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Emerging experience-dependent dynamics in
primary somatosensory cortex reflect behavioral
adaptation
Christian Waiblinger 1, Megan E. McDonnell 1, April R. Reedy 2, Peter Y. Borden1 & Garrett B. Stanley 1✉

Behavioral experience and flexibility are crucial for survival in a constantly changing envir-

onment. Despite evolutionary pressures to develop adaptive behavioral strategies in a

dynamically changing sensory landscape, the underlying neural correlates have not been well

explored. Here, we use genetically encoded voltage imaging to measure signals in primary

somatosensory cortex (S1) during sensory learning and behavioral adaptation in the mouse.

In response to changing stimulus statistics, mice adopt a strategy that modifies their

detection behavior in a context dependent manner as to maintain reward expectation. Sur-

prisingly, neuronal activity in S1 shifts from simply representing stimulus properties to

transducing signals necessary for adaptive behavior in an experience dependent manner. Our

results suggest that neuronal signals in S1 are part of an adaptive framework that facilitates

flexible behavior as individuals gain experience, which could be part of a general scheme that

dynamically distributes the neural correlates of behavior during learning.
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Survival in a dynamically changing sensory environment
requires a high degree of behavioral flexibility and experi-
ence. While much is known about the origin and processing

of sensory signals in mammalian brains1–3, far less is understood
about how resultant behavioral strategies are formed with practice
and experience, and the role of primary sensory areas in this
output process. Studies have investigated the role of the primary
sensory cortex in visual4–6, auditory7–10, and somatosensory
behaviors11,12. There are varying views on whether the primary
sensory cortex simply relays an ascending sensory signal or plays
a deeper role in decision making and behavior.

It is likely that primary cortical signals are highly dynamic and
context-driven, depending on the implemented behavioral para-
digm. Signals in the primary somatosensory cortex can: enhance
stimulus selectivity with behavioral training13, fluctuate according
to the behavioral state14, or even remap depending on down-
stream signals15. Neuronal signals in primary sensory areas may
be highly dynamic, context or experience-dependent, and part of
an adaptive framework.

Here, we investigate the perceptual capabilities of the primary
somatosensory cortex (S1) during learning and behavioral
adaptation, using the highly conserved mouse vibrissa system. We
hypothesize that signals in S1 not only represent the strength of a
sensory input but also play a key role in the transformation of
context-dependent behaviors. To test this, we designed a series of
psychophysical experiments evaluating behavioral performance
and neuronal activity during (1) gradual learning of a basic
detection task and (2) adaptation to repetitive changes in sensory
contingencies. To repeatedly measure signals of large neuronal
pools across both training stages, we performed chronic wide-
field imaging of S1 activity with the genetically encoded voltage
indicator (GEVI) “ArcLight”16,17 in behaving mice.

During the learning of the basic task, S1 sensitivity is mostly
stimulus-driven and uncorrelated with gradual changes in beha-
vioral performance. Interestingly, basic detection was not abro-
gated by S1 inactivation through lesioning. In contrast, our results
further reveal that S1 activity correlates with behavioral adapta-
tion, following long-term exposure to changing sensory stimulus
statistics. Mice adopt a strategy that modifies their behavior in a
way as to maintain reward in the face of these changes: once an
animal is trained to adapt to a change in stimulus statistics,
neuronal activity dynamically shifts between changes in
S1 sensitivity and decision criterion downstream. S1 inactivation
through lesioning disrupted the adaptive behavior, suggesting the
S1 primary cortex is necessary for an adaptive response to
dynamic stimuli.

Our findings suggest a translation of these context-dependent
changes between different brain structures along the hierarchy,
where S1 is not only producing primary neuronal signals in
response to tactile input, but also transducing signals necessary
for adaptive behavior strategies in a dynamically changing
environment.

Results
The current study investigates learning and experience-dependent
adaptation in the mouse vibrissa system. Our main goal is to
establish a relationship between controlled whisker inputs (sti-
mulus), S1 activity, and licking response (behavioral output). We
manipulated stimulus inputs and observed S1 activity during
early basic detection learning. We then observed these animals
longitudinally for flexible adaptation in a changing environment.
To repeatedly measure signals of large neuronal pools at different
training stages, we performed chronic wide-field imaging of S1
activity with the genetically encoded voltage indicator (GEVI)
“ArcLight” in behaving mice.

Figure 1 outlines the experimental design and summarizes the
basic neuronal and behavioral metrics of this study. Thir-
teen mice were transfected with the GEVI ArcLight before being
imaged through the skull using a wide-field fluorescence micro-
scope (Fig. 1a). We have previously described this imaging
technique in detail16. Figure 1b shows the characteristic spread of
ArcLight expression in an example coronal brain section. The
same hemisphere is shown in vivo in Fig. 1c with spontaneous
fluorescence activity in S1 at the beginning of a behavioral ses-
sion. Figure 1d shows sequential frames of typical fluorescence
activity patterns in a trained mouse recorded in response to
deflections of a single whisker.

Transfected mice were first trained on a tactile Go/No-Go
detection task18–22. Animals detect pulse-shaped deflections of a
single whisker and generate a lick on a waterspout (Go) or, if no
stimulus is present, animals withhold licking (No-Go) (Fig. 1e).
In response to stimulation, trained mice first show a clear cortical
fluorescence response within 100 ms, then stereotypical lick
response ~200 ms later (Fig. 1f). Note, the temporal resolution of
ArcLight allows us to identify the fluorescence response peak in
S1 (maximum % ΔF/F0) within the 100ms window post-stimulus
which clearly precedes the typical behavioral lick response.
Hence, the sensory signal in S1 can be disentangled from
potentially interfering motor-related signals caused by licking.
For early “basic learning” experiments the neuronal S1 signal was
observed in mice acquiring the basic principles of the Go/No-Go
task, as demonstrated by learned lick responses (Fig. 1g, left). For
later “adaptive behavior” experiments (Fig. 1g, right), S1 was
imaged in mice challenged with randomly presented whisker
deflection amplitudes and systematically manipulated statistical
distributions.

S1 responses during basic learning. All subjects received uncued
single whisker stimulations at random intervals of 4–10 s with a
single pulse or no stimulation (catch trial). Learning was mea-
sured by calculating the hit p(hit) and false alarm rate p(fa) of
successive daily trainings. A criterion of p(hit)= 0.95 and p(fa) =
0.25 was used to determine successful acquisition of the task.
Figure 2a shows hit and false alarm rates for three mice trained on
the weak stimulus (A= 4°). With this weak stimulus, subjects
required extended training for more than 30 sessions to achieve
successful performance.

Figure 2b shows frames of cortical S1 fluorescence activity from
an example mouse over the course of learning. Each square
represents a top view of the same cortical hemisphere on selected
training days with the average fluorescent activity (% ΔF/F0) at
the frame corresponding to the peak of the sensory-evoked signal
(A= 4°, top row) or during catch trials (A= 0°, bottom row). The
magnitude and spread of fluorescence is highly variable
throughout the “basic learning” daily sessions, and a significant
trend cannot be identified with learning progress.

To further quantitatively evaluate the fluorescence signal over
the course of learning, we used classical signal detection
theory23,24 with a computed neurometric sensitivity measure
d′neuro. Single-trial distributions of evoked signal peaks were
compared to the corresponding noise distributions, when no
stimulus is present. The d′neuro for a given day or session was then
calculated by subtracting the means of the distributions and
dividing by the variance. To compare this metric to the behavior,
a d′behav was calculated from the observed behavioral hit and false
alarm rate of each training session (see “Methods” section).
Figure 2c shows the d′neuro (orange) along with the behavioral
learning curve d′behav (gray), across all sessions and mice. The
dashed lines separate performance into “detect-naive” (d′ < 0.8),
and “detect-experienced” (d′ > 1.5). In contrast to the behavior,
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the average neurometric sensitivity remains at a relatively
constant level, representing a stable signal-to-noise relationship
independent of the continuing learning progress. Note, a second
group of animals (n= 3) was trained on a much stronger
stimulus for comparison (A= 16°). These mice achieved much
higher hit rates at the beginning of training and reached
successful task acquisition in half the time (Supplementary
Fig. 1a); however, the neurometric sensitivity was also orthogonal
to the learning progress (Supplementary Fig. 1b, c). We conclude
that neuronal sensitivity in S1 measured from a large population
of neurons does not change during basic learning.

