injection of transduced OP9-DLL1 or DLL4 ex vivo generated pre-T cells promotes thymocytes
proliferation and maturation in the thymus. T-iPSCs enhance proliferation, differentiation and functionality of
antigen-specific T cells.

Thymocytes (177, 178) (178,
183)

Thymus transplantation Transplantation of artificial thymic stromal cells; TEPC with intracellular components, reconstructs thymus
structure and boost thymic function.

TECs (184–186)

Keratinocyte growth
factor (KGF)

Binds to FGFR2b to activate the PI3K-Akt signaling pathway to induce proliferation and differentiation of TEC. TECs (123, 124)

Interleukin 22 Stimulates TEC proliferation and survival via radio-resistant RORg and FOXN1 up-regulation. Accelerates
thymus recovery via AIRE activation and regulation of JAK/STAT3/Mcl-1 pathway.

TECs (133, 134, 137)

Growth hormone (GH) Activates JAK2/Stat1, 3,5 to induce cell proliferation, increases thymic cellularity and promotes thymus
regeneration. IRS phosphorylation activates PI3K-Akt and MAPK signaling pathways to enhance the survival of
TECs.

TECs and
TSC

(141, 146, 172)

RANKL(TNFSF11/
TRANCE)

Controls self-tolerance in the mTEC microenvironment by regulating the activation of classical and non-
classical NF-kB pathways via TRAF6.

mTEC (147–149)

Epidermal growth
factor receptor (EGF)

Activation of MAPK & PI3K-Akt to enhance proliferation and survival of epithelial cells. Regulates the
production of TEC-derived cytokines within the thymus.

TECs (150–154)

Bone morphogenic
protein 4 (BMP4)

Promotes TEC proliferation and maturation by inducing the expression of FOXN1 and its downstream target
delta-like 4 (DLL4) in cTECs.

TECs (78)

Interleukin 7 (IL-7) Modulate mTEC-derived CCR7 ligand expression to boost normal thymocytes development and maturation.
Increases progenitor T cells to promote the expansion of naive and memory CD4+ and CD8+ T cells.

TECs (26, 157)
September 2021
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SSII, sex steroid inhibition; Pre-T, precursor T cells; TEPC, thymic epithelial progenitor cells; ESC, embryonic stem cells; TSC, thymic stromal cells; T-iPSCs, induced pluripotent stem cells
derived from antigen-specific T cells; ILC3, Group 3 innate lymphocyte; EGF, epidermal growth factor receptor; IRS, insulin-like receptor substrate; FGFR2b, fibroblast growth factor
receptor 2b; RORg, retinoic acid-related orphan receptor; FOXN1, fork-head box protein-N1; AIRE, autoimmune regulator; TRAF6, tumor necrosis factor receptor.
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lymphopoiesis in Allo-HSCT mice with protective effects on
thymic stromal cells. In an experimental Allo-HSCT model, KGF
prevented thymic injury and GVHD by maintaining
gastrointestinal tract integrity and acting as a “cytokine shield,”
which helps prevent subsequent pro-inflammatory cytokine
generation (125). Simona W. Rossi et al. also elucidated in
their studies the impact of KGF to induce in vivo transient
expansion of thymic epithelial cells to promote differentiation of
TECs. The protective and proliferative effects of KGF on
thymocytes could be because KGF signaling in TECs activates
both the p53 and NF-kB pathways, resulting in the transcription
of several target genes essential for TEC function and T-cell
development (126, 127). Pre-clinical data also demonstrated that
recombinant human KGF could enhance thymic epithelial
tissues’ regenerative capacity and protect them from a wide
variety of toxic exposures. These cytoprotective effects of KGF
have been attributed to its ability to decrease thymic infiltrated
T-cells and strengthen TEC barrier integrity (128).
Frontiers in Immunology | www.frontiersin.org 8
Interleukin-22
Interleukin 22 (IL-22), a cytokine primarily associated with the
maintenance of barrier function and induction of innate
antimicrobial molecules at mucosal surfaces, is reported in a
number of studies to play significant roles in TEC rejuvenation
(80, 129, 130). We reported that up-regulation of intra-thymic
IL-22 positively correlated with thymus regeneration in mice
treated by total body radiation (TBI), an effect triggered by
depletion of CD4 and CD8-DP thymocytes (131). Others
depicted similar results; in one of the studies, IL-22 knock out
(IL-22−/−) mice exposed to sublethal TBI or received Allo-HSCT
demonstrated enormously impaired thymic regeneration with
noticeably declined thymocytes, TECs, and non-TECs (132, 133).
Interestingly, a similar outcome was identified in our recent
study on human transplantation. The study analyzed the
dynamic change of plasma IL-22 level and assessed recovery of
thymic output function by detecting T-cell receptor excision
circles (TRECs) level. The findings suggested that the dynamics
FIGURE 2 | Interleukin-22 promotes endogenous thymic regeneration. Exposing the thymus to infection, irradiation, and Allo-HSCT treatment regime (1) results in
depletion of CD4+ CD8+ Double positive (DP) thymocytes (2) DP depletion modulates IL-23 up-regulation in dendritic cells and T cells (3). IL-23 then induces the
group 3 innate lymphoid cells (ILC3) to produce IL-22 cytokines (4). IL-22 regulates AIRE and RORy(t) via JAK/STAT3/Mcl-1 pathway (5). This subsequently causes a
significant increase in TEC proliferation/survival, thus boosting TEC and thymus regeneration.
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of plasma IL-22 levels correlate with the recovery of thymus
function in human allotransplants (134). Evidence from these
studies implicates that cross-talk between IL-22 and TECs is
crucial to mediate T-cell immunity’s reconstitution after injury.

