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Hand

INTRODUCTION
In the United Kingdom, one in 1000 people will 

undergo carpal tunnel decompression (CTD) to treat 

carpal tunnel syndrome (CTS) each year.1 CTD is gener-
ally considered a safe and effective treatment,1–3 although 
25% of patients do not experience a meaningful improve-
ment in symptoms following the surgery, and 8% deterio-
rate compared to their preintervention status.4 A small 
number of patients experience significant surgical com-
plications, including median nerve injury,1 and this is asso-
ciated with high litigation costs.5
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ABSTRACT

Background: Carpal tunnel syndrome (CTS) is extremely common and typically 
treated with carpal tunnel decompression (CTD). Although generally an effective 
treatment, up to 25% of patients do not experience meaningful benefit. Given 
the prevalence, this amounts to considerable morbidity and cost without return. 
Being able to reliably predict which patients would benefit from CTD preopera-
tively would support more patient-centered and value-based care.
Methods: We used registry data from 1916 consecutive patients undergoing CTD for 
CTS at a regional hand center between 2010 and 2019. Improvement was defined as 
change exceeding the respective QuickDASH subscale’s minimal important change 
estimate. Predictors included a range of clinical, demographic and patient-reported 
variables. Data were split into training (75%) and test (25%) sets. A range of machine 
learning algorithms was developed using the training data and evaluated with the 
test data. We also used a machine learning technique called chi-squared automatic 
interaction detection to develop flowcharts that could help clinicians and patients to 
understand the chances of a patient improving with surgery.
Results: The top performing models predicted functional and symptomatic 
improvement with accuracies of 0.718 (95% confidence interval 0.660, 0.771) 
and 0.759 (95% confidence interval 0.708, 0.810), respectively. The chi-squared 
automatic interaction detection flowcharts could provide valuable clinical insights 
from as little as two preoperative questions.
Conclusions: Patient-reported outcome measures and machine learning can 
support patient-centered and value-based healthcare. Our algorithms can be 
used for expectation management and to rationalize treatment risks and costs 
associated with CTD. (Plast Reconstr Surg Glob Open 2022;10:e4279; doi: 10.1097/
GOX.0000000000004279; Published online 18 April 2022.)
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A report commissioned by the UK Department of 
Health in 2009 suggested that between £0.3 and 0.7 bil-
lion could be saved if procedures with “no/limited clinical 
benefit” were decommissioned.6 National Health Service 
(NHS) England subsequently identified 17 “procedures of 
limited clinical value,” including CTD, which was recom-
mended only in patients who have evidence of neuropathy, 
severe symptoms lasting over 3 months or mild-to-moder-
ate symptoms lasting over 4 months after a trial of corti-
costeroids and/or night splinting.7 The evidence base for 
such strategies is unclear, and they may prove cost ineffec-
tive, as the pathway involved involves multiple assessments 
and treatments. The United States has a similar incidence 
of CTD to the United Kingdom, although the combined 
direct and indirect societal cost of the treatment may be 
even greater, estimated at US $3536.56 ± US $7155.66 per 
operation.8

Previous work has demonstrated large variation in 
symptom relief following CTD with several factors contrib-
uting toward symptomatic improvement following inter-
vention.9 Identifying who will derive benefit following 
CTD will enable the delivery of rational, cost-effective care 
that optimizes outcomes at the patient-level and reduces 
unnecessary costs and complications at the population 
level. If possible, this could be a more effective strategy 
for the UK NHS, and for the US providers adopting value-
based healthcare strategies.10

Previous attempts to predict patient-reported out-
comes following CTD have failed to capture the differ-
ent aspects of patient-perceived hand health in detail. 
Through contemporary psychometrics, it is possible to 
define success following CTD in terms of either symptom-
atic or functional improvement, using patient-reported 
outcome measures (PROMs), factor analysis, and distri-
butional statistics. Machine learning can then be used to 
model complex statistical relationships between prognos-
tic factors and clinical outcomes.11 In this study, we aimed 
to develop and interpret machine learning algorithms 
that can predict which patients will demonstrate clinically 
meaningful improvements in symptoms and/or function 
following CTD.

