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Abstract

Coronavirus Disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2). Like the 2002–2003 epidemic severe acute respiratory syndrome 

coronavirus (SARS-CoV), angiotensin converting enzyme-2 (ACE-2) has been identified as the 

SARS-CoV-2 receptor.1–3 The virus docks into host cell via its spike protein binding to ACE-2 and 

undergoes proteolytic cleavage by TMPRSS2 protease to facilitate membrane fusion. The spike 

protein binding to ACE-2 has been shown to be stronger in the novel SARS-CoV-2 virus.1 This 

review will present an overview of ACE-2 biology.
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ACE-2 molecular/cellular biology

The human angiotensin converting enzyme 2 (ACE2) gene maps to the X chromosome, 

cytogenetic location Xp22.2. The full-length ACE2 gene cDNA was cloned in 2000 

by two independent research groups.4,5 EST database search for sequences showed its 

homology to the zinc metalloprotease angiotensin-I converting enzyme (ACE) which was 

also named angiotensin-converting enzyme homolog (ACEH).4 The ACE2 gene encodes a 

deduced 805-amino acid protein that shares approximately 40% identity with the N- and 

C-terminal domains of ACE. ACE2 contains a potential 17-amino acid N-terminal signal 

peptide and a putative 22-amino acid C-terminal membrane anchor. It has a conserved zinc 

metalloprotease consensus sequence (HEXXH) and a conserved glutamine residue that is 

predicted to serve as a third zinc ligand.4,6
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The ACE2 enzyme is widely distributed on the human cells surface, especially the lungs. 

ACE2 receptors are also found in the heart, liver, digestive organs and kidneys and 

endothelial lining of vessels.3,7 Northern blot analysis detected high expression of ACE2 

in kidney, testis, and heart, and moderate expression in colon, small intestine, and ovary.4

ACE2 mRNA was found to be expressed widely in human tissues and cells except red blood 

cells. Highest expression was detected in testis, renal and cardiovascular tissues, and in all 

portions of the gastrointestinal tract, particularly the ilium.6,8

The ACE2 gene contains 18 exons, with some similarity in exon size and organization to 

those of ACE, and spans approximately 40 kb of genomic DNA. The ACE2 gene contains an 

alternative splicing site for the 5′ untranslated exon 1 that was found to be expressed in the 

lung, testis, trachea, bronchial epithelial cells, small intestine, and various major organs.4,9,10 

There are19 single nucleotide polymorphisms (SNPs) identified in the ACE2 gene, some of 

which have been associated with hypertension.10,11

The angiotensin converting enzyme 2 (ACE-2) was shown to play a protective role in the 

fibrogenesis and inflammation of many organs including liver and lung.12,13 ACE-2 is a part 

of the renin angiotensin system (Figure 1).

The renin angiotensin system (RAS) has been traditionally viewed as an endocrine system 

“Endocrine RAS” playing a significant role in blood pressure regulation. In the endocrine 

RAS, the kidney produced enzyme renin acts on circulating AGT protein. Renin cleaves 

AGT to produce a fragment of 10 amino acids known as angiotensin I (Ang I). Ang I 

is converted by angiotensin-converting enzyme (ACE) to the active octapeptide Ang II 

that exerts its actions through binding to specific cell surface angiotensin receptors. Two 

main receptors to Ang II have been identified; AT1 and AT2, both belong to superfamily 

of seven transmembrane G-protein coupled receptors. The AT1 receptor mediates all 

of the classical actions of Ang II (vasoconstriction, sodium retention, cell growth and 

proliferation), while AT2 receptor promotes vasodilation, cell differentiation, inhibition of 

cell growth and apoptosis and may play a counterbalancing role to the effects of Ang II on 

AT1 receptor.14 ACE-2 and its product angiotensin 1–7 (Ang 1–7) acting on mas oncogene 

receptor are referred to as “ACE-2/Ang1-7/Mas axis”, and have counteracting effects against 

the ACE/Ang II/AT1 axis of the RAS. Findings from numerous experimental studies have 

suggested notable protective effects of the ACE-2/Ang1-7/Mas axis in the cardiovascular 

system.15

ACE-2 is zinc-containing metalloenzyme and a membrane protein expressed in multiple 

organs such as heart, lungs, intestine, and kidneys.5,16,17 ACE-2 act as a counterbalance 

to the Angiotensin-converting enzyme (ACE), thus its decreased expression was found to 

associate with cardiovascular diseases.18–20 Full-length ACE2 consists of an N-terminal 

peptidase domain (PD) and a C-terminal collectrin-like domain (CLD) that ends with a 

single transmembrane helix and a ~40-residue intracellular segment.5,21 ACE2 cleaves Ang 