Adaptive behavior and changes in S1. To investigate behavioral
and neuronal dynamics with regard to changing context, we

performed experiments in which we systematically manipulated
stimulus statistics (Fig. 3a). The psychophysical techniques were
adapted from a behavioral paradigm we recently developed in the
rat20, which are described in the “Methods” section. The first
distribution consists of four different stimulus amplitudes of
whisker deflection, and a catch trial (A= [0, 2, 4, 8, 16]°,
magenta) which we refer to as the “high range” condition. The
second distribution consists of four new stimulus amplitudes of
whisker deflection, and a catch trial (A= [0, 1, 2, 4, 8]°, green),
which we refer to as the “low range” condition. Each stimulus or
catch trial was presented with equal probability (uniform dis-
tribution). Importantly, the experimental design involves ampli-
tudes common to both high-range and low-range conditions,
three of the four stimulus amplitudes were shared between con-
ditions. Figure 3b depicts typical psychometric curves from an
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Fig. 1 Imaging and behavior methods. a Top: Schematic of the imaging system. The GEVI “ArcLight” is expressed in superficial layers of S1. Bottom:
Schematic of the behavior setup. b Confocal image of a coronal mouse brain section (100 μm, right hemisphere) showing the characteristic spread of
ArcLight in S1. Blue: DAPI staining, Green: Arclight fluorescence. c Top view of the same hemisphere in vivo showing ArcLight fluorescence in S1. C =
caudal, R = rostral, M = medial, L = lateral. d Images of the same hemisphere in a trained mouse with ArcLight fluorescence color-coded. Punctate stimuli
(16 degree whisker angle) or catch trials (0 degree) were presented. Frames were captured at 200Hz and depicted from stimulus onset onward. Each
frame is normalized to the frame at stimulus delivery (ΔF/F0 = F− F0/F0). Shown are fluorescence responses averaged over an example imaging session
(n = 24 trials/condition). A region of interest (red box, 434 × 434 µm) is centered at the peak fluorescence to extract and average voltage traces for
further analysis. Scale bar: 1 mm. e Go/No-Go detection task. A punctate stimulus (10ms) has to be detected by the mouse with an indicator lick to receive
reward. Reward is only delivered in hit trials. Impulsive licks in a 2 s period before trial onset are mildly punished by a time-out triggering a new inter-trial-
interval (4–10 s, gray arrow). f Example traces of Go and No-Go trials (n = 284 each). Top: Readouts from the galvo sensor (16 degree stimulation or 0
degree catch trial). Middle: Lick response histograms from a trained mouse. Bottom: Average voltage response from the region of interest of S1. g Different
task versions under investigation. 1. Basic learning: Learning of the Go/No-Go task. 2. Adaptive behavior: Once animals have learned the basic task, they
are challenged with multiple stimulus amplitudes and changes in the statistics of the stimulus distribution.
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example mouse, performing the task first under the high range
(magenta) and then under the low range condition (green). There
is a consistent shift of the psychometric curve in response to the
changing stimulus statistics, which we refer to here as “adaptive
behavior”. All animals experienced both a switch from high range
to low range, as well as low range to high range. Adaptation was
reversible, meaning that over multiple switches, the animal’s
performance changed, indicating that they are able to apply a
reciprocal task strategy, modulated by the shift in stimulus
distribution.

The simple reward expectation model tests if the animal adapts
its behavior to maintain accumulated reward in the face of a
changing stimulus distribution. If the animal does not adjust its
behavior the predicted low range psychometric function would
align with the high range psychometric function (Fig. 3b, black
dotted curve under the magenta curve; H0). In moving from the
high range to the low range condition, this would result in a
decreased reward rate for the same number of trials. However, if
the animal adjusts its behavior, the model predicts that the
psychometric function shifts to the left such that the expected
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reward per trial remains constant (Fig. 3b, black dashed curve;
H1).

We observed a shift of the psychometric curve when going
from high range to low range performance. The experimentally
measured psychometric function in the low range condition
(green) comes quite close to the hypothetical performance,
suggesting that the animal adapts its behavior to maintain reward.
The psychometric shift results in a significant decrease in
response threshold for all mice (Fig. 3b, inset). Figure 3c depicts
the actual trial-by-trial reward accumulation by the example
mouse. Overlaid are results for n= 11 sessions with the high
range distribution (magenta) and n= 10 sessions with the low
range distribution (green). The slope of reward accumulation in
the low range condition nearly matches that of the high range
condition, and the slope for the low case (green) is close to the

prediction from the maintenance of accumulated reward
hypothesis, H1 (dashed line), while being clearly separable from
the slope representing the null hypothesis, H0 (dotted line). The
total number of rewards acquired on average per session and
across all mice further confirms this (total # high range =
44.5 ± 8.6, total # low range = 42.0 ± 10.6, Mean and SD, Fig. 3c,
inset), whereas there was no evidence for an alternative strategy to
maintain the total number of rewards by working substantially
more trials. The total number of trials per session was nearly the
same for each condition on average (high range, n= 101 and low
range, n= 104, Fig. 3c, inset). These findings show that detection
behavior is highly flexible in the face of a changing stimulus
distribution.

Figure 3d shows frames of evoked S1 fluorescent activity in a
mouse exposed to high range stimuli (left) or low range stimuli
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indicate d’ values. Blue lines indicate criterion values as computed from ROC curves. Bottom: C and d′ metrics (neuronal and behavioral). Shown are
bootstrapped estimates of means and 95 % confidence limits (n = 38 (LR) or n = 41 (HR) sessions, n = 4 mice, nboot = 1000 repetitions). ***P < 0.001,
n. s. not significant, P = 0.1, two-sided Wilcoxon rank-sum test.
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(right). In both conditions, we observed an increase in
fluorescence amplitude and spatial spread, with increasing
stimulus amplitude. Note, there is a relatively consistent linear
relationship between the percent change in fluorescence magni-
tude and the activated cortical area, as both scale with stimulus
strength in a highly correlated fashion (Supplementary Fig. 2).
For simplicity, we use percent change in fluorescence magnitude
as a metric for cortical activation. The evoked activity for the
same stimulus is clearly higher in the low range compared to the
high range condition.

To further dissect this change, we focused our analysis on trials
with an intermediate stimulus shared between both datasets
(outlined box in Fig. 3d). The chosen whisker deflection
amplitude of 8 degrees represents the midpoint of the high range
distribution and the upper limit of the low range distribution.
Figure 3e depicts the temporal fluorescent signal in response to an
8° amplitude, averaged across sessions from all four mice. These
mice had been exposed to both high and low range conditions as
well as a switch between conditions. Histograms of behavioral lick
responses are shown on top—the lick response occurs ~200 ms
window after the measured fluorescence peak. We did not
observe a significant difference in behavioral response latencies
between the high-range and the low range condition. However,
the evoked S1 response to the same 8° deflection was higher in
animals challenged with the low range vs the high range stimuli.