Compelling evidence indicates that IL-22 modulatory effect
on thymocytes promotes TEC’s proliferation and survival via
the upregulation of radio-resistant RORg and FOXN1 (16).
RORg (t) is expressed in T cells and is critical for thymocyte
development by regulating DP thymocytes survival and genes
that control thymocyte migration, proliferation, and T cell
receptor selection (135). Dudakov et al. also reported that IL-
22 signaled through TECs in an IL-23–dependent manner
and promoted their proliferation and survival via up-
regulating RORg(t)+CCR6+NKp46– lymphoid tissue inducer
cells (136).We recently reported IL-22 accelerated thymus
remodeling after transplantation by regulating the JAK/
STAT3/myeloid cell leukemia sequence 1 (Mcl-1) pathway
(137). STAT3 signaling is crucial for the survival of mTECs
and maintenance of thymopoiesis (138). STAT3 binds the
promoter region of Mcl-1, modulating IL-22 to regulate the
proliferation of TEC. Moreover, Mcl-1, a member of the Bcl-2
family, is an anti-apoptotic gene-regulating survival of
hematopoietic cells. Mcl-1 is also essential for the survival of
mature cortical and medullary TECs and the maintenance
of thymic architecture. A screen of TEC trophic factors in
organ cultures also showed that epidermal growth factor
upregulated Mcl-1 via MAPK/ERK kinase activity, providing
a molecular mechanism for the support of TEC survival
(139). Hence, IL-22 protective and proliferative effects on
TECs could be IL-22 regulatory impact via JAK/STAT3/Mcl-1
path since activation of this pathway inhibit apoptosis on TECs
(137, 138, 140). These show that IL-22 might represent a novel
strategy in thymic rejuvenation and could restore thymic
function (Figure 2).

Growth Hormones
Growth hormone (GH), often referred to as ‘insulin-like growth
factor 1 (IGF-1)’, stimulates the growth of virtually all body
tissues, including bone, and it is crucial for protein synthesis and
fat metabolism. A study by Tasaki et al. showed that both plasma
levels of IGF-1 and the number of cells expressing IGF-1R and
FOXN1 in the thymus correlated with age-associated thymic
involution. Their studies indicated that the number of cells
expressing IGF-1R and FOXN1 in the naive aged thymus was
significantly lower than in juvenile animals (141), implying the
necessity of extrinsic factors such as IGF and FOXN1 in the
preservation of the TECs repertoire and TEC’s reconstitution.
Exogenous GH administration in mice increased thymic
cellularity, delays thymic involution, and positively regulates T
cell migration (142).