II to give Ang-(1–7) via the PD. ACE2 can also cleave Ang I to produce Ang-(1–9) which is 

then processed by other enzymes to become Ang-(1–7).5,22,23
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ACE-2 Enzyme function

The ACE-2 Enzyme is a glycosylated protein that functions exclusively as a 

carboxypeptidase cleaving angiotensin I (Ang I) and angiotensin II (Ang II), and is not 

inhibited by ACE inhibitors such as lisinopril.4,24–26 ACE2 is expressed predominantly 

in vascular endothelial cells of the heart and kidney. In addition to converting Ang II to 

Ang 1–7, ACE2 converts Ang I to Ang 1–9, which has 9 amino acids with no effect on 

blood vessels, but can be converted by ACE to Ang 1–7 that dilates blood vessels.18,27 

ACE2 enzyme is important in the regulation of Ang II levels related to control of blood 

pressure and inflammation.28 In mice, deficiency of Ace2 was found to result in highly 

increased susceptibility to intestinal inflammation induced by epithelial damage via RAS-

independent functions includinh; regulating intestinal amino acid homeostasis, expression of 

antimicrobial peptides, and effects on the gut microbiome.29

ACE-2 animal models

Crackower et al. demonstrated that Ace2 maps to a defined quantitative trait locus (QTL) 

on the X chromosome in 3 different rat models of hypertension. In all hypertensive rat 

strains, Ace2 mRNA and protein expression were markedly reduced, suggesting that Ace2 

is a candidate gene for this QTL. Targeted disruption of Ace2 in mice resulted in a severe 

cardiac contractility defect, increased AngII levels, and upregulation of hypoxia-induced 

genes in the heart. Genetic ablation of Ace on an Ace2 mutant background completely 

rescues the cardiac phenotype. This model showed that Ace2 is an essential regulator of 

heart function in vivo.18

Imai et al. reported that ACE2 and the AT2 receptor protect mice from severe acute lung 

injury induced by acid aspiration or sepsis.7 However, other components of the RAS, 

including ACE, Ang II, and the AT1a receptor, promote disease pathogenesis, induce lung 

edemas, and impair lung function. Their study showed that mice deficient for ACE show 

markedly improved disease, and also that recombinant ACE2 can protect mice from severe 

acute lung injury thus identifying a critical function for ACE2 in acute lung injury.7

In a model for pulmonary fibrosis, Uhal et al. showed that ACE-2 mRNA and activity 

were decreased in the lungs of bleomycin-treated rats and C57-BL6 mice similar to ACE-2 

decrease in pulmonary fibrosis patients.12 In mice exposed to low doses of bleomycin, 

lung collagen accumulation was enhanced by intratracheal administration of either ACE-2-

specific small interfering RNAs (siRNAs) or the peptide DX(600), a competitive inhibitor 

of ACE-2. Administration of either ACE-2 siRNA or DX(600) significantly increased 

the Ang II content of mouse lung tissue above the level induced by bleomycin alone. 

Coadministration of the Ang II receptor antagonist saralasin blocked the DX(600)-induced 

increase in lung collagen. Moreover, purified recombinant human ACE-2, delivered to 

mice systemically by osmotic minipump, attenuated bleomycin-induced lung collagen 

accumulation. This study suggest that ACE-2 protects against lung fibrogenesis by limiting 

the local accumulation of the profibrotic peptide Ang II.12
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Gurley et al. generated Ace2-deficient mice and found that they were viable, fertile, 

and had normal cardiac dimensions and function.30 After acute Ang II infusion, plasma 

concentrations of Ang II increased almost 3-fold higher in Ace2-deficient mice than in 

controls. In a model of Ang II-dependent hypertension, blood pressures were substantially 

higher in the Ace2-deficient mice than in wildtype mice, and severe hypertension in Ace2-

deficient mice was associated with exaggerated accumulation of Ang II in the kidney. 