MATERIALS AND METHODS
There are no universally accepted reporting guidelines 

for development and/or validation studies of machine 
learning algorithms at present. Therefore, we report this 
study using relevant items from the Transparent Reporting 
of a Multivariable Prediction Model for Individual 
Prognosis or Diagnosis (TRIPOD) checklist,12 and from 
the reporting standards proposed by Luo et al.13

Patient Population
Algorithms were developed as a secondary analysis 

of data from a clinical practice registry of 1916 consecu-
tive patients undergoing CTD at a regional hand center 
in Scotland between February 2010 and October 2019. 
Patients were considered eligible for CTD if they pre-
sented with numbness or paresthesia in the distribution 
of the median nerve with a positive Phalen or Durkan 

test.14 All patients with clinical features suggestive of CTS 
were then referred for nerve conduction studies. CTD was 
performed in patients with clinical features of CTS that 
had not improved following a trial of nonsurgical manage-
ment for a minimum of 3 months (in the form of steroids 
and/or night splinting) irrespective of neurophysiological 
findings. A mini-open approach was used for all patients. 
Baseline PROM questionnaires were administered on the 
day of surgery.

Patient-reported Outcome Measures
We used the QuickDASH to assess changes following 

surgery. Postoperative QuickDASH scores were taken at 
least 6 months after surgery (median 12 months). The 
QuickDASH, consists of 11 items. Each item has five 
response options, with a higher score indicating poorer 
upper extremity health. Although designed to have all 
11 items contribute to a single summary score, in previ-
ous psychometric studies, we have demonstrated that 
responses to the QuickDASH closely fit a two-factor struc-
tural model, in which the task-based QuickDASH items 
1–6 measure upper limb function, and QuickDASH items 
9–11 measure sensory symptoms. QuickDASH items 7 and 
8 relate to social and work activities and do not reliably 
measure either trait.15 This means that more valid mea-
surements can be obtained by splitting the QuickDASH 
into two subscales, measuring upper limb motor function 
and sensory symptoms separately.

We used the sum of the item responses to mea-
sure function (QuickDASH items 1–6) and symptoms 
(QuickDASH items 9–11). To determine which patients 
had experienced a meaningful improvement in either 
construct following surgery, we calculated the minimal 
important change (MIC) values for each subscale as half 
an SD of baseline (preoperative) scores, a widely accepted 
method.16 The MIC represents the minimum change in a 
patient’s PROM score following intervention that is consid-
ered to represent a clinically meaningful improvement.17

For both function and symptoms, we performed a 
missing data analysis and dichotomized patients into 
those who had and had not improved following surgery 
(see Supplemental Digital Content 1, which displays the 
methods, appendix, and results, http://links.lww.com/
PRSGO/C5). Improvement was defined as a reduction 

Takeaways
Question: Can machine learning algorithms be used to 
predict meaningful improvements in hand function and 
or symptoms following CTD?

Findings: We developed machine learning algorithms 
using QuickDASH response data from a regional data-
base. The best performing algorithm predicted functional 
and symptomatic improvement with respective accuracies 
of 0.72 and 0.76.

Meaning: We can identify patients who will benefit from 
decompression using only two preoperative questions.
Our data-driven decision support tools can be used to 
guide patient selection and both risks and costs of surgery.

http://links.lww.com/PRSGO/C5
http://links.lww.com/PRSGO/C5
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in QuickDASH score greater than the MIC for each sub-
scale. We also used this method to calculate the composite 
(traditional) QuickDASH MIC. Composite QuickDASH 
change scores were calculated for each participant using 
the traditional scoring formula to compare the interpret-
ability of the composite approach to the contemporary 
two-factor scoring model.

The subscale classifications (improvement versus no 
improvement in function, and improvement versus no 
improvement in symptoms) were used for the subsequent 
machine learning analyses, in which one set of algorithms 
aimed to predict improvement in symptoms, and another 
set aimed to predict improvement in function.

Software
We performed our analyses using the R statistical com-

puting environment (version 4.0.3, see Supplemental 
Digital Content 1, http://links.lww.com/PRSGO/C5). We 
have made all the code used in this study publicly available 
for open appraisal and use as a teaching resource.18

Predictors
Our dataset contained 61 predictors (before prepro-

cessing), including demographic and clinical variables, 
comorbidities, responses to each item in the QuickDASH, 
Kamath and Stothard19 and EuroQol 5-Dimension 5-Level 
questionnaire (EQ-5D-5L) questionnaires,20 baseline 
symptom and function scores, and whether surgery was to 
the dominant hand (see Supplemental Digital Content 1, 
http://links.lww.com/PRSGO/C5).