Similarly, in a clinical trial study (NCT00071240), human
recombinant GH (somatropin) administration in HIV-infected
patients increased thymic cellularity and peripheral immune
response (143) with a significant increase in both naive CD4+
and CD8+ T cells. A recently published clinical study (TRIIM
Trial) of 10 healthy men (51- 65 years) treated with recombinant
human growth hormone (rhGH), dehydroepiandrosterone
Frontiers in Immunology | www.frontiersin.org 9
(DHEA), and metformin also showed improved thymic
function with protective immunological changes and improved
risk indices for many age-related diseases (144). A further study
(TRIIM X trial) involving both men and women from 40-80
years of age is currently in progress (NCT04375657) to help
elucidate the therapeutic benefits of rhGH. Ghrelin and IGF-1
are postulated to be involved in the GH pathway, where ghrelin
promotes the secretion of GH, and IGF-1 is one of the primary
mediators of the effects of GH (142). IGF-1 binding to its
receptor IGF-1R activates the JAK2/StAT1, 3, 5 signaling
pathway to induce thymocyte proliferation (137, 145). Another
hypothesized classical pathway besides IGF-1R activation is the
phosphorylation of the insulin-like receptor substrate (IRS).
Uncoupled IRS activates PI3K-Akt and MAPK signaling
pathways and promotes thymic epithelial cells’ survival (146).

RANKL
TEC development is a sophisticated and gradual process
controlled by the extrinsic and intrinsic signal regulatory
network. mTECs express a diverse set of tumor necrosis factor
receptors (TNFRs), and three of them, including the receptor
activator of NF-kB (RANK), CD40, and LTBR, cooperatively
control the thymic medullary microenvironment and self-
tolerance (41). Accumulating evidence indicates that the TNFR
family members are essential in determining mTEC formation
and development. Besides, exogenous recombinant RANKL
enhances the thymus’ recovery after acute injury in mice (44).
In the embryonic thymus, RANKL signals provided by
CD4+CD3−lymphoid tissue inducer (LTi) cells promote
CD80−AIRE−mTECs developing into CD80+ AIRE+ mTECs.
Disruption of the RANKL-RANK signaling in the postnatal
thymus reduces mature UEA-1+CD80hi MHCIIhi mTECs (43).
RANK activates NF-kB pathways via TNFR-associated factor 6
(TRAF6). TRAF6-deficient mice showed severe destruction of
medullary architecture and loss of Ulexeuropaeus agglutinin1
(UEA-1) +mTECs. TRAF6 also activates TGF-b activating
kinase 1 (TAK1), which activates the IKK complex. These
mechanistic pathways are posited to regulate RANKL-RANK
mediation in mTEC (147, 148). Notably, a study revealed that
transplantation of RANKL−/− thymus to immune-deficient mice
caused severe inflammatory cell infiltration and abundant
production of autoimmune antibodies (149), meaning that the
abnormality of RANKL-RANK signaling may result in mTEC
development anomalies and T cells self-tolerance failure. Thus,
targeting the RANKL-RANK signaling pathway in the thymus’
medullary microenvironment could lead to the discovery of new
therapy to boost thymus reconstitution.

Epidermal Growth Factor
In the normal human thymus, the epidermal growth factor
receptor (EGF-R) is expressed by sub-capsular, cortical, and
medullary epithelial cells (150). Application of exogenous
recombinant EGF promotes the proliferation of TECs and
thymus repair after acute injury in mice. EGF binds to EGF-R, a
protein tyrosine kinase (PTK). It initiates a series of events that
include activation of PTK activity of EGF-R, phosphorylation of
the EGF-R, and phospholipase C-3’ (123). EGF also activates the
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classical MAPK and PI3K-Akt signaling pathways, promoting
epithelial cells’ proliferation and survival (151). It is worth
remembering that transforming growth factor-a (TGF-a) is
structurally and functionally related to EGF, and both are
known to complaisantly modulate cytokines secretions in
human TECs (152). Pre-clinical studies showed that TGF-a is
localized in the mTECs and thymic Hassall’s bodies, while EGF-R
is localized to TECs throughout the thymus (153, 154). Their data
highlighted that TGF-a and EGF are critical regulatory molecules
for producing TEC-derived cytokines within the thymus and may
function as critical modulators of human T cell development in
vivo. Of note, studies demonstrate the possible impact of EGF on
preserving TECs and ensuring thymic reconstructions (129).