Figure 3f outlines the observer model we used based on signal
detection theory, to interpret and analyze data from the S1 neural
signals, as well as a presumed downstream decision criterion.
Multiple scenarios are considered to trigger a change within
sensory and higher-order processing stages; behavioral adaptation
can be induced by changes in sensitivity (d′) intrinsic to S1,
changes in decision criterion (c) by a downstream observer, or
both. Sensitivity in S1 improves through the reduction in the
overlap between sensory signal and noise distributions (top
panel). In addition, the downstream observer may value hits and
false alarms differently by altering the decision criterion (bottom
panel). To test these predictions, distributions consisting of many
evoked trials termed “signal” (ΔF/F0 with 8°) and catch trials
termed “noise” (ΔF/F0 with 0°) were computed separately for the
high and low range condition (Fig. 3g, top). The noise
distribution (gray) is comparable for the high and the low range
condition with their means being identical (dashed vertical black
lines). However, the signal distribution for the low range (green)
is shifted towards higher fluorescence changes as compared to the
signal distribution of the high range (magenta) with a clear
difference in their means (dashed vertical magenta and green
lines). As shown in the bottom of Fig. 3g, a significant difference
in neuronal sensitivity was confirmed by calculating the
neurometric d′ as introduced earlier in this study. While the
neuronal d’ was altered slightly by different normalization
methods of the ΔF/F0 metric, an extended analysis revealed that
the difference in d′ across conditions persisted (Supplementary
Fig. 3a–c). In addition, we created receiver operating character-
istic (ROC) curves by varying a criterion threshold across the
ΔF/F0 signal and noise distributions and plotting the hit rate
(signal detected) against the false alarm rate (incorrect guess)
(Supplementary Fig. 3d). The ROC curve for the low range
condition was higher than that for the high range condition,
quantified by a larger area under the low range ROC curve
(AUClow= 0.77) than for the ROC curve for the high range
condition (AUChigh= 0.69), thereby confirming a change in
S1 sensitivity.

Changes in criterion were inferred by comparing the hit rate in
ROC space (neurometric) with the average hit rate measured
from the behavior (psychometric). The criterion shows a slight,
yet non-significant decrease when operating from the low range

compared to the high range condition (Fig. 3g, bottom left, blue).
Note, the S1 sensitivity and downstream criterion change in
opposite direction, e.g., an increase in hit rate can be caused by an
increase in S1 sensitivity and/or a decrease in criterion. We
conclude that in highly trained animals there is evidence of
adaptive sensitivity in S1, yet comparatively smaller adaptive
changes in criterion by a downstream observer.

Changes across training stages. The data described thus far,
comparing the adaptive behavior and cortical activity across the
high and low range conditions were derived from highly trained
subjects. To better understand the development of this phe-
nomenon over time we re-analyzed the data from highly trained
subjects at different training stages. Conditions were always
changed in alternating fashion to test the reversibility of adap-
tation (high-low-high etc.). Figure 4a shows the psychometric
threshold for mice undergoing repetitive task changes starting
with either the high range or low range condition. We observed
that the order of stimulus conditions does not affect behavioral
adaptation and response thresholds closely follow the direction of
task manipulation. This suggests that mice are able to apply a
flexible and reciprocal task strategy modulated by the shift in
stimulus distribution. Behavioral adaptation was stable across
multiple training stages, as revealed by consistently modulated
thresholds.

Since individual mice experienced different numbers of
switches (n= 2–5) and different numbers of sessions for a given
condition (n= 5–11 per condition), we asked how many sessions
or trials are generally required to adapt after a switch? We focused
our analysis on the transition from one condition to another.
Figure 4b shows psychometric thresholds extracted from
consecutive sessions at the high- to low range transition (left)
and at the low- to high range transition (right). The data were
normalized with regard to the transition and data from all
switches were included in this analysis. Across mice, the target
threshold for the high or low range condition (average threshold
per condition) was reached within approximately three sessions,
indicating that behavioral adaptation to changing stimulus
statistics required repeated exposure to ~300 trials within a given
condition.

In order to investigate S1 dynamics during long-term adaptive
behavior, GEVI data were acquired and analyzed across different
training stages. Figure 4c shows neuronal stimulus-response as a
function of stimulus amplitude derived from the ΔF/F0 measure-
ment in S1 of three mice that were challenged with a minimum of
four switches. The functions are represented by a curve fitted to
the average data (see “Methods” section), and separately shown
for each high range and low range condition. Comparing the S1
response curves across different training stages revealed an
interesting pattern; at the first switch, high- and low-range curves
are similar despite differences in the corresponding stimulus
distributions. However, high- and low-range curves progressively
separate as a function of switches and training experience. Since
the fitting procedure is constrained by data collected across
different stimulus ranges, we focused our analysis on the
“overlap” range which is defined as the stimulus range common
to both high- and low range datasets (A= [2, 4, 8]°, dashed
vertical gray lines). This range was then used to calculate the area
under the curve (AUC) for each condition, as a way to compare
the two curves (see “Methods” section). Figure 4d shows the
difference between high- and low-range S1 responses, calculated
as the difference in AUCs of the low and high-range response
curves (Δ AUC (Low − High)). S1 responses adapt progressively
and systematically as a function of training experience. To
determine whether this neuronal effect was dependent upon the
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animals’ choice, we conducted a separate analysis by tracking the
stimulus-evoked S1 signal across different training stages,
separately for HIT and MISS trials (Supplementary Fig. 4). The
results from the parsed trials for either HITs or MISSes
(Supplementary Fig. 4a, b) are very similar to the combined
trials (Supplementary Fig. 4c), confirming that the emerging
difference in S1 activity is not biased by the choice element.

S1 contribution to adaptive behavior. The core elements offered
through the behavioral and neurometric measures analyzed thus
far provide somewhat limited slices of the underlying phenom-
ena. We thus sought to develop a more comprehensive analytic,
cascade framework that enables us to evaluate the relative con-
tributions from activity in S1 and downstream of S1 in predicting
the observed behavior across the full range of stimuli. The fra-
mework establishes a link between the sensory input distribution
si, the S1 response function G(si), and the psychometric curve
P(GO|si) (Fig. 5). The function f(.) represents a downstream
process, matching the evoked fluorescence to the lick response,
given a particular stimulus, and is referred to as the “linker”
function, as it links S1 activity to behavior. This framework can
then be used to describe the changes underlying the adaptive
behavior and assess the relative roles of the two stages, S1 and
downstream (see “Methods” for details). Animals that were
challenged with a single switch were defined as “switch-naive”;
animals that were challenged with a minimum of 4 switches were
defined as “switch-experienced”. Figure 5a, b shows the different

elements of the cascade framework applied to data from multiple
training stages, allowing us to separately investigate switch-naive
(Fig. 5a) and switch-experienced (Fig. 5b) transformations.

S1 response curves are shown separately for the high- and low-
range conditions (Fig. 5a, b; left panels), revealing a strong
separation at the switch-experienced level. In contrast, the
behavior data (Fig. 5a, b; right panels) are consistently modulated
by changes in the stimulus distribution at both training stages.
This asymmetric relationship of S1 activity and the behavioral
output has an impact on the downstream linker function (Fig. 5a,
b; middle panel). At the switch-naive training stage (Fig. 5a;
middle panel), high and low range linker functions appear
different, indicating that the associated neuronal processes that
are predictive of behavior, are not S1 based. In contrast, at the
switch-experienced stage (Fig. 5b; middle panel) high- and low-
range linker functions are relatively congruent, transforming the
modulated S1 response functions directly into an adapted
behavioral response. All predictions from combining S1 response
functions and linker functions (Fig. 5a, b; right panel, dashed
curves) match well with the measured psychometric curves
(Fig. 5a, b; right panel, solid curves), with minor differences due
to the fitting accuracy when generating both S1 and linker
functions. To capture how much of the observed changes in
behavior is explained solely by changes in S1, we used a null test
approach assuming a fixed linker function (e.g., high range only)
and predicting the change in the psychometric curve (e.g., low
range) based only on changes in S1 response (e.g., from high to
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low range). The behavioral adaptation was estimated by
subtracting the areas under the curve of the low- and high range
psychometric model predictions, again as a way of comparing the
two curves, and the fraction explained by S1 was then estimated
by comparing this difference with the null test results (see
“Methods” for details). Figure 5c shows the relative explanatory
power summarized for mice at the switch-naive versus switch-
experienced training stages and separately for the overlap range
(left) and full range (right). The results of both analyses reveal
that changes in S1 activity cannot explain behavioral adaptation
at the switch-naive stage (0%), whereas they can explain a large
proportion (85%) at the switch-experienced level. The primary
behavioral adaptation occurs in regions outside of S1. However,
as animals gain experience in a changing sensory environment,
adaptive responses emerge in S1.

