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abstract Acquisition of oncogenic mutations with age is believed to be rate limiting for car-
cinogenesis. However, the incidence of leukemia in children is higher than in young 

adults. Here we compare somatic mutations across pediatric acute myeloid leukemia (pAML) patient-
matched leukemic blasts and hematopoietic stem and progenitor cells (HSPC), as well as HSPCs from 
age-matched healthy donors. HSPCs in the leukemic bone marrow have limited genetic relatedness 
and share few somatic mutations with the cell of origin of the malignant blasts, suggesting polyclonal 
hematopoiesis in patients with pAML. Compared with normal HSPCs, a subset of pAML cases harbored 
more somatic mutations and a distinct composition of mutational process signatures. We hypothesize 
that these cases might have arisen from a more committed progenitor. This subset had better out-
comes than pAML cases with mutation burden comparable with age-matched healthy HSPCs. Our study 
provides insights into the etiology and patient stratification of pAML.

Significance: Genome-wide analysis of pAML and patient-matched HSPCs provides new insights into 
the etiology of the disease and shows the clinical potential of these analyses for patient stratification.
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INTRODUCTION
Somatic mutations gradually accumulate throughout life, 

which is thought to underlie the increased incidence of cancer 
with age (1). The more mutations a cell has, the higher the 
chance that one of these is an oncogenic mutation that can drive 
cancer development. However, some cancers, such as leukemia 
and brain tumors, show a relatively high incidence in young chil-
dren (2, 3) even though their young cells are less damaged by age 
(4–6). Indeed, pediatric cancers display fewer cancer driver muta-
tions compared with adult cancers (7, 8). Therefore, the etiology 
of pediatric cancers is likely to differ from cancer in the elderly.

In this study, we focused on acute myeloid leukemia (AML), a 
cancer that occurs in both children and adults. Leukemia is the 
most common form of childhood cancer, and AML constitutes 
about 15% to 20% of all childhood leukemias. Although the 
outcome of children with all types of leukemia has improved 
significantly over the past decades (9, 10), for pediatric AML 
(pAML) a therapeutic plateau of approximately 70% overall 
survival has been reached with current therapies (11). Relapse  
rates for pAML remain high at 25% to 30%, and this is associ-
ated with poor outcome (12). In addition, childhood cancer 
survivors suffer from late effects of the cancer and treatment, 
although the molecular causes for this remain unclear.

The molecular heterogeneity of pAML has been studied 
extensively during the last few years, and various driver genes 
and structural variants (SV) have been identified (7, 8, 13, 14). 

Both adult and pediatric AML are thought to arise from hemat-
opoietic stem or progenitor cells (HSPC) that have acquired 
oncogenic mutations (15, 16). The landscape of somatic driver 
mutations in AML varies considerably with age (13). Pediatric 
patients have more somatic SVs compared with adult AML 
patients, while DNMT3A and TP53 mutations, the most impor-
tant drivers in adult AML, are virtually absent in pAML. Thus, 
the driving potential of specific oncogenic mutations seems 
to critically depend on the timing of acquisition (i.e., prenatal, 
early childhood, late adulthood). Indeed, KMT2A (also known 
as MLL) fusions are more common in infant AML, while 
t(8;21) translocations resulting in the fusion gene RUNX1–
RUNXT1 are more common later during childhood (13).

Cancers are formed by evolutionary processes acting in nor-
mal tissues (17). Characterization of mutational landscapes in 
normal cells has advanced our understanding of these processes 
as well as provided insight into tumorigenesis (4, 5, 13). Here, 
we compared mutation accumulation in HSPCs and leukemic 
cells of children suffering from pAML as well as with HSPCs 
from healthy individuals. We found that the normal HSPCs 
in leukemic bone marrow are unaffected in terms of somatic 
mutation numbers, mutation spectra, and clonal composition 
as compared with healthy individuals. The number of clonal 
mutations in a subset of pAML cases was increased as compared 
with normal HSPCs, which was caused by oxidative stress–
induced mutagenesis and correlated with a more differentiated 
leukemic cell-of-origin phenotype and better patient survival. 
Our work provides insight into the processes that shape pAML 
as well as the consequences of the disease on blood.

RESULTS
Establishing a Baseline for Mutation Accumulation 
in Normal Blood during Human Life

We have previously reported using whole-genome sequenc-
ing (WGS) of individual HSPCs that mutations accumulate in 
a linear fashion in blood of healthy adults (5). To allow direct 
comparison with normal HSPCs and AML blasts of children 
with leukemia, here we extend these data to also include 
the pediatric age range. For this, we included 11 additional 



Brandsma et al.RESEARCH ARTICLE

486 | blood CANCER DISCOVERY SEPTEMBER  2021	 AACRJournals.org

genomes of 4 healthy children who donated bone marrow in 
our institute for an allogeneic hematopoietic stem cell trans-
plantation (HSCT) for their affected sibling. These children 
were unrelated to any of the patients with AML in this study. 
We used multiparameter flow cytometry to sort single HSPCs, 
which were subsequently clonally expanded to obtain suffi-
cient DNA for WGS analysis (Fig. 1A). This procedure allowed 
us to catalog all the somatic mutations present in the original 
stem cell that accumulated during the life of the cell. Somatic 
mutations in the HSPCs displayed a variant allele frequency 
(VAF) cluster around 0.5, indicating that these mutations 
were shared by all cells in the culture and therefore present 
in the expanded parental stem cell (Supplementary Fig. S1A). 
A smaller, second VAF peak could sometimes be observed 
around 0.2, which likely represents subclonal mutations that 
accumulated after the first cell division in vitro and are not 
shared by all cells in the culture (Supplementary Fig.  S1B). 
These in vitro accumulated mutations are discarded for further 
downstream analyses based on the low VAF (Supplementary 
Fig.  S1; Methods). When combined with our previous study 
(5), the final dataset was comprised of 34 HSPCs of 11 healthy 
donors, ranging from 0 to 63 years of age. In total, we identi-
fied 13,662 base substitutions and 760 small insertions and 
deletions (indels). We did not observe nonsynonymous or 
truncating mutations in cancer-driving genes associated with 
hematologic neoplasms (Supplementary Table S1; ref. 18). 
A positive correlation (P < 0.05; t test linear mixed model) 
between the number of base substitutions in HSPCs and age 
of the donors was observed (Fig.  1B), showing an accumula-
tion of 14.6 base substitutions per year of life. Only a limited 
number of mutations [55.01; 95% confidence intervals (CI) are 
24.2–85.8] were acquired before birth. Similarly, the number 
of indels correlated (P < 0.05; t test linear mixed model) with 
donor age (Fig. 1C), showing an accumulation of 0.79 indels 
per year throughout life. Only a few (4.45; 95% CI, 1.9–7.0) 
indels are acquired prenatally.

Different mutational processes often generate different 
combinations of mutation types, termed mutational signa-
tures (19). The mutation spectra of healthy HSPCs could be 
explained by two mutational signatures, namely the “HSPC” 
signature, previously identified as a specific pattern predomi-
nantly found in healthy adult HSPCs (5, 20, 21), and single 
base substitution (SBS) signature 5, for which the underlying 
process is still unknown (Fig. 1D and E). The majority of the 

indels were 1 bp deletions of a C or T and 1 bp insertions of 
a T (Fig.  1F), which has been attributed to polymerase slip-
page during replication of the replicated DNA strand (22). 
Using the mutations that we observed in healthy individu-
als, we generated a mathematical model that can predict the 
absolute base substitution load and spectrum at any given 
age (Fig.  1G), which we can use to determine any additive 
mutational load in pAML. Our model predicts that the types 
of mutations that accumulate early in life vary from those in 
adult life (Fig.  1G–I). As expected, the adult HPSCs mainly 
show contribution of the HSPC signature, while the cord 
blood–derived HSPCs show different signature contributions 
(Fig. 1H). This finding suggests that distinct mutational pro-
cesses are active during development as compared to mature 
hematopoiesis, which is in line with previous reports (5, 23).