BMP4 and IL-7
In addition to the thymus rejuvenation strategies discussed, bone
morphogenic protein 4 (BMP4) and interleukin-7 (IL-7) are also
targeted as therapeutic regulators of thymic regeneration since
they are implicated in several studies to play a significant role in
TEC proliferation and preservation. Briefly, BMP4 is expressed
in fibroblasts, ECs, and cells in the thymus (155). BMP4-induces
the expression of FOXN1 and its downstream target delta-like 4
(DLL4) in cTEC. Both FOXN1 and DLL4 are essential for the
development of TECs and thymocytes (78). This means,
regulating BMP4 therapeutically could enhance proliferation
and maturation of TEC to mediate thymus regeneration via
upregulation of FOXN1 and DLL4. Likewise, IL-7, mostly found
on TECs, is critical for normal thymocytes’ development and
maturation. Studies indicate that mice deficient in Il-7 had a
substantial decline in various subsets of T lymphocytes. IL-7
administration seems to increase progenitor T cells and naïve T
cells, subsequently augmenting thymus repair (130, 156).
Alternatively, it was revealed that IL-7 receptor (IL-7r) also
play an essential role in the generation of microenvironments
required for thymic DCs and T-cell development, as Il7r-/- mice
exhibited a significant decrease in mTEC-derived CCR7 ligand
expression and severe defects in thymic corticomedullary
structure and mTEC development (157).

Some clinical trials (NCT00684008, NCT00477321,
NCT01190111, and NCT01241643) have revealed that
administration of a glycosylated recombinant human IL-7
(rhIL) enhanced T cell recovery in either HIV or HCT patients
via acceleration of thymocytes and T cell subsets reconstitution
(158–162). Precisely, a phase I/IIa dose-escalation study
(NCT00477321) reported that rhIL-7 application in HIV-1-
infected patients was safe, well-tolerated, and transiently
promoted the expansion of naive and memory CD4+ and
CD8+ T cells (159). A similar study (NCT00839436) in
patients with idiopathic CD4+ lymphopenia also showed that
rhIL-7 could increase the number of circulating CD4+ and CD8+
T cells (163). Besides, a study (NCT00684008) in T cell-depleted
allogeneic HCT patients treated with rhIL-7 depicted a
substantial increase in peripheral CD4+ and CD8+ T cells
implicating immune-regenerative properties of rhIL-7 (164).
Though evidence from studies reveals possible therapeutic
benefits of BMP4 and IL-7, additional studies are required to
clarify this approach of thymus-dependent therapy.
Frontiers in Immunology | www.frontiersin.org 10
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Sex Hormone Inhibitors
Increased sex steroid and hormone levels act through their nuclear
receptors, causing thymic involution. Their effect manifests during
puberty, during which the rate of thymic involution upsurges
rapidly (142, 165).Primarily, androgen receptors (AR) and
estrogen receptors are expressed in the hematopoietic and
stromal compartments of the thymus (166).Although their exact
effect and mechanism on thymic involution are still unsettled,
evidence from studies demonstrated that sex steroids such as
testosterone could induce apoptosis of CD4+CD8+ DP
thymocytes via the upregulation of TNF-a (167); while
estrogens (estradiol) induce thymic atrophy by eliminating early
thymic progenitors (Flt3+Sca-1+c-Kit+ population in the bone
marrow) and inhibiting the proliferation of beta-selected
thymocytes (168). These claims are supported by studies in
animal models that showed that sex steroid inhibition (SSI)
increases thymic cellularity, restores thymic architecture and
organization, and enhances thymopoiesis (169, 170). Castration
has also been shown to increase FoxN1 protein levels and
Foxn1+Ly51-CD80+TECs, restore the level of CD4+CD8+SP,
and immature CD25+CD44+CD117+ thymic progenitors,
subsequently enhancing thymic rejuvenation (171).