Algorithms
We trained and tested five different machine learning 

algorithms that represent a spectrum of model complexity 
from easily interpretable models with few parameters (eg, 
regularized logistic regression) to highly complex models 
(eg, neural networks). As models become more complex, 
they become more sensitive to subtle relationships within 
the data, but they also become more likely to find pat-
terns that are not generalizable to the real world, and it 
becomes less easy to understand how the model has made 
its predictions. The following models were developed and 
tested for predicting symptomatic and functional improve-
ment, representing a broad range in algorithmic complex-
ity: a logistic regression with elastic net regularization, a 
K-nearest neighbors algorithm, a support vector machine, 
a random forest built through extreme gradient boosting 
(XGB), and an artificial neural network.

Model Training and Testing
For each set of algorithms, the data were randomly 

split into training (75%) and test (25%) sets. The mod-
els taught to find patterns in the training dataset, and the 
evaluated in the test dataset (see Supplemental Digital 
Content 1, http://links.lww.com/PRSGO/C5). Models 
were compared by classification accuracy, area under 
the receiver operating characteristic curve (AUC), sen-
sitivity and specificity. We estimated 95% confidence 
intervals (CIs) for these metrics through nonparametric 
bootstrapping.

Model Explanations
For each classification task, we identified the best per-

forming model based on test data classification accuracy. 
To understand how these models were making their pre-
dictions, we performed Shapley additive explanations 
(SHAP) on their test dataset predictions.21 This estimates 
the contribution of each predictor to the overall model 
prediction by rerunning the algorithm on many artifi-
cially altered versions of the dataset, then measuring how 
a specific predictor’s presence or value affects the overall 
prediction. Although this technique cannot unequivocally 
demonstrate a complex model’s inner workings, it can 
provide insights into patterns within the training data, and 
some assurance that the model is making rational predic-
tions based on plausible data patterns.

Heuristic Models
Finally, we aimed to develop simple, heuristic models 

(decision trees) that could guide the selection of patients 
for CTD without the need for sophisticated technology. 
To do this, we used chi-squared automatic interaction 
detection (CHAID) to create decision trees that grouped 
patients into those who were more or less likely to benefit 
from surgery, based on their response to one or two pre-
operative questions. This is innovative in clinical research 
and allows the five-level polytomous (multiple-choice) 
PROM responses to be handled, rather than collapsed 
into dichotomous groups, which is needed for other 
techniques.22

We created one decision tree to predict functional 
improvement, and a second to predict symptomatic improve-
ment. In CHAID, each variable is treated as categorical, 
we therefore categorized EQ-5D visual analog scale (VAS) 
scores as less than 70, 70–79, 80–89, or greater than 89, 
based on the score distributions in our dataset. QuickDASH 
item response scores were treated as ordinal data.

RESULTS

Demographics
Our dataset included item responses and outcome 

measurements from 1916 patients. For models that 
predicted symptomatic improvement following CTD, 
we included 1093 of 1916 patients who had complete 
response sets to QuickDASH items 9–11 preoperatively 
and postoperatively. Of the 823 patients with incom-
plete response sets, 792 were missing postoperative item 
responses. For models that predicted functional improve-
ment following CTD, we included 1045 of 1916 patients 
who had complete response sets to QuickDASH items 1–6 
preoperatively and postoperatively. Of the 871 patients 
with incomplete response sets, 839 were missing postop-
erative item responses. A missing data analysis suggested 
that missing postoperative responses were largely missing 
at random23 (see Supplemental Digital Content 1, http://
links.lww.com/PRSGO/C5). Table  1 provides demo-
graphics and clinical details for the 1045 patients in whom 
we could measure functional change and 1093 patients in 
whom we could measure symptomatic change.

http://links.lww.com/PRSGO/C5
http://links.lww.com/PRSGO/C5
http://links.lww.com/PRSGO/C5
http://links.lww.com/PRSGO/C5
http://links.lww.com/PRSGO/C5
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Minimal Important Change
There were 1889 preoperative response sets that con-

tained at least ten item responses, which is a prerequisite 
for calculating QuickDASH scores using the traditional 
scoring formula. Using this formula, the SD of baseline 
scores was 20.7, resulting in a half SD MIC estimate of 10 
QuickDASH points. Of these 1889 patients, 1117 had at 
least ten postoperative item responses and 705 reported 
a drop in score of more than 10 QuickDASH points. In 
other words, according to the traditional QuickDASH 
scoring, 63% of participants experienced a meaning-
ful improvement in upper extremity health following 
surgery.