HSPCs in the Blood System of Patients with pAML
We obtained bone marrow biopsies of pAML patients of 

various cytogenetic subgroups at diagnosis and before treat-
ment initiation. For each patient, we isolated bulk AML blasts 
and clonally expanded normal HSPCs that were obtained from 
the same bone marrow (Fig.  1A; Supplementary Fig.  S2A and 
S2B). The clonal outgrowth of HSPCs obtained from leukemic 
bone marrow was comparable to those isolated from healthy 
bone marrow except for reduced outgrowth in the cytogenetic 
subgroup characterized by t(8;21) (Supplementary Fig.  S2C). 
Because the number of sorted HSPCs was similar for all samples 
(Supplementary Table S2), the reduced clonal outgrowth of 
HSPCs from t(8;21) patients with AML might indicate a func-
tional impairment of the HSPC compartment in these patients. 
To investigate this, we analyzed a cohort of 237 patients with 
pAML for neutrophil recovery time after chemotherapy as a 
measure of HSPC function (Supplementary Fig. S2D and S2E). 
However, no difference in neutrophil recovery time between 
pAML subtypes could be observed (Supplementary Fig.  S2F 
and S2G). Nonleukemic stem cells expressing the t(8;21) fusion 
gene–specific transcript have been described before (24). Thus, 
our data might indicate that the t(8;21) translocation may be 
present in some of the sorted HSPCs, but that these fail to grow 
further ex vivo.

Of nine patients with AML (referred to as “PMC” patients, 
as they were treated in the Princess Máxima Center), we sub-
jected DNA of bulk sorted AML blasts and matching cultured 
mesenchymal stromal cells (MSC) to WGS analysis (Fig. 1A). 

Figure 1.  Healthy baseline of mutation accumulation in HSPCs. A, Schematic overview of experimental setup to catalog somatic mutations in single 
human blood progenitors derived from healthy bone marrow or from leukemic bone marrow at diagnosis. AML blasts were FACS sorted in bulk from the 
leukemic bone marrow. B and C, Correlation of the number of base substitutions (B) or indels (C) accumulated per genome with age of the independent 
donors. Each dot represents data from a clonally expanded HSPC from bone marrow of healthy children and adults or from cord blood. Two to ten HSPC 
clones were analyzed per individual. P value of the age effect in the linear mixed model is indicated above the plot (two-tailed t test). The sample size is 
11 healthy donors with a total of 34 clones sequenced. Linear mixed model was performed on all clones using “age” as a fixed effect and “(1 + age | Donor)” 
as random effects. Dotted line indicates the extrapolation of this correlation. The 95% probability interval of the linear mixed model is depicted in gray. 
Marginal R2 (R2m), condition R2 (R2c), slope, and y-intercept (with 95% CI) of the models are depicted on the right. D, Total 96-trinucleotide spectrum for 
all mutations in HSPC clones from healthy individuals. Inset depicts the relative contribution of four mutational signatures to each spectrum. Mutational 
signatures: HSPC, a specific pattern predominantly found in healthy adult HSPCs; SBS1, spontaneous deamination of methylated cytosines; SBS5, unknown 
etiology; SBS18, oxidative stress–induced mutagenesis. E, Ninety-six–trinucleotide spectra for the four extracted signatures after de novo signature extrac-
tion (Methods). Cosine similarities to Catalogue of Somatic Mutations in Cancer (COSMIC) signatures are indicated in the top right corner, and corresponding 
names to COSMIC signatures are depicted. F, Total indel spectrum for all mutations in HSPC clones from healthy individuals. MH, microhomology. G, Schematic 
representation of the application of the reconstructed 96-trinucleotide spectrum based on the slopes estimated by the linear mixed model in B for each trinu-
cleotide. For any desired age, the expected 96-trinucleotide spectrum can be depicted. Ninety-six–trinucleotide spectra of the reconstructed baseline model 
at age 0 (S0) and age 62 (S62) are depicted. H, The relative contribution of four mutational signatures to each spectrum of all cord blood HSPC clones (left) or 
all adult HSPC clones (right). I, The expected 96-trinucleotide spectrum at age 0 and age 62 (S0 and S62) was compared with the expected 96-trinucleotide 
spectrum at any age between 1 and 64 years. Spectra were based on the reconstructed model and cosine similarities are depicted.
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WGS data of MSCs were used to filter out germline variants, 
allowing us to obtain catalogs of somatic mutations in pAML. 
In addition, for 8 out of 9 patients, we subjected DNA of 5 to 
15 clonally expanded HSPCs per patient to WGS analysis (80 
HSPCs in total). For the leukemic blasts, we only considered 
somatic mutations that were clonally present in the pAML 
genomes, as these were present in the most recent common 
ancestor (MRCA) of the malignant blasts and likely represent 
the leukemic cell of origin (Supplementary Figs. S1B and S2B; 
ref. 25). In total, we identified 14,174 base substitutions and 
878 indels in the HSPCs and 3,661 base substitutions and 
383 indels in the AML blasts. Independent validations using 
molecular inversion probes (MIP) for a subset of the somatic 
mutations revealed an overall true-positive discovery rate of 
97.7% (Supplementary Fig.  S3A). We explored the phyloge-
netic relations between each of the HSPC clones and AML 
blasts by assessing mutations that are shared between the dif-
ferent cells of the same patient. We observed a limited number 
of shared (passenger) mutations between HSPC clones and the 
matching AML (Fig. 2). This finding indicates that although 
the leukemic blast percentage in pAML can be as high as 77% 
in this study (Supplementary Table S2), the HSPCs in the 
leukemic bone marrow are limited in their genetic relatedness, 
suggesting a polyclonal hematopoietic system in children with  
AML, similarly as previously observed in healthy adults and 
fetuses (5, 21). This is different from what has been observed 
in adult AML and other blood cancers, where clonal hemat-
opoiesis often precedes cancer development and genetic driv-
ers can be detected years before cancer onset in healthy HSPCs 
(26, 27). The genetic relatedness, reflected by more shared 
mutations, of the HSPC clones tends to be higher in the older 
patients (≥7 years) compared with the younger patients (≤4 
years; Fig. 2), possibly reflecting the maturation of the blood 
system during childhood, with more dominant HSPC clones 
becoming apparent. The pAML MRCA shares very few (zero 
to seven) somatic mutations with any of the analyzed HSPC 
clones in all eight patients. To further confirm our results, 
we genotyped 43% of the pAML mutations in 64 additional 
HSPCs of one patient (PMC22813) using targeted sequenc-
ing (see Methods). Only two of the assessed HSPCs showed 
subclonal evidence of a passenger somatic mutation with the 
clonal AML blast mutations (Supplementary Table S3). In 
addition, for patient PMC21636, DNA from 92 additional 
HSPCs was analyzed for the presence of the main genetic 
driver using MLL fusion–specific primers, and all HSPCs 
tested negative (Supplementary Fig.  S3B). Thus, we did not 
identify large preleukemic clones in the HSPCs analyzed in 
this study. Together, these data further support our observa-
tion that blood lineages within the leukemic bone marrow 
display limited genetic relatedness and separate early during 
development.