Although absence of functional ACE2 caused enhanced susceptibility to Ang II-induced 

hypertension, the authors found no evidence for a role of ACE2 in the regulation of cardiac 

structure or function. This model suggested that ACE2 is a functional component of the 

renin-angiotensin system, metabolizing Ang II and thereby contributing to the regulation of 

blood pressure.30

McCray et al.31,32 produced the K18-hACE2 transgenic mouse for coronavirus research, 

currently being introduced by the Jackson laboratories for use in COVID-19 research. In this 

model, the human cytokeratin 18 (K18) promoter regulates human ACE2 gene expression in 

epithelial cells. The K18-hACE2 transgenic mouse will exhibit fatal infection when infected 

with a human SARS-CoV strain via intranasal inoculation. The infection would spread 

in the mouse model lungs, affecting airway epithelium and the alveoli with subsequent 

spread to the brain. The infection causes both lungs and brain inflammation, characterized 

by up-regulation of pro-inflammatory cytokines and chemokines. In addition, the lungs 

exhibit infiltration of macrophages and lymphocytes. The transgene expression of hACE2 

in epithelial cells caused fatal SARS-CoV infection in the K18-hACE2 mice; showing 

symptoms of weight loss, lethargy, labored breathing, and death.32

ACE-2 roles in disease and therapy

ACE-2 and Influenza Infections:

ACE2 was shown to be associated with the acute lung injury caused by influenza virus.33 In 

the lung, ACE2 is found primarily in epithelial cells,34 and the ACE2/angiotensin-(1–7)/Mas 

axis directly regulates epithelial cell survival.35,36 In mice, ACE2 is a mediator of the acute 

lung injury caused by influenza A H5N1- and H7N9-virus infection,37,38 and in patients, 

increased ACE2 levels are associated with severe disease.37,39 In mice experimentally 

infected with H5N1 influenza, treatment with an ARB (losartan) improves survival.33,40

In an experimental mouse model, Yang et al. showed that ACE2 mediates avian-origin 

influenza A (H7N9) virus-induced acute lung injury and that ACE2 deficiency worsened the 

disease pathogenesis markedly by targeting the AT1 receptor.38 In H7N9-infected patients, 

Huang et al.39 showed that plasma levels of Ang II are markedly elevated and are associated 

with disease progression. Moreover, the sustained high levels of Ang II in these patients are 

strongly correlated with mortality. These findings indicate that angiotensin II is a biomarker 

for lethality in flu infections.39

In experimental mouse models of infection with highly pathogenic avian influenza A H5N1 

virus, Zou et al.37 showed downregulation of angiotensin-converting enzyme 2 (ACE2) 

expression in the lung and increased serum angiotensin II levels. Genetic inactivation of 

ACE2 caused severe lung injury in H5N1-challenged mice, confirming a role of ACE2 in 
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H5N1-induced lung pathologies. Administration of recombinant human ACE2 ameliorated 

avian influenza H5N1 virus-induced lung injury in mice. These data link H5N1 virus-

induced acute lung failure to ACE2 and provide a potential treatment strategy to address 

future flu pandemics.37

Angiotensin Converting Enzyme-2 (ACE-2) in tissue injury and fibrosis:

ACE-2 and its product Ang 1–7 were shown to play a protective role in experimental 

models of fibrosis. In cardiac fibrosis, ACE-2 expression was shown to be protective against 

Ang II-induced and hypertension-induced cardiac fibrosis.41 In liver fibrosis, both Ang 1–7 

and ACE-2 provide protection against the development of liver injury and progression to 

cirrhosis.42 In experimental acute lung injury, ACE-2 also has protective effect associated 

with reduced levels of Ang II. Earlier studies of knockout mice have shown a clear 

protective effect of ACE-2 on experimental acute lung injury in response to acid aspiration 

or sepsis; the protective effect of ACE-2 was associated with reduced levels of Ang II 

after experimental lung injury.24 A study on rat brain astrocytes showed that Ang II down-

regulates ACE-2 mRNA through angiotensin receptor I in a positive feed-forward system 

that favors Ang II – mediated responses.43 In the lung models of fibrosis, ACE-2 was shown 

to regulate alveolar epithelial cell survival by balancing the proapoptotic Ang II and its 

antiapoptotic degradation product Ang1-7 through its receptor “mas”.12,36

ACE-2 and liver fibrosis:

The role of ACE-2 in liver disease is of special interest as several lines of evidence 

suggest that the RAS also participates in the regulation of hepatic inflammation, tissue 

remodeling, and fibrosis after liver injury analogous to other organs. RAS induces key steps 

involved in hepatic fibrosis, such as activation of hepatic stellate cells and expression of 

transforming growth factor β1.44 Treatment with angiotensin-converting enzyme inhibitors, 

and angiotensin receptor blockers attenuate fibrosis progression in both animal and human 

studies45. Additionally, supplementation of ACE-2 can prevent liver fibrosis of bile duct 

ligation mouse model.13,45

ACE-2 in nephropathies

Low ACE2 levels have been reported in established renal disease and in the 5/6ths 

nephrectomy model of renal insufficiency. There is evidence that acquired or genetically 

determined ACE2 deficiency may enhance histologic damage and increase proteinuria in 

experimental nephropathies.46

Substantial experimental data suggest that ACE2 is protective in diabetic nephropathy. 

Numerous studies have demonstrated an attenuation of ACE2 expression in the glomeruli in 

diabetes models.47–50 associated with an increase in ACE expression in the glomeruli and in 

the vasculature.51 Studies in human showed that ACE2 was decreased and ACE expression 

increased in both the tubulointerstitium and glomeruli in patients with diabetes.52
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ACE-2 and Pulmonary Fibrosis

ACE-2 has been shown to play an established protective role in lung disease through effects 

mediated by Mas oncogene, the ACE-2 peptide product ANG1–7 receptor12,53–55. Previous 

studies from our lab and other groups suggest that ACE-2 is down-regulated in fibrotic 

conditions of the adult and neonatal human lung12,53,54 via Mas receptor mechanisms36. 

Data from our lab was first to discover the significant decrease of ACE-2 in the human IPF 

lung and identify the protective effects of ACE-2 in the IPF disease12. We also demonstrated 

that ACE-2 regulates alveolar epithelial cell survival by balancing the proapoptotic Ang 

II and its antiapoptotic degradation product Ang 1–7 through the Ang 1–7 action on its 

receptor “mas”.36

The alveolar epithelial type II cells are considered lung alveolar “stem cells”.56,57 They 

represent a major source of ACE-2 in the adult lung, are normally quiescent but actively 

proliferate in lung fibrosis due to lung injury and downregulate this protective enzyme. 

In our studies we found that in lung biopsy specimens obtained from IPF patients, 

immunoreactive ACE-2 was absent in alveolar epithelia that were positive for proliferation 

markers but was robustly expressed in alveolar epithelia devoid of proliferation markers. 

This explained the loss of ACE-2 in lung fibrosis and demonstrated cell cycle-dependent 

regulation of this protective enzyme.58

ACE-2 and Bronchopulmonary Dysplasia

Bronchopulmonary dysplasia (BPD) is recognized as a chronic lung disease of infancy that 

presents as a systemic syndrome and can be associated with neurodevelopmental deficits, 

cognitive impairments, failure to thrive, pulmonary hypertension and cor pulmonale.59 

Supplemental oxygen, which is frequently used in the treatment of pulmonary insufficiency 

in premature infants, has been implicated in the development of BPD.53,54 In adult animal 

models of acute lung injury,7,60 ACE-2 was shown to inhibit lung edema formation and 

inflammation as well as fibrogenesis. However, little is known about the role of ACE-2 

in neonateal models of BPD. Our research group showed that ACE-2 is expressed in 

fetal human lung fibroblasts but is significantly decreased by hyperoxic gas lung injury,54 

an effect reversed when hyperoxia preceded by hypoxia.53 Furthermore, Wagenaar et al. 
showed that Mas receptor agonists reduce inflammation of the oxygen-induced lung injury 

in rats.55

Chorioamnionitis and mechanical ventilation are also associated with bronchopulmonary 

dysplasia (BPD) in preterm infants.61,62 A study by Hillman et. al., on neonatal lamb model 

of chorioamnionitis and infection showed altered ratio of ACE-1 to ACE-2.62 Although in 

adults, a recent pilot clinical trial of a recombinant form of human angiotensin-converting 

enzyme 2 (rhACE-2) was performed in adults with acute respiratory distress syndrome. As a 

result of treatment, surfactant protein D concentrations were increased and there was a trend 

for a decrease in interleukin-6 concentrations in rhACE-2-treated subjects compared with 

placebo.63 This shows potential use of ACE2 as a therapeutic for neonates as well.
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Role of ACE2 in coronavirus infection