In addition to a changing environment, switch-experience also
incorporates increased exposure to both stimulus conditions and
can be described as session-experience. We applied the cascade
model to each animal individually to test for the effect of session
experience vs switch experience. Figure 5d depicts the relative
explanatory power of S1 versus downstream, quantified for all
mice at each transition. The first group of mice (M04–M06)
experienced only two switches but a higher number of sessions
within a condition (n= 10 sessions), whereas the second group
(M07–M09) experienced four to five switches but a smaller
number of sessions within a condition (n= 5 sessions). Despite
the variability across mice, the S1 explanatory power increased
collectively with training, again suggesting that the adaptive
changes are increasingly emerging in S1 with experience to the
point where a large percentage of the behavioral changes are
reflected in the sensory-evoked S1 responses. Figure 5e presents
the explanatory power of S1 as a function of the number of
sessions across animals, showing a progression across sessions,
reaching 50% explanatory power between 20 and 30 sessions.
Interestingly, mice challenged with a smaller number of sessions
per block required more switches for the explanatory power to
emerge from S1, suggesting the number of switches and number
of sessions, are both important determinants of this experience-
dependent effect.

To causally test whether context-dependent representation in
S1 ultimately contributes to behavioral adaptation, we chronically
inactivated S1 in a subgroup of trained mice with the neurotoxin
ibotenic acid, where GEVI activity was used to facilitate targeted
acid injections (Fig. 6). Both, simple detection and adaptation to
changing conditions were tested in healthy (n= 6), lesioned
(n= 4), and sham lesioned (n= 2) mice, and compared either
within the same group or across groups. From the four lesioned
mice, two were switch-naive and two were switch-experienced.
Figure 6a shows a wide-field image of a coronal mouse brain
section (100 μm, right hemisphere) with cytochrome oxidase
staining, showing an example S1 lesion. Figure 6b shows frames
of cortical fluorescence activity from an example mouse working
on the detection task pre- and post-lesion with a clear absence of
evoked cortical fluorescence after the lesion (bottom row).
Interestingly, mice could still detect stimuli quite well, reaching
a level of performance comparable to pre-lesion levels after one
day of recovery, as indicated by the psychometric threshold
(Fig. 6c). These results agree with recent work showing that S1 is
not required for simple detection12. However, if challenged with
changing stimulus conditions (high versus low range), the
adaptive behavior was clearly compromised following the lesion
as shown by the psychometric curves and corresponding
psychometric thresholds in Fig. 6d. We observed a significant
decrease in switch-behavioral adaptation (Δ threshold) in all
animals (Fig. 6e), demonstrating that S1 is necessary for
behavioral adaptation. There were no differences in animals that

were lesioned at the “switch-naive” stage versus the “switch-
experienced” stage.

Our results suggest cumulatively that the S1 cortical region is
not necessary for simple stimulus detection; rather, it plays an
important function in experience-dependent stimulus adaptation.
This highly conserved brain region is likely to be important for an
animals’ survival strategies in a dynamically challenging sensory
environment.

Discussion
In this study, we have investigated learning and experience-
dependent behavior in the mouse somatosensory system. Our
findings provide evidence that activity in the highly conserved
primary somatosensory cortex can be remarkably dynamic in
support of flexible sensory processing and experience-dependent
behavioral adaptation.

We present the following findings. First, S1 population activity
reflects a reliable signal-to-noise relationship that is driven by the
sensory input and does not change during the basic learning
process. Second, mice can modify detection behavior in a way as
to maintain reward in the face of changing statistical properties of
the stimulus. Third, S1 activity is highly dynamic in the face of a
changing sensory environment, predicting behavioral adaptation
as individuals gain experience. Fourth, S1 is required for this
adaptive behavior.

Learning occurs when an individual forms an association based
on a new stimulus or context. This process provides obvious
benefits such as flexible hunting, optimal foraging, and social
communication, especially in environments that tend to change
frequently and unpredictably. There is no doubt that associative
learning can occur in animals without cortex, including all classes
of vertebrates25 and a large number of invertebrate species26.
Further, several studies elucidating the role of S1 with classical or
operant conditioning have found that chronic lesioning of S1
does not affect basic detection12,27, a finding we corroborate here.
It is simultaneously the case that other studies demonstrate the
opposite effect with acute inactivation of S128,29, suggesting that
S1 is normally central to this behavior. Although this is a complex
issue, these studies together seem to suggest that S1 is nominally
used for these behaviors, but that given sufficient time for
remapping/learning, other pathways are sufficient, and thus S1
may be viewed as involved in but not critical for this simple
behavior. A central finding of the current study, however, is that
S1 is important for the experience-dependent adaptive behavior
for the exact same task and does not recover following lesioning
of S1, pointing to a critical role for S1 in context-dependent,
adaptive strategies in a changing environment that could underlie
a range of behaviors in more natural settings.

The general behavioral question posed here relates to how the
animal responds to changes in the sensory environment. The
behavioral paradigm was designed as a highly simplified but
carefully controlled manipulation of the statistical distribution of
the magnitude of whisker deflections experienced by the animal.
Aside from matching amplitudes and velocities of the whisker
movement that have been described in a range of studies30–34, the
current study does not attempt to place this in the context of
the natural sensory environment for the animal, and the passive
stimulus paradigm does not speak to active sensing that relies on
the animal’s own movement in acquiring sensory information.
Importantly, although centered around a simple switching in the
stimulus statistics, these switches were implemented with multi-
ple changes occurring with alternating conditions, showing that
S1 sensitivity closely followed the direction of changes in a way
that increasingly explained the behavioral adaptation (Fig. 5),
suggesting that the findings here likely generalize to more
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complex scenarios in the dynamic landscape of the natural sen-
sory environment. The relative role of S1 in the adaptive behavior
was found to be strongly experience-dependent, where experience
is likely to be a complex function of time and exposure to specific
aspects of the environment (here number of sessions), as well as
the nature, degree, and frequency of change in the environment
(here number of switches), which remains to be explored in more
detail in naturalistic settings. Overall, the behavior here reveals an
active strategy by the animal that robustly maintains reward in
the face of a changing environment. The behavior is reversible
and independent of the direction of switching, and the animals do
not just remain at a higher level of behavioral performance once
achieving this or simply work longer sessions to accumulate the
same amount of reward. This demonstrates that the phenomenon
here is part of an active strategy that involves a cognitive cost to
the effort, be it effort on a trial-by-trial basis or the cumulative
effort across a session. The changes in the strategy we observed
were purely reflected in performance, and not in any changes in
peripheral sensing such as whisker position or movement given
the high degree of control exerted by our passive stimulation
paradigm. However, these elements likely play a key role in the
overall behavioral strategy in more ethological behaviors. How
the behavior, and corresponding sensory representations, change
in more complex, naturalistic settings, and at a finer time reso-
lution, are important, and need further investigation in future
studies.