This was compared to an approach that accounted for 
the two-factor structure of the QuickDASH. There were 
1851 preoperative response sets that contained responses 
to the function items 1–6, and 1861 that contained 

responses to the symptom items 9–11. The SD of the func-
tion item sum scores (which could range from 6 to 30) 
was 6.1. The SD of the symptom item sum scores (which 
could range from 3 to 15) was 2.4. Consequently, the 0.5 
SD MIC estimates for the function and symptom subscales 
were three and two points, respectively. Complete preop-
erative and postoperative function item response sets were 
available for 1045 patients and complete preoperative and 
postoperative symptom item response sets were available 
for 1093 patients. Using a change larger than the function- 
and symptom-specific MIC estimates to define meaningful 
improvement, 507 (49%) patients reported a meaning-
ful improvement in function following surgery and 826 
(76%) reported a meaningful improvement in symptoms. 
For each subscale, all nonresponders had a baseline score 
higher than the respective MIC, and so had the potential 
to improve by at least the MIC in that subscale.

Table 1. Patient Demographics and Clinical Details

  Function Models Symptoms Models

Age, y  61 (22) 62 (22)
Gender Female 686 (65.6%) 714 (65.3%)

Male 356 (34.1%) 376 (34.4%)
Hand dominance Left 104 (10.0%) 107 (9.8%)

Right 929 (88.8%) 972 (88.9%)
Undergoing surgery to dominant hand No 420 (40.2%) 430 (39.3%)

Yes 593 (56.7%) 630 (57.6%)
Diagnosis CTS 1032 (98.8%) 1078 (98.6%)

Recurrent CTS 13 (1.2%) 15 (1.4%)
Symptom duration (mo)  20 (24) 20 (24)
Preoperative splinting time (mo)  6 (9) 6 (9)
Smoking status Nonsmoker 899 (86.0%) 940 (86.0%)

Smoker 136 (13.0%) 144 (13.2%)
Heart disease No 912 (87.3%) 944 (86.4%)

Yes 126 (12.1%) 143 (13.1%)
High blood pressure No 618 (59.1%) 638 (58.4%)

Yes 421 (40.3%) 450 (41.2%)
Lung disease No 964 (92.2%) 997 (91.2%)

Yes 72 (6.9%) 85 (7.8%)
Diabetes No 893 (85.5%) 932 (85.3%)

Yes 148 (14.2%) 157 (14.4%)
Stomach ulcers No 985 (94.3%) 1025 (93.8%)

Yes 53 (5.1%) 57 (5.2%)
Kidney disease No 1005 (96.2%) 1050 (96.1%)

Yes 31 (3.0%) 34 (3.1%)
Liver disease No 1026 (98.2%) 1071 (98.0%)

Yes 13 (1.2%) 15 (1.4%)
Anemia No 1000 (95.7%) 1050 (96.1%)

Yes 34 (3.3%) 31 (2.8%)
Cancer No 985 (94.3%) 1029 (94.1%)

Yes 50 (4.8%) 52 (4.8%)
Depression No 879 (84.1%) 919 (84.1%)

Yes 152 (14.5%) 157 (14.4%)
Osteoarthritis No 697 (66.7%) 725 (66.3%)

Yes 334 (32.0%) 351 (32.1%)
Back pain No 669 (64.0%) 705 (64.5%)

Yes 371 (35.5%) 379 (34.7%)
Rheumatoid arthritis No 960 (91.9%) 1007 (92.1%)

Yes 64 (6.1%) 64 (5.9%)
Thyroid disease No 902 (86.3%) 940 (86.0%)