Mutation Accumulation in Normal HSPCs Is 
Unaltered in the Leukemic Niche

To further study the effect of leukemia on normal HSPCs 
in the leukemic bone marrow, we compared the genomes of 
these HSPCs to our healthy baseline (Supplementary Table 
S4). The number of base substitutions and indels in these 
HSPCs was similar as observed in healthy blood (Fig. 3A and 
B). In line with this, the base substitution spectrum and signa-

ture contributions of the HSPCs isolated from leukemic bone 
marrow were similar to those of healthy individuals (cosine 
similarity = 0.99; Fig. 3C). The indel spectrum of HSPCs from 
pAML bone marrow was also very similar to that of healthy 
individuals (cosine similarity = 0.949; Fig. 3D). These obser-
vations indicate that HSPCs in leukemic bone marrow have 
not been exposed to additional mutational process activity. 
Indeed, the mutation spectra in each HSPC clone as well as 
of all HSPC clones per pAML patient combined were similar 
as predicted by our baseline model, which is based on life-
long mutation accumulation in blood (Fig. 3E); however, for 
the youngest patient, the cosine similarities are lower due to 
lower numbers of mutations per HSPC clone. Of note, no SVs 
or copy-number changes were observed in any of the assessed 
HSPCs. These data indicate that the genomes of normal 
HSPCs in the leukemic niche are unaffected.

Processes Underlying the Increased Mutation 
Load in pAML

Most pAML samples showed a higher number of somatic 
mutations compared with their patient-matched HSPCs 
(Fig.  2; Supplementary Fig.  S4A and S4B). Importantly, we 
are comparing the clonal mutations of bulk AML cells, i.e., 
mutations that are shared in all AML cells and represent the 
MRCA that existed in the past, to those of single clonally 
expanded HSPCs at the time of diagnosis. Therefore, the dif-
ference in somatic mutation load might be even greater, as 
the MRCA arose before the time of diagnosis at a younger 
age of the patient. To identify the processes that underlie the 
increased mutation load in pAML, we analyzed mutation 
spectra and underlying signatures. The mutation spectra and 
the mutational signature contributions of the pAML samples 
were markedly different than those of patient-derived normal 
HSPCs (Fig. 2; Supplementary Fig. S4C). The pAML genomes 
of some patients showed a pronounced C>T at NCG profile, 
while others were characterized by a predominant contribu-
tion of C>A mutations (Supplementary Fig. S4C). We mainly 
observed a higher contribution of SBS1 and SBS18 to the 
spectra of pAML as compared to patient-matched normal 
HSPCs (Fig.  2). SBS1 is believed to reflect the spontaneous 
deamination of methylated cytosines into thymines (28) and 
likely reflects a cell cycle–dependent mutational clock (4, 5, 
29). HSPCs are thought to proliferate extensively during fetal 
development, whereas postnatally, the majority of HSPCs 
become quiescent (30). The higher SBS1 contribution could 
indicate that these pAML cases may be derived from an HSPC 
“arrested” in this high proliferative, developmental state. SBS18 
is thought to reflect oxidative stress–induced mutagenesis (31, 
32). It has previously been shown that RUNX1–RUNX1T1, the 
fusion protein resulting from the t(8;21) translocation, down-
regulates the expression of the base excision repair gene OGG1, 
which recognizes and excises oxidized guanines (33). However, 
not all t(8;21) AML showed strong SBS18 contribution, and we 
also observed SBS18 in other pAML subtypes, suggesting that 
downregulation of OGG1 is probably not the only mechanism 
for increased SBS18 mutations. Indeed, these SBS18 muta-
tions are clonally present in the MRCA of pAML, indicating 
that these mutations might have occurred before the out-
growth of the MRCA of the leukemia. The increased mutation 
load in pAML could not be attributed to the HSPC signature; 
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Figure 2.  Genetic relatedness between AML and patient-derived HSPCs. Phylogenetic trees of n = 8 pAML cases representing different subtypes and 
ages at diagnosis. Five to fifteen HSPC clones as well as bulk AML blasts were analyzed by WGS for each patient. Each branch represents an individual 
sequencing sample: either a hematopoietic stem cell (HSC) clone, a multipotent progenitor (MPP) clone, or AML blasts (indicated as AML). Shared 
branches represent those mutations, both base substitutions and indels, present across all downstream descendent clones; number of shared mutations 
are depicted on the left axes. Dashed gray line indicates no additional shared mutations. The absolute contribution of each mutational signature to the 
96-trinucleotide spectrum is also depicted. Lengths are proportional to total somatic SBS counts as shown by the scale bar of 100 mutations. Age at 
diagnosis and pAML subtype are indicated above each tree. Asterisk (*) indicates branch with mutations subclonally present in the patient-matched MSC 
sample. CN, cytogenetically normal.
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Figure 3.  Mutation accumulation in normal HSPCs from the leukemic niche. A and B, Correlation of the number of base substitutions (A) or indels (B) 
accumulated per genome with age of the assessed patients. Each dot represents data from a clonally expanded HSPC from bone marrow of patients with 
pAML (AML-HSPC) and healthy individuals (Healthy-HSPC). Two to fifteen HSPC clones were analyzed per individual. Healthy-HSPC data points are the 
same as in Fig. 1B and C. P value of the age effect in the linear mixed model of healthy donors (two-tailed t test) and the condition R2 (R2c) of the model 
are depicted. C, Total 96-trinucleotide spectrum for all mutations in HSPC clones from patients with pAML. Inset depicts the relative contribution of four 
mutational signatures to each spectrum. D, Total indel spectrum for mutations in HSPC clones from patients with pAML. MH, microhomology. E, Cosine 
similarity between actual and expected 96-trinucleotide spectrum of AML-HSPC, correlated with patient age. Spectra of individual HSPC clones and the 
spectrum of all HSPCs combined from one patient were compared to the expected spectrum. Gray indicates a cosine similarity >0.9.
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rather, more SBS1, SBS5, and/or SBS18 were observed. Finally, 
the HSPC signature becomes more pronounced in the healthy 
HSPC of patients with ≥7 years of age, in line with our model 
that “mature hematopoiesis,” based on mutation spectra, 
occurs around 5 years of age (Fig. 1H and I). Overall, these data 
show that different mutagenic processes might contribute to 
pAML development, which are absent during healthy postna-
tal hematopoiesis.

Increased Mutation Load in pAML Compared with 
Normal HSPCs

Next, we combined our pAML genome dataset (n = 9) 
with samples of 15 patients from the Therapeutically Applica-
ble Research to Generate Effective Treatments (TARGET; 13) 

initiative. We only included 15 patients with a blast percentage 
≥80% to be able to call all clonal leukemic mutations with high 
accuracy (referred to as “TARGET-21” patients; Supplementary 
Table S5; Methods). In this extended dataset (n = 24), 17 pAML 
genomes had an increased clonal somatic mutation load com-
pared with healthy HSPCs irrespective of pAML subtype (Fig. 
4A and B), and this corresponded to an increased number of 
indels per genome (Fig. 4D and E). On average, pAML had 
2.25-fold more base substitutions and 4.53-fold more indels 
over the healthy baseline (Fig.  4C and F). In contrast, adult 
AML has a similar number and types of somatic mutations 
with age-matched HSPCs (5, 6), indicating that age-related 
mutation accumulation in normal blood can explain mutation 
loads in adult leukemia. Thus, these data could indicate that 
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at the moment of pAML leukemogenesis, the leukemic cell of 
origin of this subset has a higher number of somatic mutations 
compared with age-matched healthy HSPC.