While the spatial and temporal resolution of the GEVI imaging
here does seem to capture the appropriate scale for the simple

detection task, it targets the aggregate activity of large neuronal
pools restricted to approximately cortical layer 2/3, and thus does
not capture the details of individual neurons of specific cell sub-
type across layers that conventional electrophysiological approa-
ches would provide. However, given the long literature impli-
cating the role of inhibitory interneurons in functional plasticity
in cortex even on short timescales35,36, we would predict that the
adaptive changes in S1 described here would correspond to a
differential change in inhibitory drive, and that cortical layer 4
and deeper cortical layers would exhibit less adaptive properties
as compared to more superficial layers of cortex, due to the dif-
ferential dependence upon direct thalamic drive reported across
cortical layers37. How the behavioral phenomenon we describe
here is ultimately driven by population activity across the cortical
network is left to more detailed electrophysiological studies in the
future. Nevertheless, our finding of context-dependent adaptive
responses in S1 is surprising as it suggests that reward-based
choice signals might shift across the cortical network and can
appear and influence sensory representation in S1 once an indi-
vidual has successfully adapted its behavioral strategy. In this
context, it is important to note that the behavioral adaptation
itself is similar at different experience levels, showing consistent
changes in performance already before the adaptive response even
appears in S1 (switch-naive performer). This is important, as the
change in S1 we observe through GEVI imaging averaged across
trials is therefore not simply reflecting a difference in perfor-
mance/choice (e.g., ratio of hits to misses) across the levels of
experience, but instead a true change in the S1 response with
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experience in the context of this task, further reinforced by a
direct analysis of the choice signaling (Supplementary Fig. 4). The
findings here are thus not in conflict with the previous reports of
choice signaling in S1, but instead, represent a context-dependent
element related to more complex behaviors that are likely part of
a larger framework of decision making that can only be precisely
identified through causal manipulations in future studies.

So, what are the downstream targets that drive early behavior
and ultimately change the stimulus representation of primary
sensory areas? A recent study found that the perirhinal cortex, the
last station in the medial-temporal loop projecting to S1, acts as a
gate for the enhancement of cortico-cortical inputs, which are
necessary for basic detection learning38. Another recent study
probing flexible decision-making in the somatosensory pathway
of mice found that orbitofrontal cortex dynamically interacts with
S1 triggering plasticity based on value signals15. In addition, other
important reward-based choice signals have been reported to
influence neuronal signaling throughout cortex39. Furthermore,
studies of visual attention in primates have distinguished changes
in neuronal sensitivity from an observer’s response criterion in
extra striate cortex, superior colliculus, as well as lateral prefrontal
cortex24,40,41. Hence, there is a large number of downstream
candidates potentially modulating the sensory signal stream.
Admittedly, in the current study, we did not record in any other
area outside S1, but the effects described by those other studies
collectively point to the interesting idea that the neuronal signal
transfer identified by our study could be a common principle
across neocortex with “earlier” stages emerging with experience.
Moreover, we propose that this shift in cognitive signaling could
even affect subcortical structures such as the primary thalamus,
which we have recently shown to exhibit cognitive signatures in
highly trained animals22.

Arguably, our current study was not specifically designed to
identify attention as a driver for adaptive behavior, even though
the measured changes in performance are indicative of a some-
what conscious change in the subjects’ behavioral strategy. Other
effects related to the subjects’ thirst, satiation, or arousal level
within this behavioral framework can further be excluded, as we
have shown previously20. However, although speculative, the
experience-dependent change in S1 sensitivity and the corre-
sponding change in downstream criterion may be signatures of a
higher-order cognitive process that could be described as an
“attentional spotlight” or gain control42 moving down the cortical
hierarchy. Such a brain-wide dynamic process would facilitate
selective and efficient cognitive processing as an individual is
adapting to changes in the environment. This transfer could
explain some of the disparities in the literature and therefore
needs to be further investigated in future studies.

The primary sensory cortex is classically described as the origin
of sensory signals in response to stimuli. We have described here
a prominent role for S1 in long-term adaptive behavior. We
propose that this highly conserved region has a dual function that
is temporally regulated, relaying sensory signals in an acute
reactionary fashion vs processing and incorporating dynamic
signals into an adaptive behavioral response longitudinally. This
suggests primary sensory cortex may not only be involved in
fundamental sensory representations, but also in long-term
adaptive strategies which could be necessary for survival.

Methods
Animals, surgery, and general procedures for behavioral testing. All experi-
mental and surgical procedures were approved by the Georgia Institute of Tech-
nology Institutional Animal Care and Use Committee and were in agreement with
guidelines established by the NIH. Subjects were 13 male mice (C57BL/6, Jackson
Laboratories), aged 4–6 weeks at the time of implantation. Mice were housed
together with a maximum number of three in one group cage (after recovery) and
kept under an inverted light cycle (darkness: 7am to 7 pm, light: 7 pm to 7am) to

ensure that experiments did not occur during the animal sleeping periods. Tem-
peratures were set to 65–75 °F (~18–23 °C) with 40–60% humidity. The basic
procedures of virus delivery, head-plate preparation, and cortical imaging exactly
followed the ones published in a recent paper16. In the following text, only pro-
cedures pertaining to the specific procedures established here are described in
detail.

Virus delivery. At least 4 weeks prior to experimentation, mice were anesthetized
using isoflurane, 3–5% in a small induction chamber, and then placed on a heated
platform (FHC, Inc.) to maintain body temperature with a stereotaxic nose cone to
maintain anesthesia. During the surgery, the anesthesia levels were adjusted to
1–1.5% to achieve ~1/s breathing rate in mice. For virus delivery, 3 small cra-
niotomies (burr holes of 0.7 mm diameter) were created over the barrel field of S1
according to stereotaxic measurements taken from the bregma ([1 × 3 mm, 3 ×
3 mm, 3 × 1mm] bregma × lateral). The virus was loaded into a neural syringe
(Hamilton Neuros Syringe 700/1700). The injection needle was initially lowered to
1000 µm below the pia surface for pre-penetration and then retracted to the target
depth of 500 μm, using a 10 μm resolution stereotaxic arm (Kopf, Ltd.). Following a
1-min delay to allow for tissue relaxation, each animal was injected with 1.5 µL of
adeno-associated virus (AAV)1-hsyn1-ArcLight-D-WPRESV40 (UPenn Viral
Vector Core, AV-1-36857P) at a flow rate of 0.05 μL/min (0.5 μL each, for three
injections). After injection, the needle remained in place for an additional 5 min
before slowly being removed from the brain. The craniotomies were left to close
naturally. The skull was sealed by suturing the skin. Throughout the experiment,
sterile techniques were used to keep the injection area clean and free from infec-
tion. Additionally, opioid and non-steroidal anti-inflammatory analgesic were
administered (SR-Buprenorphine 0.8–1 mg/kg, SC, pre-operatively, and Ketopro-
fen 5–10 mg/kg, IP, post-operatively).

Head-plate implantation. After at least 4 weeks post-injection, a metal head-plate
was secured to the skull in order to reduce vibration and allow head-fixation during
imaging and behavior experiments. Following anesthetization and analgesia, a large
incision was made over the skull. The connective tissue and muscles surrounding
the skull were removed using a fine scalpel blade (Henry Schein #10). The custom
titanium head-plate formed an open ring (half-moon shape with an inner radius of
5 mm) and was placed on top of the two hemispheres with an extended bar above
the cerebellum (~10 mm, perpendicular to the midline of the skull). The extended
bar was designed to attach to a stainless steel holder, serving the purpose of stable
head-fixation. The head-plate was attached to the bone using a three-stage dental
acrylic, Metabond (Parkell, Inc.). The Metabond was chilled using ice, slowly
applied to the surface of the skull, and allowed to cure for 5–10 min. After securing
the head-plate, the skull was cleaned and covered with a thin layer of transparent
Metabond. During preparation for histological validation, the head-plate could not
be separated from the attached skull and the brain was extracted by removing the
lower jaw. The final head-plate and dental acrylic structure additionally created a
well for mineral oil that helped maintain skull transparency for the upcoming
imaging sessions. Mice were allowed to recover for at least 7 days before habi-
tuation training.