Yes 124 (11.9%) 133 (10.3%)
Preoperative EQ-5D VAS 80 (20) 80 (20)
Follow-up time (mo)  12 (0) 12 (0)
Baseline symptoms score (possible range 3–15)  10 (3) 9 (3)
Baseline function score (possible range 6–30)  16 (9) 16 (3)
Improvement in symptoms No 240 (23.9%) 267 (24.4%)

Yes 764 (76.1%) 826 (75.6%)
Improvement in function No 538 (51.5%) 517 (51.5%)

Yes 507 (48.5%) 487 (48.5%)
Continuous variables are presented as median (interquartile range) and categorical variables are presented as totals (percentage of the total number of partici-
pants in the respective group, including those with missing data). Comorbidities were all self-reported. Improvement is defined as a drop in score greater than the 
minimal important change estimate. 
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Model Performance
The performance of each trained model when applied 

to the test dataset is presented in Table 2. The best per-
forming model for predicting meaningful functional 
improvement was the XGB, with an accuracy of 0.718 
(95% CI 0.656, 0.711). The best performing model for 
predicting meaningful symptomatic improvement was 
also an XGB, with an accuracy of 0.766 (95% CI 0.719, 
0.814). Full confusion matrices for each model are avail-
able in the Results section, Supplemental Digital Content 
1 (http://links.lww.com/PRSGO/C5).

Figure 1 demonstrates receiver operating characteris-
tic (ROC) curves for each model when applied to the test 
data.

Model Explanations
For the functional improvement classifier, the two most 

important predictors of improvement were baseline func-
tion and the ability to use a knife to cut food, reflected 
in QuickDASH item 5. For the symptomatic improvement 
classifier, the two most important predictors of improve-
ment were QuickDASH item 10 and baseline mobility, 
as captured by the EQ-5D mobility domain. Shapley val-
ues for all features are presented in the Results section, 
Supplemental Digital Content 1 (http://links.lww.com/
PRSGO/C5).

Heuristic Models
Our CHAID trees are demonstrated in Figures 2 and 3.  

Overall, CHAID suggested that better overall baseline 
health and more severe hand symptoms made patients 
more appealing candidates for surgery. Within our data-
set, 96% of 118 patients that reported no difficulty open-
ing a jar (response 1 to QuickDASH item 1) experienced 
no functional improvement following surgery (Fig.  2). 
The higher the response to this item, the greater the fre-
quency of improvement. Additionally, the lower response 
to the EQ-5D-5L mobility domain, the greater the fre-
quency of improvement. In other words, patients that had 
more difficulty opening a jar, and better overall mobility 
were more likely to experience a meaningful functional 
improvement following CTD within our cohort.

We found similar results with the symptomatic 
improvement decision tree. Within our registry, 93% of 
respondents who reported pain causing severe difficulty 
in sleeping, or, an inability to sleep (responses 4 or 5 to 
QuickDASH item 11), but were otherwise in good health 
(an EQ-5D-5L VAS score of 80 or above), experienced a 
meaningful improvement in symptoms following surgery.

Those experiencing extreme pain (response option 
5 to QuickDASH item 9), but no difficulty sleeping due 
to the pain (response 1 to QuickDASH item 11) were 
unlikely to improve, with a 16% improvement rate within 
this group.

DISCUSSION
We have developed algorithms that can predict clini-

cally meaningful improvement in either hand function or 
symptoms following CTD. We have quantified the effect 
of individual predictors on overall prediction accuracy 
and have developed heuristic decision support tools that 
can be readily implemented in clinical practice to identify 
patients who are likely or unlikely to benefit from CTD, 
using only two preoperative questions. This could take the 
form of wall-mounted flow diagrams with one or two steps, 
as per our CHAID trees in Figures 2 and 3.