Recent experimental studies have also proved that the use of
SSI or surgical destruction of the hypothalamic-pituitary-gonadal
axis can promote thymus growth and increase peripheral T cells’
diversity (172). Similar observations were reported in clinical trials
where sex steroid ablation (SSA) in prostate cancer patients
enhances thymic function with a significant rise in naïve
CD4+and CD8+T cells, NK cells, and TRECs (173). Also, a pilot
study reported that luteinizing hormone-releasing hormone
agonist (LHRH-A) goserelin considerably increased neutrophil
and lymphocyte numbers within the first month of post-
transplantation and subsequently promoted T cell repertoire
regeneration and peripheral T cell function without exacerbating
GVHD (174). Even though these studies’ evidence seems
promising, further studies are required to apply sex steroids
inhibitors to alleviate thymic involution without causing
hormonal deficiency disorders.
Precursor T cells and Thymus Transplantation
Direct injection of precursor T cells (pre-T) in vitro is proven to
accelerate patients’ immune reconstruction, especially using the
OP9-DL1 system for generating precursor T cells ex vivo (175,
176). Previous work has shown that pre-T cells can be generated
using ex vivo co-culture of hematopoietic stem cells (HSCs) with
ectopically transduced OP9-DLL1 and DLL4, two critical factors
for thymocytes proliferation (177, 178). Previous studies on the
generation of OP9-DL1–derived T-cell precursors from
umbilical cord blood (UCB) or HSCs, revealed that two
distinct progenitor subsets;CD34+CD45RA+CD7++CD5-CD1a-

(proT1) and CD34+CD45RA+CD7++CD5+CD1a- (proT2), were
able to home to, settle, and differentiate in the thymus of
recipient immunodeficient mice (179). Murine Allo-HSCT
recipients of OP9-DL1–derived T-cell precursors showed
increased thymic cellularity and substantially improved donor
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T-cell pool. OP9-DL1–derived T-cell precursors gave rise to
host-tolerant CD4+ and CD8+ populations with normal T-cell
antigen receptor repertoires, cytokine secretion, and T-cell
reconstitution after transplantation (180). Although previous
methods of the adoptive transfer of T-cell precursors appeared
to restore the T-cell–mediated immunity after HSCT, highly
expanded T cells have not yet proven to be therapeutically
effective in clinical settings, mainly due to losses of function
(exhausted T cells) and antigen specificity (TCR destabilization)
to nonspecific T cells that occur during the ex vivo manipulation
of patient T cells (181).

Several attempts have been made to overcome these
impediments by reprogramming antigen-specific T cells to
generate iPSCs (T-iPSCs) (182). Nishimura and coworkers
demonstrated that T-iPSCs and the subsequent redifferentiation
to mature functional CD8+ T cells are not just possible but could
also serve as highly proliferative naive cells with elongated
telomeres and exert T cell functions which can rejuvenate
mature antigen-specific T cells. Immunological assays data from
their study also showed that redifferentiated CD8+ T cells exerted
T cell functions such as cytolytic activity, IFNg secretion, and
degranulation in a normal manner when stimulated with their
specific antigens (183).Though the study focused on CD8+ T cell
rejuvenation, exploring this concept on CD4+ helper or
regulatory T cells in future studies can provide new avenues to
enhance adoptive T cell immunotherapy.