Cortical lesions. After the collection of at least 5 sessions of psychometric data and
the mapping of spatial activation using GEVI imaging, lesions of the barrel field in
S1 were performed as a control experiment (n= 4 mice). Animals were given water
ad libitum for the day preceding the procedure. Following anesthetization, a small
craniotomy (burr hole of 0.7 mm diameter) was created over the area in S1 with the
highest extent of activation from the GEVI map. The neurotoxin ibotenic acid43

(aablocks, AA003BBF) at a concentration of 10 mg/mL was loaded into a neural
syringe (Hamilton Neuros Syringe 700/1700). The injection needle was lowered to
1000 μm depth for pre-penetration, then retracted to a depth of 500 μm, using a 10
μm resolution stereotaxic arm (Kopf, Ltd.). Following a delay of 5 min for tissue
relaxation, animals were injected with 0.25 μL of ibotenic acid at a flow rate of
0.05 μL/min. After injection, the needle remained in place for 5 additional minutes
before being slowly retracted from the brain. The craniotomy was sealed using the
dental acrylic Metabond (Parkell, Inc.), and the silicone elastomer Kwik-Cast
(Kwik-Cast Sealant World Precision Instruments), for protection. Animals were
allowed to recover for 1–3 days until activity and body weight were normal, and
then behavioral testing and GEVI imaging continued.

Whisker stimulation. Precise whisker deflections were performed using a cali-
brated galvo-motor (galvanometer optical scanner model 6210H, Cambridge
Technology) as described in a previous study44. The opening of the rotating arm
was narrowed with dental cement to prevent whisker motion at the point of
insertion. The rotating arm contacted a single whisker on the right of the mouse’s
face at a 5 mm (±1 mm tolerance) distance from the skin, and thus, directly
engaged the proximal whisker shaft, largely overriding bioelastic whisker proper-
ties. Distance and angle between stimulator and whisker were systematically
measured with a camera before each session to ensure that stimulation was con-
sistent. All the remaining whiskers were trimmed to prevent them from being
touched by the rotating arm. Across mice, different whiskers were chosen (C1, D1,
D2, or E2), but the same whisker was used throughout sessions within each mouse.
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Voltage commands for the actuator were programmed in Matlab and Simulink
(Ver. 2015b; The MathWorks, Natick, Massachusetts, USA). A stimulus consisted
of a single event, a sinusoidal pulse (half period of a 100 Hz sine wave, starting at
one minimum and ending at the next maximum). The pulse amplitudes used
A= [0, 1, 2, 4, 8, 16]°, correspond to maximal velocities: Vmax= [0 314 628 1256
2512 5023]°/s or mean velocities: Vmean= [0 204 408 816 1631 3262]°/s and were
well within the range reported for frictional slips observed in natural whisker
movement30,31.

Cortical GEVI imaging. ArcLight transfected mice were chronically imaged
through the intact skull using a wide-field fluorescence imaging system to measure
cortical spatial activity (MiCAM05-N256 Scimedia, Ltd.). Figure 1a shows the
experimental apparatus and schematically describes the wide-field fluorescence
microscope. During all imaging experiments, mice were awake and head-fixed. The
head-plate was used as a well for mineral oil in order to keep the bone surface wet
and maintain skull transparency. The skull was covered with a silicone elastomer
(Kwik-Cast Sealant, World Precision Instruments) between imaging sessions for
protection. The barrel cortex was imaged using a 256 × 256 pixel CMOS camera
(Scimedia Model N256CM) at 200 Hz with a pixel size of 69 μm × 69 μm and an
active imaging area of 11.1 × 11.1 mm, given a magnification of 0.63. Note, this
resolution does not consider the scattering of the light in the tissue. During
experimental imaging, the illumination excitation light was left continuously on.
The entire cortical area was illuminated at 465 nm with a 400 mW/cm2 LED system
(Scimedia, Ltd.) to excite the ArcLight fluorophore. The excitation light was filtered
(cutoff: 472/30 nm bandpass filter, Semrock, Inc.) and projected onto the cortical
surface using a dichroic mirror (cutoff: 495 nm, Semrock, Inc.). Emitted Arclight
signal was filtered through an emission filter (520/35 nm, Semrock Inc) and col-
lected with the above described camera. The imaging system was focused at ~300
μm below the cortical surface to target cortical layer 2/3. The first imaging session
was used for identifying the barrel field in the awake and naive animal at least four
weeks after ArcLight viral injection. The barrel field was mapped by imaging the
rapid response to a sensory stimulus given to a single whisker (A= 4–16°, or mean
velocities respectively: V= 816–3262°/s). We used two criteria to localize and
isolate the barrel field: standard stereotaxic localization (~3 mm lateral, 0.5–1.5 mm
caudal from bregma) and relative evoked spatial and temporal response (visible
evoked activity 20–25 ms after stimulation). A single whisker was chosen if it
elicited a clear response within the barrel field. All subsequent imaging experiments
were centered on the same exact location and the same whisker was chosen in
repeated sessions for a given animal. Figure 1b shows the characteristic spread of
ArcLight expression in an example coronal brain section. The same hemisphere is
shown in vivo in Fig. 1c with spontaneous fluorescence activity in S1 at the
beginning of a behavioral session. Spontaneous and sensory-evoked activity in S1
was imaged every trial, 2 s before and 2 s after the punctate whisker stimulus.
Figure 1d shows frames with typical fluorescence activity patterns recorded at a
framerate of 200 Hz and shown separately for a stimulus (bottom row) and a catch
trial (top row). The calculation of the ΔF/F0 metric, region of interest (ROI), and
data processing is described under “Imaging analysis”.

Behavioral paradigm and training. During successive days of behavioral testing,
water intake was restricted to the experimental sessions where animals were given
the opportunity to earn water to satiety. Testing was paused and water was
available ad libitum during 2 days a week. Bodyweight was monitored daily, and
was typically observed to increase or remain constant during training. In some
cases, the bodyweight dropped slightly across successive training days due to a
higher task difficulty. If the weight dropped for more than ~5 g, supplementary
water was delivered outside training sessions to maintain the animal’s weight. 1–2
training sessions were usually conducted per day comprising 50–250 trials. During
behavioral testing, a constant auditory white background noise (70 dB) was pro-
duced by an arbitrary waveform generator to mask any sound emission of the
galvo-motor-based whisker actuator. All mice were trained on a standard Go/No-
Go detection task (Fig. 1e) employing a similar protocol as described
before18–20,22,45. In this task, the whisker is deflected at intervals of 4–10 s (flat
probability distribution) with a single pulse (detection target). A trial was cate-
gorized as a “hit” if the animal generated the “Go” indicator response, a lick at a
waterspout within 1000 ms of target onset. If no lick was emitted the trial counted
as a “miss”. In addition, catch trials were included, in which no deflection of the
whisker occurred (A= 0°) and a trial was categorized as a “correct rejection” if
licking was withheld (No-Go). However, a trial was categorized as a “false alarm” if
random licks occurred within 1000 ms of catch onset. Premature licking in a 2 s
period before the stimulus was mildly punished by resetting time (time-out) and
starting a new inter-trial interval of 4–10 s duration, drawn at random from a flat
probability distribution. Note these trial types were excluded from the main data
analysis.

The first step of behavioral training was systematic habituation to head-fixation
and experimental chamber lasting for about one week. During the second training
phase, a single whisker deflection with fixed amplitude was presented interspersed
by catch trials (Pstim= 0.8, Pcatch= 0.2). Immediately following stimulus offset, a
droplet of water became available at the waterspout to condition the animal’s lick
response thereby shaping the stimulus-reward association. Once subjects showed
stable and immediate consumption behavior (usually within 1–2 sessions), water

was only delivered after an indicator lick of the spout within 1000 ms, turning the
task into an operant conditioning paradigm in which the response is only
reinforced by reward if it is correctly emitted after the stimulus. Subsequent
experiments were performed systematically and the behavioral performance was
measured with simultaneous GEVI imaging. The different experiments are
described in detail in the following section.