Higher Somatic Mutation Load in pAML Correlates 
with Better Patient Survival

Although the majority of pAML displayed an increased 
overall mutation load compared with the healthy baseline,  
7 of 24 pAML showed a similar number of somatic base sub-
stitutions as healthy age-matched HSPCs (Fig. 4A and B). To 
test whether the enhanced mutation load is a consequence 
of selection dynamics, we calculated the number of cancer- 
driving events per patient (Supplementary Table S6). In line 
with previous studies, only a limited number (on average 1.5 
per patient) of the mutations in pAML are in cancer driver 
genes (Fig. 5A; ref. 13). Although identifying novel drivers of 
pAML was not the aim of this study, we observed a KMT3A/
SORBS2 fusion gene in one patient, which has been described 
in only one case before (34). The average number of genetic 

driver events is significantly increased in pAML cases with an 
increased mutational load as compared to cases that are similar 
to the healthy baseline (Supplementary Fig. S5A). In fact, the 
number of genetic driver events in the “above” baseline pAML 
cases correlated with the total number of mutations, while no 
correlation could be observed for the “on” baseline pAML cases 
(Fig.  5B and C). This observation could suggest that for the 
initiation of “above” baseline AML, mutation accumulation in 
the leukemic cell of origin could have been rate limiting, since 
cells with a higher overall mutation burden have more chance 
of harboring an oncogenic hit (1). In contrast, the genesis of 
“on” baseline pAML does not necessarily require enhanced 
mutagenesis, similarly as previously reported for adult AML 
(5). To study whether these two patient groups have different 
clinical outcome, the event-free and overall survival of patients 
was assessed. We found that patients with pAML whose muta-
tional load is higher than the healthy baseline tend to have 
better survival than patients whose pAML falls on the healthy 
baseline (Supplementary Fig. S5B and S5C).

0

50

100

150

0 5 10 15 20 25

Age (years)

In
de

ls
 p

er
 g

en
om

e

0

250

500

750

0 5 10 15 20 25

Age (years)

B
as

e 
su

bs
tit

ut
io

ns
 p

er
 g

en
om

e

0

500

1,000

1,500

0 5 10 15 20 25

Age (years)

B
as

e 
su

bs
tit

ut
io

ns
 p

er
 g

en
om

e

A

0

100

200

300

400

0 5 10 15 20 25

Age (years)

In
de

ls
 p

er
 g

en
om

e

AML-CN
AML-t(8;21)
AML-trisomy 8
AML-MLL

Healthy HSPC
AML-other

B C

D F

PMCTARGET-21

TARGET-21
E

PMC

0

5

10

15

20

R
at

io
 o

bs
er

ve
d/

ex
pe

ct
ed

 in
de

ls
 

0

2

4

6

8

R
at

io
 o

bs
er

ve
d/

ex
pe

ct
ed

 b
as

e 
su

bs
tit

ut
io

ns
 

TARGET-21 PMC

0.32

TARGET-21 PMC

AML-CN
AML-t(8;21)
AML-trisomy 8
AML-MLL

Healthy HSPC
AML-other

0.95

Figure 4.  Somatic mutations in pAML. A, Correlation of the number of base substitutions accumulated per genome with age of the assessed patients. 
Data from 15 patients with pAML of the TARGET initiative (TARGET-21) are depicted (13). Each data point represents a single HSPC clone (circles) or 
bulk AML (triangles). CN, cytogenetically normal. B, Correlation of the number of base substitutions accumulated per genome with age of the assessed 
patients. Data of nine patients with pAML of the PMC are depicted. Legend is the same as in A. C, Ratio between the observed and expected number of 
base substitutions per genome. Expected number is extrapolated from the linear mixed model in Fig. 1B. P value indicates a nonsignificant difference 
between patients with AML of the two institutes (Mann–Whitney test). D, Correlation of the number of indels accumulated per genome with age of the 
assessed TARGET-21 patients. E, Correlation of the number of indels accumulated per genome with age of the assessed PMC patients. Legend is the 
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To validate these findings, we analyzed an additional, sepa-
rate cohort of pAML patient samples with available Complete 
Genomics (CGI) somatic mutation data (TARGET-20; ref. 
7). After filtering out low purity and low sequencing quality 
samples, the second cohort of pAML comprised 103 patients 
(see Methods). Twenty-five patients with pAML (24.3%) had 
an increased clonal somatic mutation load compared with 
the healthy baseline (Supplementary Fig.  S5D), confirm-
ing our observation that a subset of pAML has increased 
somatic mutations. Patients classified as “above” baseline 
had a significantly higher event-free and overall survival 
compared with patients with a mutation load comparable 
with healthy subjects (Fig.  6A and B). Of note, the number 
of “above” baseline patients in the TARGET-20 cohort is 
lower as compared with the initial cohort of 24 patients. This 
difference can be attributed to variation in patient selection 
criteria between the two cohorts. TARGET-20 is a cohort 
that is enriched for patients with relapsed pAML, while the 
TARGET-21 cohort is enriched for patients who showed fail-
ure of induction treatment (7, 13). Therefore, these cohorts 
are enriched for patients with poor outcome and more “on” 
baseline mutation load. In contrast, the patients we assessed 
from our institute were randomly selected. Interestingly, 48% 
of the pAML samples “above” the healthy baseline were of the 

t(8;21) subtype compared with 5% of the samples “on” the 
healthy baseline (Supplementary Fig.  S6A). After correcting 
for multiple testing, including pAML subtype, the “above” 
baseline group still had a significantly decreased HR for both 
event-free and overall survival (Supplementary Fig. S6B). As 
the t(8;21) pAML subtype was enriched in the “above” base-
line group and this subtype is associated with a more favora-
ble prognosis (12), we reanalyzed the survival data without  
the patients with t(8;21) pAML and again found a signifi-
cantly higher event-free and overall survival of the “above” 
baseline pAML (Supplementary Fig. S6C and S6D), although 
the effect is less pronounced. Together, these findings show 
that increased somatic mutation load might be a predictor 
of better pAML patient survival, which cannot be attributed 
solely to the t(8;21) subtype.

Normal Mutation Burden in pAML Correlates with 
an Early Progenitor Phenotype

One explanation for the differences in mutation burden and 
associated prognosis, is that a more committed (more differen-
tiated) progenitor might be the leukemic cell of origin of the 
pAML with a higher mutation load than the healthy baseline. To 
test this, we first attempted to train a classifier using a machine 
learning approach to distinguish hematopoietic stem cells 
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(HSC) from multipotent progenitor cells (MPP) based on our 
own and publicly available (21) genome-wide mutation data. 
We constructed a dataset containing 70 HSCs and 70 MPPs 
of healthy adult donors profiled with WGS and used as vari-
able features the relative contribution of the 96-trinucleotide 
changes, genomic locations, and the total mutation count. 
The random forest model trained on these data resulted in an 
out-of-bag error of 40.71% (Supplementary Fig. S6E), indicat-

ing that based on these genomic features, HSCs and MPPs can-
not be distinguished. This analysis suggested that HSCs and 
MPPs have similar mutation burdens and mutational profiles 
(Fig. 2; refs. 5, 21). Next, we built a model to directly separate 
pAML “above” and “on” the healthy baseline using genomic 
features based on the ratio between the observed (meas-
ured) and expected (healthy baseline) number of mutations 
(Methods). We used 75% of the available TARGET patients  