Given the perceived low risk of the procedure, and the 
absence of a consensus gold standard for diagnosing CTS, 
CTDs may be performed with a shared acceptance of some 
diagnostic uncertainty. However, in our registry, all pro-
cedures were conducted with therapeutic (and not diag-
nostic) intent. Every patient was deemed likely to improve 
by at least one experienced hand surgeon, based on clini-
cal assessment and more ready access to neurophysiol-
ogy investigations than is typically available. Our models 
were able to detect patients in this cohort that would not 
improve following surgery, and these patients had not 
been ruled out by expert surgeons alone. Our findings 
suggest that, if used to support shared decision-making, 
expert surgical opinion combined with these models may 
help to further reduce the costs and risks associated with 
unbeneficial surgery, as well as supporting expectation 
management. In the financial year 2018/2019 (before the 

Table 2. Performance of Models Trained to Predict Functional and Symptomatic Improvement Exceeding the Minimal 
Important Change

Models Trained to Predict Meaningful Functional Improvement

 Accuracy AUC Sensitivity Specificity

EN 0.698 [0.638, 0.752] 0.779 [0.719, 0.831] 0.659 [0.575, 0.736] 0.737 [0.659, 0.810]
KNN 0.679 [0.622, 0.737] 0.741 [0.680, 0.802] 0.705 [0.626, 0.789] 0.654 [0.568, 0.733]
SVM 0.706 [0.649, 0.760] 0.786 [0.725, 0.840] 0.674 [0.592, 0.754] 0.737 [0.656, 0.809]
XGB 0.718 [0.660, 0.771] 0.791 [0.731, 0.844] 0.736 [0.653, 0.810] 0.699 [0.622, 0.772]
ANN 0.660 [0.599, 0.718] 0.714 [0.651, 0.772] 0.659 [0.580, 0.742] 0.662 [0.583, 0.740]

Models trained to predict symptomatic improvement

 Accuracy AUC Sensitivity Specificity

EN 0.708 [0.653, 0.763] 0.749 [0.685, 0.812] 0.755 [0.695, 0.811] 0.571 [0.461, 0.687]
KNN 0.613 [0.555, 0.668] 0.591 [0.513, 0.663] 0.676 [0.555, 0.668] 0.429 [0.309, 0.543]
SVM 0.661 [0.602, 0.712] 0.669 [0.590, 0.739] 0.696 [0.632, 0.755] 0.557 [0.443, 0.662]
XGB 0.759 [0.708, 0.810] 0.733 [0.663, 0.804] 0.868 [0.819, 0.913] 0.443 [0.333, 0.574]
ANN 0.668 [0.610, 0.723] 0.655 [0.585, 0.723] 0.750 [0.694, 0.807] 0.429 [0.313, 0.548]
Figures are presented as: statistic [95% confidence interval]. 
ANN, artificial neural network; EN, logistic regression with elastic net regularization; KNN, K-nearest neighbors; SVM, support vector machine.

http://links.lww.com/PRSGO/C5
http://links.lww.com/PRSGO/C5
http://links.lww.com/PRSGO/C5
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COVID-19 pandemic) 44,540 CTDs were performed in 
the NHS.24 Assuming 25% (11,135 patients) experience 
no improvement following CTD, the NHS will spend more 
than £12 million per year on CTD in patients that experi-
ence no discernible benefit (based on 2021/2022 tariff of 
£1120 for CTD).25 On top of these potential direct cost sav-
ings, clinical application our algorithm could also lead to 
indirect cost savings through societal and litigation costs 
associated with unnecessary intervention.

Also, we have demonstrated that the interpretability 
of the QuickDASH is improved by separating function 
items from symptom items. Conventional scoring of all 
QuickDASH items on an ordinal scale may mean that 

clinically relevant changes in upper extremity health are 
not detected. When intervention effect was quantified 
using traditional composite scoring, 63% of patients in 
our study experienced a clinically meaningful improve-
ment in upper extremity health. However, when the two-
factor structure of the QuickDASH was considered, 49% 
of patients experienced improvement in upper extrem-
ity function and 76% of patients experienced a clinically 
meaningful improvement in symptoms following CTD. 
The latter is consistent with the reported success rate of 
CTD when quantified using other patient-reported mea-
sures.4,26 The clinical value of CTD may be underestimated 
when traditional scoring of the QuickDASH is used, as 

Fig. 1. receiver operating characteristic curves for each classifier algorithm. a, the symptomatic 
improvement classifiers. B, the functional improvement classifiers.