Basic learning. Learning was studied once an animal had entered the operant phase
of training after the basic habituation procedure. From this point forward,
experiments were conducted with equal conditions across sessions and without
manual interference by the experimenter. To assess differences in learning based on
stimulus strength, animals were separated into two groups: group 1 (n= 3)
receiving only one low amplitude stimulus and catch trials (A= [4 0]°, Fig. 2) and
group 2 (n= 3) receiving only one high amplitude stimulus and catch trials
(A= [16 0]°, Supplementary Fig. 1). Performance metrics are described under
“Data analysis and statistics” section.

Adaptive behavior. After mice had learned the basic detection task, the psycho-
metric curve was measured in a subgroup of animals (n= 6) using the method of
constant stimuli, which entails the presentation of repeated stimulus blocks con-
taining multiple stimulus amplitudes. On a single trial, one out of multiple possible
stimulus amplitudes was presented after a variable time interval (4–10 s), each with
equal probability (uniform distribution, P= 0.2). A stimulus block consisted of a
trial sequence comprising all stimuli and a catch trial in pseudorandom order (e.g.,
each type once per block). A behavioral session consisted of repeated stimulus
blocks until the animal disengaged from the task, i.e., when it did not generate lick
responses for at least an entire stimulus block. Therefore, the chosen stimulus
occurred repetitively but randomly within a session. A condition was always kept
constant within and across multiple behavioral sessions before the task was
changed. A “switch” was defined as the transition between two sessions with dif-
ferent conditions. In the “high range” condition, four stimulus amplitudes plus
catch trial were used (A= [0, 2, 4, 8, 16]°) and presented in multiple successive
sessions. Following this, four new stimulus amplitudes were presented (A= [0, 1, 2,
4, 8]°) forming the “low range” condition. Both stimulus distributions shared two
of the three stimulus amplitudes; however, the largest stimulus amplitude of the
high range condition (A= 16°) was not part of the low range, and vice versa, the
smallest amplitude of the low range condition (A= 1°) was not part of the high
range. Conditions were always changed in alternating fashion to test the reversi-
bility of adaptation (e.g., high-low-high or vice versa) and multiple switches were
performed to test adaptation at different training stages. The different timescales
are summarized as follows:

Number of trials. The number of trials were variable since each session was stopped
after an animal missed an entire set of stimuli (i.e., A= [0, 2, 4, 8, 16]° for the high
range). The reason for this implementation is to ensure that the data are not
affected by the animal’s potential satiation on any given day. As shown in Fig. 3c,
the number of trials per session averages out to approximately one hundred trials
(n= 101 for high range and n= 104 for low range).

Number of sessions. Within a block, there are 5–11 daily sessions depending on the
animal. However, each animal experienced a matched number of sessions across
blocks (e.g., n= 5 for high range and n= 5 for low range).

Number of blocks. Depending on the animal, 3–6 blocks were performed with
alternating conditions either starting with the high range or the low range con-
dition (resulting in 2–5 switches).

Histology. Upon completion of experiments, transcardiac perfusion was per-
formed on all animals with a 4% paraformaldehyde solution in phosphate-buffered
saline. The head plates were carefully removed from the skulls, and the brains were
extracted and post-fixed for 2–24 h depending on the success of the perfusion.
Brains were then sectioned at 100 µm thickness on a vibratome (Leica VT1000S).
The brain sections were stained with Cytochrome C oxidase and DAPI for histo-
logical analysis of lesion extent or ArcLight expression. Sections were mounted and
imaged using a wide-field color microscope (Zeiss Axio Observer Z1).

Data analysis and statistics
Behavior. The learning curve was measured by calculating a dprime, d′behav, which
quantifies the effect size from the observed hit rate and false alarm rate of each
training session

d0behav ¼ Z hitð Þ � ZðfaÞ ð1Þ
where the function Z(p), p ∈ [0,1], is the inverse of the cumulative distribution
function of the Gaussian distribution. A criterion of d′ = 2.3 (calculated with
p(hit) = 0.95 and p(fa) = 0.25) was used to determine the end of the basic learning
period and learning progress was separated into three equally distributed stages,
“detect-naive” (d′ = 0–0.8), “detect-interim” (d′ = 0.8–1.5) and “detect-experienced”
level (d′ = 1.5–2.3). Psychometric data were assessed as response-probabilities for
individual sessions or averaged across sessions within a given stimulus condition.
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Psychometric curves were fit using Psignifit46–48. Briefly, a constrained
maximum likelihood method was used to fit a modified logistic function with 4
parameters: α (the displacement of the curve), β (related to the inverse of slope of
the curve), γ (the lower asymptote or guess rate), and λ (the higher asymptote or
lapse rate) as follows:

PðGOjsiÞ ¼ γþ ð1� γ� λÞ 1
1þ expð�zðsiÞÞ

ð2aÞ

zðsiÞ ¼
si � α

β
ð2bÞ

where si is the stimulus on the ith trial. Response thresholds were calculated from
the average psychometric function for a given experimental condition using
Psignifit. The term “response threshold” refers to the inverse of the psychometric
function at some particular performance level with respect to the stimulus
dimension. Throughout this study, we use a performance level of 50% (probability
of detection of 0.5). Statistical differences between psychophysical curves were
assessed using bootstrapped estimates of 95% confidence limits for the response
thresholds provided by the Psignifit toolbox. To assess the effects of the lesion on
behavior, the psychometric curves and response thresholds were compared in
lesion animals, from before and after the lesion, and between high- and low-range
stimuli. Kruskal–Wallis or rank-sum tests were used to compare the significance of
the lesion effects on response threshold in lesioned versus healthy animals.

Reward accumulation. Let the stimulus amplitude delivered on the ith trial be
denoted as si, the corresponding reward as ri, (since ri is a fixed value, it can just be
termed r), and the accumulated reward for N trials as RN. Over N trials, the
expected accumulated reward is

EfRNg ¼ ∑
N

i¼1
P si
� �

P GO; j; si
� �

ri ð3Þ

where P(si) comes from the experimentally controlled stimulus distribution,
P(GO│si) is the probability of a positive response (or “Go”) for the given stimulus
amplitude, and E{ } denotes statistical expectation.

We considered the null hypothesis of this behavioral paradigm to be that
animals do not adapt their behavior in response to an experimentally forced change
in stimulus distribution and thus operate from the same psychometric curve
(represented as dotted curves in Fig. 3b). Note, this corresponds to the same curve
but for a different range of stimuli (P(GO│si)) across different si. For example, in
moving from the high range to the low range stimulus condition, this would result
in a decrease in the total accumulated reward for the same number of trials.

As an alternative hypothesis, one possible strategy the animal could take in
response to a change in the stimulus distribution would be to adjust behavior to
maintain the same amount of accumulated reward during a session. For example,
in moving from high range to low range stimuli, the accumulated reward would be
assumed fixed, and we can determine a new set of probabilities P(GO|si) that define
an adapted psychometric function. Note that there is not a unique solution, but one
simple possibility is that the original psychometric function maintains the same
asymptotes (γ and λ) and false alarm rate but is compressed, with a decrease in
response threshold and an increase in slope to maintain the same total accumulated
reward. We denote this situation as our hypothetical psychometric function,
represented as dashed curves in Fig. 3b.