Figure 6.  Survival and gene expression analysis of “above” and “on” baseline pAML. A and B, Kaplan–Meier survival curves for event-free (A) and 
overall (B) survival of 103 TARGET-20 patients with pAML classified as “above” or “on” healthy baseline. “Above” baseline indicates that the number of 
base substitutions in AML is above the 95% prediction interval of the linear mixed model in Fig. 1B. P value indicates a significant difference between 
above and on baseline patients (log-rank Mantel–Cox test). C, Differential gene expression of 88 TARGET-20 pAML patients classified as “above” or “on” 
healthy baseline. “Above” baseline pAML was compared with “on” baseline as a reference. Blue indicates significantly upregulated (log2 fold change > 
0.585) or downregulated (log2 fold change < –0.585) genes (padj < 0.05). D, Mean normalized expression of 19 HOX genes, depicted in F, for each pAML 
sample. P value indicates a significant difference between above and on baseline patients (Mann–Whitney test). E, Same as D but excluding t(8;21) pAML 
(TARGET-20 and TARGET-21 combined). F, Heatmap depicting the expression of 19 HOX genes in 88 TARGET-20 pAML, expression mean is normalized to 
0. Legends indicate “above” or “on” baseline and AML subtype. Samples were ordered by pAML subtype. CN, cytogenetically normal. G, Gene-set enrich-
ment plots of the indicated gene sets using log fold change shrinkage data of the 88 TARGET-20 patients with pAML. The normalized enrichment score 
(NES) corrects for multiple testing. A negative NES indicates genes enriched in “on” baseline pAML, as these were used as reference.
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(n = 90) to train a linear regression model and validated it on 
the remaining 25% and the PMC patients (n = 37). We found a 
significant correlation between the predicted ratio and actual 
ratio of mutations to the healthy baseline (Pearson correlation =  
0.73, P = 2e-07; Supplementary Fig.  S6F), suggesting there 
are different mutational processes active in the pAML sam-
ples “above” the healthy baseline. The final regression model 
included the relative contribution of T>A mutations and the 
cosine similarity to a variety of mutational signatures as fea-
tures (Supplementary Fig. S6F). While the ratio to the healthy 
baseline can be predicted to a certain extent using these 
genomic features, the processes behind them are not easily 
interpretable. Thus, we looked further into gene expression 
data to investigate possible processes underlying the two dif-
ferent pAML patient groups we defined in this study.

We used the RNA-sequencing data available for most of the 
TARGET-20 patients (n = 88). Differential gene expression 
analyses indicated that many HOX genes were among the most 
downregulated genes when comparing “above” with “on” 
baseline pAML (Fig. 6C; Supplementary Table S7). The aver-
age HOX metagene expression (comprising 19 HOX genes) was 
higher in pAML that fall “on” the healthy baseline (Fig. 6D), 
and this does not seem to directly correlate with pAML 
subtype, as the analysis yields similar results after exclud-
ing t(8;21) pAML (Fig.  6E and F). HOX genes are a family 
of homeodomain-containing transcription factors that are 
highly expressed in the most primitive HSCs and progenitors 
(35), suggesting that these leukemias are arrested in a more 
primitive stem cell/progenitor state in contrast to pAML 
cases that have a higher mutation burden as compared with 
the healthy baseline. To further validate this, we performed 
gene-set enrichment analysis (GSEA) on the RNA-sequencing 
data of the TARGET-20 patients using cell-type signature gene 
sets. We observed a significant enrichment in the “on” baseline 
group for gene sets of cord blood putative megakaryocyte 
progenitor, cord blood megakaryocyte progenitor, and bone 
marrow CD34+ HSC signatures (Fig. 6G, negative enrichment 
by comparing “above” with “on” baseline; Supplementary 
Table S8; refs. 36, 37). Similar results were obtained for the 15  
TARGET-21 patients included in our initial cohort (Sup-
plementary Fig.  S6G–S6J). These data support the idea that 
pAML with a comparable mutation burden as normal hemat-
opoietic cells most likely originate from early progenitor cells, 
such as HSCs, which are often more megakaryocyte biased 
(38). In addition, these findings therefore suggest that t(8;21) 
AML, as the main subtype of “above” baseline pAML, likely 
arises in a more committed progenitor with a relatively higher 
mutation load. Similar findings were obtained for other sub-
types in the “above” baseline pAML cases, indicating that this 
is not a feature unique to t(8;21) pAML. Taken together, our 
data indicate that pAML with an increased mutation load 
compared to healthy HSPCs might originate from a more 
committed progenitor cell, and this correlates with better 
event-free and overall survival of these patients.

SBS1 and SBS18 Significantly Contribute to the 
Increased Somatic Mutation Load of pAML

We combined the two cohorts of this study into one final 
cohort of 127 patients with pAML (Supplementary Table S9) 
and analyzed the somatic clonal mutation patterns by refitting 

them to the four mutational signatures SBS1, SBS5, SBS18, 
and HSPC. An absolute increase in SBS1 was observed in the 
“above” baseline pAML (Fig.  7A and B), suggesting that the 
leukemia MRCA has undergone increased proliferation. How-
ever, we predominantly observed an increased contribution of 
SBS18 in pAML with an increased mutation burden as com-
pared with the healthy baseline. Interestingly, high SBS18 con-
tribution correlates with low expression of MEIS1 in “above” 
baseline pAML (Supplementary Fig. S6K), a transcription fac-
tor involved in limiting oxidative stress in HSCs (39). The abso-
lute number of HSPC mutations was similar in both groups, 
but the relative contribution of the HSPC signature was higher 
in the “on” baseline pAML (Fig. 7C and D). In conclusion, 
the increased somatic mutation load of pAML is caused by a 
higher number of SBS1 and SBS18 mutations, indicating more 
replication- and oxidative stress–related mutagenesis.

DISCUSSION
Here, we studied the mutational landscapes of HSPCs 

in the leukemic bone marrow of pAML patients. We show 
that a subset of pAML has an increased mutation burden 
compared with age-matched normal HSPCs, which could be 
explained by increased exposure to replication- and oxidative 
stress–related mutagenesis during the etiology of the disease. 
Patients whose AML has this increased mutation burden have 
a better event-free and overall survival.

During development, a substantial expansion of the HSPCs 
occurs in the fetal liver (30), whereas in adults, HSPCs are 
mostly quiescent and reside in the bone marrow. In line with 
this, fetal and umbilical cord blood–derived HSPCs display a 
predominant contribution of SBS1, which is thought to be a 
cell cycle–dependent mutational clock (4, 5, 23, 29). Several 
pAML genomes also showed a predominant contribution 
of SBS1, which would suggest that the MRCA of the leuke-
mia has had an extended proliferative history as compared 
to age-matched HSPCs. The majority of these pAML were 
categorized as “above” baseline pAML by having a higher 
mutation load. These pAML often had a more differentiated 
phenotype and significantly more genetic driver events. These 
observations fit with a model in which more differentiated 
progenitors require more genetic driver events to transform 
into a leukemic cell of origin. Cells with an elevated muta-
tion frequency have an increased chance of harboring an 
oncogenic hit (1). Indeed, we observe a significant correlation 
between genome-wide mutation burden and numbers of driv-
ers, suggesting that the “above” baseline AML mutation accu-
mulation in the preleukemic cells was rate limiting for the 
initiation of disease. Of note, in this study, we used the clonal 
mutations of bulk AML blasts, which are the mutations that 
are shared by all blasts and thus represent the MRCA and 
likely the cell of origin of the leukemia.