Fig. 2. Decision tree for predicting functional improvement following ctD, based on cHaiD. Ovals represent PrOM items and numbered 
lines indicate the response to each item. in this case, a response of 3 or 4 to QuickDaSH item 1 would trigger the administration of the 
eQ-5D-5l mobility domain. Underlying bar charts demonstrate the proportion of patients in each node that experienced meaningful 
improvement in function (green) and no meaningful improvement in function (red).
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improvements in symptoms may be diluted by static over-
all function. The latter being affected by other issues such 
as general physical state and comorbidities. Future CTD 
research involving the QuickDASH might involve cog-
nitive debriefing through qualitative work, to confirm 
whether “symptom” scoring is what matters to patients. If 
so, this would support factor-based scoring being used in 
future studies, and refine our understanding of hand sta-
tus measurement in general.

We have demonstrated that, in this dataset, baseline 
function is the most important predictor of functional 
improvement following CTD. Furthermore, the two 
most important predictors of symptomatic improvement 
were QuickDASH item 10 (corresponding to paresthesia 
severity) and baseline mobility (EQ-5D Mobility Domain 
score). Our finding that higher symptom severity is asso-
ciated with a greater likelihood of symptomatic improve-
ment is in contrast with Jerosch-Herold et al.,27 who report 
lower symptom severity as an independent prognostic fac-
tor in the prediction of a positive outcome following CTD 
(quantified using CTS-6 score using multiple univariate 
logistic regression).

There is evidence that baseline patient-reported out-
comes play a substantial role in the prediction of post-
operative outcomes. Pfob et al.28 demonstrate that high 
baseline breast satisfaction is a principal determinant of 
poor patient satisfaction following breast reconstruction 
(quantified via the BREAST-Q PROM). The relationship 
between baseline PROs and postoperative outcomes are 
further convoluted in the context of CTS as determinants 
of baseline health may be distinct from determinants of 
baseline upper extremity health. Our finding that patients 
with limited upper extremity function but better global 
mobility were more likely to experience a clinically mean-
ingful improvement following CTD, is in line with Jerosch-
Herold et al.27 who identified higher baseline health 
(quantified using EQ-5D-3L utility values) as an indepen-
dent prognostic factor of positive outcome following CTD 
using a global rating of change scale.

Our study has limitations. We used data from a large 
single-center database with procedures performed by a 
small number of expert surgeons. This potentially limits 
the generalizability of our findings. Future external and 

prospective validation is required to assess the effective-
ness of our tools as clinical decision support systems in 
other populations. Dichotomizing outcomes as either 
improved or not improved may represent an oversim-
plification of the response to intervention, though we 
took steps to explore this, such as confirming that many 
nonresponders had the potential to achieve benefit. 
Furthermore, CTD may prevent progression of symp-
toms rather than alleviate them or improve hand func-
tion, meaning patients remain at baseline and thus do 
not improve. The temporal relationship between base-
line symptoms, surgery, and response cannot be quan-
tified outside of a prospective trial with a nonoperative 
comparator.

Our work demonstrates the future synergistic potential 
of routine PROM collection, contemporary psychomet-
rics, and applied machine learning in the development of 
data-driven decision support systems. Such systems have 
already emerged in clinical practice to support decisions 
regarding patient suitability for hip and knee arthroplasty 
and hold promise in the streamlining of care pathways 
from initial presentation in primary care through to defin-
itive intervention.29

At present, there exist a number of logistical, socio-
cultural and ethical barriers to the implementation of 
machine learning algorithms in clinical practice.30 To 
address these barriers, we have developed heuristic deci-
sion trees that can be readily integrated into existing 
clinical decision-making systems and immediately impact 
patient care.

CONCLUSIONS
The value of CTD must be determined using interpre-

table outcome measures on a patient-specific basis. This 
can be achieved with the QuickDASH PROM, following 
a two-factor structure. Machine learning algorithms and 
heuristic decision support tools can then predict func-
tional and symptomatic improvement following CTD. In 
the near future, decision support tools could leverage the 
predictive power of PROMs and machine learning to sup-
port patient-centered decision support in hand surgery 
clinics.

Fig. 3. Decision tree for predicting symptomatic improvement following ctD, based on cHaiD. Ovals represent PrOM items and num-
bered lines indicate the response to each item. in this case, a response of 4 or 5 to QuickDaSH item 11 would trigger the administration of 
the eQ-5D-5l visual analog scale. Underlying bar charts demonstrate the proportion of patients in each node that experienced meaning-
ful improvement in symptoms (green) and no meaningful improvement in function (red).
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