Imaging analysis. All voltage imaging data were analyzed using custom-written
image-analysis software (MATLAB 2015a, Mathworks, Inc.). The specific methods
of processing the ArcLight raw fluorescence signal and basic data analysis followed
those of a recent study from our laboratory16. Briefly, raw images were loaded and
converted from the proprietary file format of the imaging system using custom
scripts. Due to the natural decay of the fluorescent signal caused by photo-
bleaching, each trial was first normalized to a baseline and reported as a percent
change in fluorescent activity (% ΔF/F0). The ΔF/F0 measurement was calculated
by subtracting and dividing each trial’s fluorescence F(x, y, t) by the frame pre-
ceding the stimulus delivery:

4F
F0

¼ F � F0

F0
ð4Þ

where F0(x, y) is the frame of stimulus delivery (F0 = F at t = 0). Note, an extended
analysis was performed with different normalization methods by subtracting and
dividing each trial’s fluorescence F by the fluorescence averaged across different
time windows before stimulus onset (t = 0 ms, t from [−100,0] ms, t from
[−200,0] ms). Increasing normalization windows slightly altered the change in
fluorescence magnitude and variance of the evoked response; however, varying the
normalization window did not affect the adaptive cortical response reported in this
study (Supplementary Fig. 3).

A single region of interest (ROI) was identified using the largest 10 × 10 pixel
(434 × 434 µm) area response 20–25 ms following stimulus onset. The average
activity within this region was extracted across all frames to compute the temporal
dynamics of the fluorescent signal. Note, due to the fluorophore17, positive changes
in membrane potential correspond to a decrease in ArcLight fluorescent activity. In
line with our previous study16 all traces have been inverted to show a positive

increase in fluorescence. Fluorescent voltage traces and behavioral lick responses
were acquired within the same time window and aligned with regard to stimulus
onset (Fig. 1f). After an animal was lesioned, GEVI responses were qualitatively
compared to the responses recorded before the lesion. Temporal dynamics and
overall fluorescence were assessed.

Ideal observer analysis. To quantify the effect size of the fluorescence signal over the
course of learning a metric d′neuro was computed. For a given day or session, single-
trial distributions of evoked signal peaks (maximum % ΔF/F0 within 100 ms post-
stimulus) were compared to the corresponding noise distributions when no sti-
mulus was present. d′neuro is then defined as:

d0neuro ¼ μS� μN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ðvSþ vNÞ

q ð5Þ

where μS and μN are the mean and vS and vN are the variance of the signal and
noise distribution. d′neuro was then directly compared with the behavioral learning
curve derived from d′behav. The same analysis was repeated for the data acquired
with changing stimulus statistics, with the exception that only trials with an
intermediate stimulus amplitude shared between the high and the low range
condition were used. Note, the chosen stimulus of 8-degree whisker angle repre-
sents the midpoint of the high range and the upper limit of the low range con-
dition. Distributions consisting of all evoked trials termed “signal” (peak ΔF/F0
with 8°) and catch trials termed “noise” peak (ΔF/F0 with 0°) were computed
separately for the high and low range condition with one switch from high to low
or vice versa. Statistical differences between distributions were assessed using
bootstrapped estimates of 95% confidence limits for the d′ metrics. This means
resampling the d′ from a given session with replacement 1000 times, taking the
average of each resampled dataset, and then taking the interval that spans the
central 95% of this distribution of averages across resampled datasets. Significance
values were further estimated with a non-parametric Wilcoxon rank-sum or
Kruskal–Wallis test. Throughout this manuscript, * indicates p < 0.05; ** indicates
p < 0.01; *** indicates p < 0.001; and n. s. indicates not significant.

Cascade framework. This analytical framework was created to describe the corre-
spondence between the sensory input distribution, the neuronal response function
derived from the GEVI signal in S1, and the behavioral readout. The experimen-
tally controlled stimulus amplitude on a given trial si is drawn randomly from the
input distribution. The evoked GEVI signal in S1 can then be expressed as a
stimulus-response function G(si). To establish a link between G(si) and the beha-
vior, a mathematical function f(.) was created that transforms G(si) to a probability
of a lick response P(GO|si), i.e., the psychometric function, as illustrated in Fig. 5a,
b. In other words f(.) represents a matching of the evoked fluorescence to the lick
response, given a particular stimulus. Combining both G(si) and f(.) results in a
function f[G(si)], as an estimate of the psychometric curve, P̂ðGOjsiÞ, that can then
be directly compared to the actual psychometric curve P(GO|si). This approach can
be applied across the different stimulus conditions (high versus low), and com-
parisons made across the corresponding G(si) and f(.) functions.

To quantitatively estimate how much of the behavioral variation can be
explained by S1 activity versus downstream, the following control was performed:
G(si) is considered to change between the high and the low range condition, as
observed experimentally, from GHigh(si) to GLow(si). As a null test for the transition
from the high to low condition, to capture how much of the observed changes in
behavior is explained solely by the changes in G(si), f(.) is held constant, operating
from a function fHigh(.), that only reflects the high range condition. The
combination of GLow(si) and fHigh(.) then produces an estimated psychometric
function P̂NullðGOjsiÞ that is only influenced by changes in G(si), and thus serves as
a null test for the prediction based on changes in neural activity in S1 alone.

Because experiments were designed to present a range of stimulus amplitudes,
comparisons of the fluorescence (Fig. 4c) and behavioral (Fig. 5a, b) responses
involved comparing curves. One simple way to do this is to compare the area under
the curves (AUC) by taking the difference between the area under the curve across
the conditions. For the observed GEVI fluorescence signals for the high and low
range stimulus conditions (Fig. 4c), this difference was:

4AUC Low �High
� � ¼ AUC GLow si

� �� �� AUC GHigh si
� �� �

ð6aÞ

where the area was computed across the “overlap range” of stimulus amplitudes.
Similarly, to quantify the relative explanatory power of S1 versus downstream

processing (Fig. 5c–e), we implemented the following. The behavioral adaptation
was quantified by subtracting the areas of the model fits for the high and low range
conditions:

4AUC Low �High
� � ¼ AUC f Low GLow si

� �� �� �� AUC f High GHigh si
� �h i� �

ð6bÞ
Examples of data and model fits are in the right column of Fig. 5a, b. Since, by

construction, this analysis involved components from both S1 and downstream of
S1, this allowed us to evaluate the relative contributions of each. Assuming that
G(si) changed from GHigh(si) to GLow(si) but f(.) is constant (fHigh(.)), this resulted in
a model prediction P̂NullðGOjsiÞ for the behavior performance, if the effect were due
to S1 alone. The prediction for the behavioral adaptation based on a change in G(si)
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(and thus S1) alone was then calculated as follows:

4AUC Low � High
� �

S1 ¼ AUC P̂Null GOjsi
� �� AUC fHigh GHigh si

� �h i�� �
ð6cÞ

Finally, the fraction explained by S1 was then calculated from ΔAUC(Low −
High) and ΔAUC(Low − High)S1 as follows:

%Explained by S1 ¼ 4AUC Low �High
� �

S1

4AUC Low �High
� � ´ 100 ð6dÞ

and the remaining was explained downstream of S1, or % Explained downstream =
100 − % Explained by S1.

All curves were fit using the psignifit toolbox46 and the goodness of fit was
assessed by calculating metrics of deviance (D) as well as the corresponding
cumulative probability distribution (CPE). To rule out the possibility of poor fitting
in the cascade framework, we inspected the goodness-of-fit metric of deviance (D)
as well as estimates of where the goodness-of-fit lay in bootstrapped cumulative
probability distributions of this error metric (CPE) using the psignifit toolbox. Due
to the steep increase in ΔF/F0 at lower stimulus amplitudes, we find that a Weibull
function provides the best fit for G(si). Both, the linker function f(.) and the
psychometric function P(GO│si) are best fit by a logistic function due to the
sigmoid configuration of the data.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in the “Dryad” database under
accession code https://doi.org/10.5061/dryad.h18931zmm. Source data are provided with
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