Besides SBS1, the only other process that could explain 
the increased mutation loads in a subset of pAML was oxida-
tive stress–associated mutagenesis by reactive oxygen species 
(ROS), as reflected by SBS18 (31, 32). The source of the ROS 
is most likely endogenous, because the normal HSPCs of 
the same bone marrow do not show enhanced SBS18. Alter-
natively, the leukemic cell of origin might have been more 
sensitive yet received the same exposure to oxidative stress  
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as the other HSPCs (33). ROS might be produced as a result 
of replication stress (40), which could be caused by the 
high cell division rate during fetal development. ROS can in 
turn induce direct DNA damage or indirect via interference 
with the replication machinery that might lead to chromo-
some instability (41). Standard-of-care chemotherapeutics 
for pAML, such as cytarabine and anthracyclines, have been 
described to result in increased intracellular ROS production 
(42, 43). The presence of SBS18 in pAML might also indicate 
that these cells are more sensitive to ROS and thus to chemo-
therapeutics inducing ROS, possibly explaining the better 
survival of the “above” baseline pAML group.

The t(8;21) pAML subtype was enriched in the “above” 
baseline group, and this subtype normally has a favorable 
prognosis (12). However, the inv(16) subtype, which forms 
the core-binding factor AML group together with t(8;21), 
is also associated with a favorable prognosis yet was found 
more frequently in the “on” baseline group with poorer 
survival. Nonetheless, the limited number of inv(16) pAML 
cases in this cohort prevents strong conclusions. We cor-
related the “on” baseline group to a more stem cell/early 
progenitor state using RNA expression data and propose 
that leukemogenesis in this group occurs in a noncommit-
ted progenitor. This idea may explain the similar mutation 
load and profiles as compared to healthy HPSCs. Our data 
are in line with observations that the cell of origin in which 

the leukemogenesis occurs influences AML gene expres-
sion and drug response, as was shown with murine cells 
transduced with MLL–AF9 (44). In this study, HSC-derived 
AML were more resistant to chemotherapy than more com-
mitted progenitor-derived AML, and the HSC-derived AML 
gene expression correlated with poorer prognosis in MLL- 
AML (44).

Together, our study provides new insights into the etiology 
of pAML and underscores the clinical potential of WGS in 
pediatric leukemia for patient stratification.

METHODS
See Supplementary Table S10 for key resources.

Patient Samples and Clinical Data
Bone marrow mononuclear cells from healthy children were col-

lected in the context of donation for allogeneic HSCT. These chil-
dren had no known genetic predisposition toward cancer and were 
unrelated to the patients with AML analyzed in this study. Residual 
bone marrow mononuclear cells, left over after diagnostic testing of 
graft viability, were viably frozen in the HSCT Biobank of the UMC 
Utrecht. Use of this material was approved by the Biobank Commit-
tee of the UMC Utrecht (study TCBIO18–231) and by the Medical 
Ethical Committee Utrecht (study 19–243). Written informed consent 
was provided by all children and/or their legal guardians. Bone mar-
row mononuclear cells at diagnosis of nine patients with pAML were 

Figure 7.  Mutational signatures in pAML. A, Absolute contribution of the four extracted mutational signatures to the somatic mutation spectrum. 
Each bar represents a pAML sample, and n = 127 samples are included (PMC, TARGET-20, and TARGET-21). Samples are ordered on the basis of their 
total absolute mutation count and split per “on” or “above” baseline group. B, Bar graph of data depicted in A. Each dot is a pAML sample. P value indicates 
significant differences between “on” and “above” baseline patients (Wilcoxon Mann–Whitney test) for SBS18, SBS1, and SBS5. C, Relative contribution 
of four extracted mutational signatures to the somatic mutation spectrum. D, Bar graph of data depicted in C. P value indicates significant differences 
between “on” and “above” baseline patients (Wilcoxon Mann–Whitney test) for SBS18 and HSPC signature.
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obtained from the Biobank of the Princess Máxima Center (study 
PMCLAB2018–007). Data on subtype and neutrophil time after chem-
otherapy of pAML were also obtained from the Biobank of the Princess 
Máxima Center (study PMCLAB2019–051). This study included 237 
primary pAML cases diagnosed in the Netherlands between 2005 and 
2019. Both studies were approved by the Biobank and Data Access 
Committee. Patient written informed consents were obtained by the 
Princess Máxima Center.

FACS and Clonal HSPC Cultures
Bone marrow mononuclear cells were stained for FACS after thaw-

ing using the following surface markers for each cell population  
(5): HSC, CD34+CD38−CD45RA−CD90+Lin−CD11c−CD16−, and MPP, 
CD34+CD38−CD45RA−CD90−Lin−CD11c−CD16−. AML blasts were 
defined on the basis of diagnostic immunophenotyping data, and 
AML blasts of all patients were CD33+ (Supplementary Table S2). 
Different cell populations were purified on a SH800S Cell Sorter 
(Sony). A representative example of sorted populations is shown in 
Supplementary Fig.  S2A. Flow cytometry data were analyzed using 
FlowJo software. After sorting a bulk AML blast population into a 
collection tube, single-cell HSCs and MPPs were index sorted into 
flat-bottom, 384-well plates containing 75 μL HSPC culture medium. 
HSPC culture medium consisted of StemSpan SFEM medium sup-
plemented with SCF (100 ng/mL), FLT3-L (100 ng/mL), TPO (50 ng/ 
mL), IL-6 (20 ng/mL), and IL-3 (10 ng/mL), and cells were cultured at 
37°C, 5% CO2, for 4 to 5 weeks before collection. Polyclonal mesen-
chymal stromal cell (MSC) cultures were established from a fraction 
of bone marrow cells by plating cells in 12-well culture dishes in 
Advanced DMEM/F-12 medium (Gibco) supplemented with 10% 
FBS. MSCs were kept in culture for 2 weeks, and medium was 
replaced every other day to remove nonadherent cells.

FACS Antibodies
All antibodies were obtained from BioLegend. Antibodies used 

for AML blast and HSPC populations were as follows: CD34-BV421 
(clone 561, 343609, 1:20), CD38-PE (clone HIT2, 303505, 1:50), 
CD45RA-PerCP/Cy5.5 (clone HI100, 304121, 1:20), CD90-APC 
(clone 5E10, 328113, 1:200), Lineage (CD3/CD14/CD19/CD20/
CD56)-FITC (clones UCHT1, HCD14, HIB19, HCD56, 348701, 
1:20), CD11c-FITC (clone 3.9, 301603, 1:20), CD16-FITC (clone 3G8, 
302005, 1:100), and CD33-PE/Cy7 (clone WM53, 303433, 1:100).

WGS and Read Alignment
DNA libraries for Illumina sequencing were generated by using 

standard protocols (Illumina) from 50 to 150 ng of genomic DNA 
isolated from the clonally expanded HSPCs using QIAamp DNA 
Micro Kit (QIAGEN) according to manufacturers’ instructions. For 
the MSC and AML blast samples, 100 to 300 ng of genomic DNA 
was used as input. All samples were sequenced (2 × 150 bp) by using 
Illumina HiSeq X Ten or NovaSeq 6000 sequencers to 30× base 
coverage (pAML, MSCs, 26 HSPC clones) or to 15× base coverage  
(29 HSPC clones). WGS data were mapped against human reference 
genome GRCh38 by using Burrows-Wheeler Aligner v0.7.5a map-
ping tool (45) with settings “bwa mem -c 100 -M”. Sequence reads 
were marked for duplicates by using Sambamba v0.6.8 markdup. 
Full pipeline description and settings are also available at https://
github.com/UMCUGenetics/IAP.