This is also attainable by targeting the molecular signaling
pathways that control T-cell development from HSPCs, and those
in the thymic microenvironment that integrates multiple niche
molecules to ensure T cell diversity and repertoire. A typical
example is the synergistic interactions between Notch ligand
Delta-like 4 and vascular cell adhesion molecule 1 (VCAM-1),
which boost Notch signaling and progenitor T-cell differentiation
rates. Shukla et al. showed recently that an engineered thymus-like
niche using the above-mentioned thymic signaling factors enables
in vitro production of mouse Sca-1+cKit+ and human CD34+
HSPC-derived CD7+ progenitor T-cells capable of in vivo thymus
colonization and maturation into cytokine-producing CD3+ T-
cells (178). This engineered thymic-like niche may offer an
opportunity for in vitro analysis of human T-cell development
as well as clinical-scale cell production for future development of
immunotherapeutic applications.

Additionally, thymus transplantation and in vitro
bioengineering can either be utilized to boost the recovery of
thymic function or treatment of patients with congenital thymic
atrophy (184). The most commonly used method is the
transplantation of artificial thymic stromal cells, mainly thymic
epithelial progenitor cells (TEPC), containing intercellular
interaction components to support T cell development (185).
Studies of animal models have demonstrated that, via an in vitro
reprogramming technique, TEPC can induce human embryonic
stem cells to form TEC and then transplant them into mice
under the regulation of FOXN1, IL-7 (130, 156), BMP4 (78), FGF
and EGF to form thymus structure (155, 185). Another method
is to remove all the thymus cells and leave only the matrix
components, which can be recombined with artificial thymic
Frontiers in Immunology | www.frontiersin.org 11
stromal cells and T lymphoid progenitor cells to form functional
thymus (186).

It is encouraging to know that significant advances in T-iPSCs
bioengineering technologies (182),including genome-edited
master iPSC lines (187), 3D thymic culture generated antigen-
specific anti-tumor T cells iPSCs (122), iPSC-derived NK cells
(188, 189), CAR-T engineered T- IPSCs (190), TCR and HLA
reprogrammed T-iPSCs (191, 192) and inactivation of
recombination activating gene 2 (RAG2) in the T-iPSCs (187),
have broadened the clinical applicability of adoptive cell
immunotherapy and facilitated the development of “iPSC-
derived off-the-shelf tumor-specific T cells” cellular
therapeutics for the management of several malignancies.
Others have also demonstrated the use of Foxn1-induced TECs
(iTECs), particularly Foxn1-reprogrammed embryonic
fibroblasts (FREFs) to generate a functionally competent
thymus organ that robustly supports T-cell development and
repertoire (193, 194). It was initially shown in transgenic mice
that enforced Foxn1 expression is sufficient to convert primary
mouse embryonic fibroblasts (MEFs) into various subsets of
TECs that expresses the relevant markers required to promote
full T-cell development (193). Injection and engraftment of
iTECs with two types of promoter-driven (Rosa26CreERT and
FoxN1Cre) Cre-mediated FREFs into the thymus of an old mice
was recently shown to rejuvenate the aged thymus by increasing
thymopoiesis, along with reduced senescent T cells and
autoreactive T cell-mediated inflammation (194). Though these
immune rejuvenation therapeutic strategies indubitably have
setbacks, they appear promising with potential goals to
contribute to thymus regeneration.

CONCLUDING REMARKS AND
FUTURE PERSPECTIVES
The thymus’ regenerative capacity declines substantially in acute
and chronic injury, resulting in long-term immune deficiency
and infection susceptibility. Although progress has been made in
immune reconstruction after acute thymic injury, there are still
some limitations and challenges; several mechanistic pathways
on thymic rejuvenation are still not well elucidated
experimentally. For instance, regulatory T cells’ effect in the
thymus medulla on central tolerance formation is still
ambiguous, and how mTEC mediates Treg development is not
fully understood. Also, the regulatory mechanism and the
influence of tissue-specific genes expressed on mTEC require
further study. Nevertheless, with the current rapid advancement
in scientific research, there are high aspirations that better
regenerative strategies would be discovered to promote
endogenous recovery of the thymus. A balanced regenerative
approach promoting positive and negative selection will be
crucial to enhance the thymic function since a biased
regenerative strategy may singly improve positive or negative
selection. The subsequent research’s primary mission should be
addressed to further develop and advance the methodology for
regenerating thymic function in patients subjected to thymus
injury, thymic degenerative ailments, and thymectomy.
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