Mutation Calling and Filtering
Raw variants were multisample called by using the GATK Hap-

lotypeCaller v3.8–1-0 (46) and GATK-Queue v3.8–1-0 with default 
settings and additional option “EMIT_ALL_CONFIDENT_SITES.” 
The quality of variant and reference positions was evaluated by using 
GATK VariantFiltration v3.8–1-0 with options -snpFilterName SNP_
LowQualityDepth -snpFilterExpression “QD < 2.0” -snpFilterName 

SNP_MappingQuality -snpFilterExpression “MQ < 40.0” -snpFilterName 
SNP_StrandBias -snpFilterExpression “FS > 60.0” -snpFilterName 
SNP_HaplotypeScoreHigh -snpFilterExpression “HaplotypeScore > 
13.0” -snpFilterName SNP_MQRankSumLow -snpFilterExpression 
“MQRankSum < -12.5” -snpFilterName SNP_ReadPosRankSumLow 
-snpFilterExpression “ReadPosRankSum < -8.0” -snpFilterName SNP_
HardToValidate -snpFilterExpression “MQ0 > = 4 && ((MQ0/(1.0 * 
DP)) > 0.1)” -snpFilterName SNP_LowCoverage -snpFilterExpression 
“DP < 5” -snpFilterName SNP_VeryLowQual -snpFilterExpression 
“QUAL < 30” -snpFilterName SNP_LowQual -snpFilterExpression 
“QUAL > = 30.0 && QUAL < 50.0 “ -snpFilterName SNP_SOR -snpFil-
terExpression “SOR > 4.0” -cluster 3 -window 10 -indelType INDEL 
-indelType MIXED -indelFilterName INDEL_LowQualityDepth 
-indelFilterExpression “QD < 2.0” -indelFilterName INDEL_Strand-
Bias -indelFilterExpression “FS > 200.0” -indelFilterName INDEL_
ReadPosRankSumLow -indelFilterExpression “ReadPosRankSum < 
-20.0” -indelFilterName INDEL_HardToValidate -indelFilterExpres-
sion “MQ0 > = 4 && ((MQ0/(1.0 * DP)) > 0.1)” -indelFilterName 
INDEL_LowCoverage -indelFilterExpression “DP < 5” -indelFilter-
Name INDEL_VeryLowQual -indelFilterExpression “QUAL < 30.0” 
-indelFilterName INDEL_LowQual -indelFilterExpression “QUAL > =  
30.0 && QUAL < 50.0” -indelFilterName INDEL_SOR -indelFilterExpres
sion “SOR > 10.0.” To obtain high-quality somatic mutation catalogs, 
we applied postprocessing filters as described previously (4). Briefly, we 
considered variants at autosomal chromosomes without any evidence 
from a paired control sample (MSCs isolated from the same bone mar-
row); passed by VariantFiltration with a GATK phred-scaled quality 
score R 100; a base coverage of at least 5× in the clonal and paired con-
trol sample; mapping quality (MQ) of 60; no overlap with single nucle-
otide polymorphisms (SNP) in the Single Nucleotide Polymorphism 
Database v146; and absence of the variant in a panel of unmatched 
normal human genomes (BED-file available upon request). We addi-
tionally filtered base substitutions with a GATK genotype score (GQ) 
lower than 99 or 10 in clonal or paired control sample, respectively. 
For indels, we filtered variants with a GQ score lower than 99 in both 
clonal and paired control sample (4, 47). We used Bayesian Dirichlet 
modeling to check the clonality of the clones as described previously 
(23, 25). Mutations with a VAF ≥0.3 were assumed to be clonal. For 
TARGET AML, the VAF threshold was adjusted according to the esti-
mated purity based on the VAF plot. The script is available at https://
github.com/ToolsVanBox/SMuRF. For downsampling of the 30× cov-
erage sequenced HSPC clones of PMC16332 to 15× coverage, 50% of 
the mapped reads were randomly selected using “samtools (v1.0) view 
-s 0.5.” After this, mutation calling and filtering were performed as 
described above.

Construction of Phylogenetic Trees
For the construction of phylogenetic trees, an initial phylogenetic tree 

was constructed by cataloging somatic base substitutions and indels that 
were shared between two or more HSPC clones and completely absent in 
at least one other HSPC clone (or the patient-matched AML). To exclude 
germline variants, variants that were clonally present in the MSC control 
samples were filtered out, but variants subclonally present in MSC con-
trol that passed all quality checks were included in the phylogenetic tree, 
as they represent mutations that were acquired early during embryonic 
development. All of these shared mutations were manually inspected 
using Integrative Genomics Viewer (IGV) and false-positive calls were 
excluded from the final tree. The number of unique and shared muta-
tions as well as the relationship between the clones deduced from the 
shared mutations were visualized using UpSetR package in R (48).

Healthy Baseline
The number of single-nucleotide variants (SNV) or indels reported 

are normalized for the length of CALLABLE loci reported by GATK 
(v3.8–1-0) CallableLoci. For the slope estimation, the linear mixed 
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model was used to take donor dependency into account and the P 
values are indicated in the figures using lme4 packege (49) in R with 
“age” as fixed effect and “(1 + age | Donor)” as random effects. The  
95% CI was calculated using ggpredict package in R (50). The statisti-
cal significance was computed using ggsignif package in R (https://
github.com/const-ae/ggsignif). The R2 values were calculated by  
using the r.squaredGLMM in R (https://cran.r-project.org/src/contrib/
MuMIn_1.43.17.tar.gz).

TARGET Patient Selection
We obtained WGS data of bone marrow mononuclear cells and ex 

vivo expanded MSCs from 31 patients with pAML at diagnosis from 
the TARGET initiative, termed TARGET-21 patients (13). For one 
patient, the pipeline failed. All remaining 30 patients were included, 
except when two of three criteria were below limits: (i) karyotype 
plots indicate sample is not pure, (ii) blast percentage in bone mar-
row <80%, and (iii) purity estimate based on VAF <80%. For several 
patients, criterion 1 was uninformative, because these patients had 
karyotypically normal AML; for two of these patients, the purity 
estimate was below the threshold, and, therefore, these patients were 
excluded. The remaining 18 patients were further analyzed, includ-
ing SV analysis. Three patients had abnormal SVs, with SVs on each 
chromosome, while karyotypes were normal, for which we could 
not find an explanation in the SV calling analysis. Therefore, these 
three patients were excluded too. The final cohort consisted of 15  
TARGET-21 pAML patients (Supplementary Table S5).

In addition, we analyzed somatic mutation calls of 197 patients 
with pAML that were whole genome sequenced using CGI as 
part of the TARGET-20 cohort (7), a separate cohort of pAML 
patients. Mutations with a VAF >0.3 were assumed to be clonal 
and included in the analyses. pAML samples with an estimated 
purity ≥80% and at least 40 clonal mutations were included in our 
analysis, leading to 103 pAML samples in our second TARGET-20 
pAML cohort.

Driver Analysis
We applied the following filtering to obtain potential driver vari-

ants to the IAP output: passed by VariantFiltration with high or 
moderate expected effect on the gene reported by SnpEff annota-
tion with a GATK phred-scaled quality score R 60; a base coverage 
of at least 10× in the clonal and paired control sample; MQ of 
30; no overlap with SNPs in the Single Nucleotide Polymorphism 
Database v146; and located in commonly identified driver genes. We 
additionally filtered base substitutions with a GATK genotype score 
(GQ) lower than 10 for homozygous SNV in sample and its paired 
control, 20 and 10 for heterozygous SNV in sample and its paired 
control, or 60 for homozygous and heterozygous indels in sample, 
respectively. Large SVs were detected using grids-purple-linx pipeline 
(https://github.com/hartwigmedical/gridss-purple-linx) with grids 
v2.7.2, amber v3.2, cobalt v1.7, purple v2.34, linx v0.69–6, and circos 
v0.69–9. Chromosomal copy-number alteration was detected using 
Control-FREEC v11.4 as a part of IAP pipeline (https://github.
com/UMCUGenetics/IAP). To calculate the total number of cancer-
driving events, we combined the SNV and indel drivers with large 
SVs, including fusion genes, trisomy, or loss of heterozygosity (Sup-
plementary Table S6). The majority of SNV and indel drivers were 
in known adult or pediatric hematologic cancer driver genes (75%; 
refs. 13, 18).

Mutational Profile and Signature Analysis
First, the pooled HSPC profiles from healthy donors and patients 

with AML were compared, and cosine similarity was calculated for 
SNVs and indels. On the basis of healthy HSPC data, the linear 
mixed model was used to estimate the annual accumulation for the 
96-mutation type to model the expected mutational profile for every 

age. Cosine similarity was calculated to indicate how similar our pre-
diction and experimental data were. Then, the AML and its matching 
HSPC profiles were compared with the cosine similarity. De novo muta-
tional signature extraction was performed using the data reported 
here, in combination with genome-wide mutation data of healthy 
stem cells of human small intestine, colon, and liver (4) as described 
previously (5). For this, we applied nonnegative matrix factoriza-
tion using an in-house developed R package “MutationalPatterns”  
(51). Four signatures were extracted on the basis of the residual 
sum of squares (RSS) plot, as the inflection point between the input 
matrix and its estimate is at rank 4. The four de novo extracted signa-
tures were compared to the COSMIC v3 signatures (22) and based 
on a cosine similarity being >0.85 were identified as SBS1, 5, 18 and 
“HSPC” (Fig. 1D). These four COSMIC signatures were subsequently 
used to refit and reconstruct the original AML blast and HSPC 
spectra, which allowed us to obtain their relative contributions. 
MutationalPatterns was used for the SNV signature analysis with our 
newly developed functions for indel profile analysis (https://github.
com/FreekManders/MutationalPatterns).

MIP Analysis of SNVs
AML blast-specific MIPs of PMC22813 were designed as described 

previously (52, 53). The genomic regions of interest were captured 
using 15 to 50 ng DNA of 89 HSPC clones. MIP reads were mapped 
to the human reference genome (GRCh38) using BWA-mem algo-
rithm with -M option (45). The depth at every targeted position 
was determined using sambamba v0.6.8 depth, excluding positions 
without a coverage and any positions with log(coverage) lower than 
95% CI. Out of 87 positions, or variants, which passed the coverage 
cutoff, 85 of them were confirmed in AML blast DNA, resulting in a 
97.7% true-positive rate (Supplementary Fig. S3A). Median coverage 
over 87 positions was determined in 89 HSPC clones and any HSPC 
with a coverage <100 reads was excluded. Sixty-four HSPCs passed 
the coverage cutoff, and none of them shared any of the unique AML 
blast mutations (Supplementary Table S3).

PCR for MLL Fusion
PCR for the MLL fusion of PMC21636 was performed using GoTaq 

DNA polymerase (Promega) according to manufacturer’s protocol with 
1 ng of DNA as input per sample. A “touchdown” PCR protocol was 
used with 15 cycles of (i) 30 seconds 92°C, (ii) 30 seconds 65°C with 
a decrement of 0.2°C per cycle, and (iii) 60 seconds 72°C followed by 
30 cycles of 30 seconds 92°C, 30 seconds 58°C, and 60 seconds 72°C. 
Primers used were as follows: MLL-fusion specific (F) fw 5′-GGAACATG 
GACATTCCTTTGA-3′ and rv 5′-GCAGCAGTTATTTTTGGACTCA-3′; 
wild-type MLL (WT) fw 5′-TCCTGGGGTACAAAGAAGCA-3′ and rv 
5′-CACAGGAGGATTGTGAAGCA-3′.

Random Forest and Regression Model
For the random forest model, 70 HSCs and 70 MPPs were ran-

domly sampled from the healthy baseline HSC and MPP clones as 
well as from another study using bone marrow–derived HSC and 
progenitor clones to prevent sampling bias (5, 21). The relative con-
tribution of the 96 mutation types and the total mutation count were 
used as features. This total mutation count was normalized to the 
donor age using the log2 value of the total mutation count divided by 
the mean number of mutations in all cells of this donor. In addition, 
the genome was binned in nine bins based on replication timing, and 
relative mutation burden per bin was used as feature. The random 
forest model, consisting of 1,000 trees and with mtry = 10, was then 
trained using the R package randomForest. For the regression model, 
the ratio between the observed number of somatic mutations in 
pAML and the expected number based on the healthy baseline was 
calculated (range 0.45–4.81) and used as label. The cosine similar-
ity to mutational signatures and the relative contribution of seven 

https://github.com/const-ae/ggsignif
https://github.com/const-ae/ggsignif
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mutation types (C>A, C>G, C>T, C>T at CpG, T>A, T>C, T>G) 
were used as features. The 118 TARGET patients were divided in 
four equal parts. The last 25% of the data, combined with six PMC 
patients, was used as hold out data to validate the model (n = 37). 
The remaining 75% of the data was used as training data. The train-
ing data (n = 87) was split in five equal folds, and backward feature 
selection was performed in a linear regression model to determine the 
optimal number of features, using R package “caret.” The best model 
was the one resulting in the lowest Root Mean Square Error (RMSE). 
We trained a final model with the selected features on all training 
data and validated this model on the hold out data.

RNA-Sequencing Data Analysis
For 15 TARGET-21 and 88 TARGET-20 patients, RNA-sequencing 

data were available of the pAML at diagnosis, which were analyzed as 
separate cohorts. Differential gene expression (DE) analysis was per-
formed using the DESeq2 package v1.30.1 in R (54), and significant 
DE was determined with a padj < 0.05. HOX metagene expression was 
calculated per sample as the average normalized gene expression of 
the 19 HOX genes depicted in Fig. 6F. The ComplexHeatmap pack-
age v2.6.2 in R (55) was used to visualize the HOX gene heatmap; 
data were scaled to mean 0. For GSEA, log fold change shrinkage 
was applied to the data using the “ashr” method v2.2–47 (56). Sub-
sequently, the fgsea package v1.16.0 was used to perform GSEA with 
the cell-type signature gene sets (C8) of MSigDB in R (57, 58).

Statistical Analysis
Unpaired two-tailed Student t test was used for direct compari-

sons of under the assumption of normal distributions, while Mann– 
Whitney tests were performed for data where a normal distribution 
was not likely. The statistical parameters are described in the indi-
vidual figure legends and the related Methods section. For the survival 
analyses, event-free survival and overall survival were estimated with 
the Kaplan–Meier method and compared using log-rank tests. Statis-
tical analyses were performed using GraphPad Prism 9 and R studio. A 
P value less than 0.05 was considered statistically significant.

Resource, Data, and Code Availability
Resource Availability.  Further information and requests for 

resources should be directed to and will be fulfilled by Ruben van 
Boxtel (R.vanBoxtel@prinsesmaximacentrum.nl).
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