The RAS is involved in lung injury, cardiovascular functions, and coronavirus 

infections.1,3,18,25–28,64–67 COVID-19 binds to a specific ACE2 receptor that is located in 

the lungs within bronchioles and alveoli and other tissues in the body, including those of the 

kidney and small intestine.36,68–70 The majority of these ACE2 enzymes are fixed to cell 

surfaces, mainly on the endothelium.71

Coronavirus that causes severe acute respiratory syndrome (SARS) utilize their Spike 

(S) to associate with cellular receptors for target cells entry. When isolated from SARS 

coronavirus-permissive cells, ACE-2 was found to efficiently bind the S1 domain of the 

SARS-CoV-1 S protein and proved to be a functional receptor for SARS-CoV.6,72 The 

SARS-CoV-1 S protein was also found to exaggerate acute lung failure through deregulation 

of the RAS, while blockage of AT1 receptor, which mediates Ang II-induced vascular 

permeability and severe acute lung injury, attenuated S protein-induced lung injury in 

mice.73 Another novel group of human coronaviruses called NL63 was discovered in 

patients with respiratory tract illness, and was found to also employ ACE-2 as a receptor to 

mediate infection.74

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a novel coronavirus that 

has caused a worldwide pandemic of the human respiratory illness COVID-19, resulting 

in a severe threat to public health and safety.75 Like the SARS virus CoV-1, the CoV-2 

virus enters cells by attachment to ACE-2 receptors while the viral S protein is processed 

(or primed) by the cellular protease TMPRSS2.1–3,76 However, the spike protein binding to 

ACE-2 has been shown to be stronger in the novel SARS-CoV-2 virus.1 The S1 C-terminal 

domain (CTD) has been identified as the key region of SARS-CoV-2 involved in interaction 

with human ACE2.77

Yan et al. presented cryoelectron microscopy structures of full-length human ACE2 with 

or without the receptor-binding domain of the surface spike glycoprotein of SARS-CoV-2. 

The receptor-binding domain is recognized by the extracellular peptidase domain of ACE2 

mainly through polar residues.23 Wang et al. determined the 2.5-angstrom crystal structure 

of SARS-CoV-2 CTD in complex with human ACE2 and found that the receptor-binding 

mode was similar to that of SARS-CoV-1, but that SARS-CoV-2 had slightly stronger 

affinity due to key substitutions in the binding interface. Antibodies against the SARS-

CoV-1 receptor-binding domain did not interact with the SARS-CoV-2 S protein, confirming 

important structural differences between the 2 viruses.6,77

As SARS-COV-2 binds the ACE-2 entry receptor, direct viral cellular damage, release 

of excessive immune mediators and viral particles in the lung tissue, and coagulation 

abnormalities occur.69,78,79 Elevated levels of immune factors released, such as interleukins, 

tumor necrosis factor and interferons contribute to trigger the associated cytokine 

storm in COVID-19.80,81 Immune-related mechanisms are thought to be responsible for 

the disseminated intravascular coagulation with lung micro-thrombosis in COVID-19 

pneumonia.82,83 In severely affected COVID-19 patients, renal dysfunction is thought to 

be due to the presence of ACE-2 receptors in the kidney.84,85
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Future in ACE-2 research

For its protective role in several organs, ACE-2 activation or supplementation is being 

considered as a therapeutic approach.25,26,86–89

Hernández Prada et al. identified compounds that enhance ACE2 activity using 

conformation-based rational drug discovery strategy and to evaluate whether such 

compounds reverse hypertension-induced pathophysiology.88 In vitro assays revealed 2 

compounds (a xanthenone and resorcinolnaphthalein) that enhanced ACE2 activity in a 

dose-dependent manner. Acute in vivo administration of the xanthenone resulted in a dose-

dependent transient and robust decrease in blood pressure of spontaneously hypertensive 

rats. Chronic infusion of the xanthenone resulted in a modest decrease in the spontaneously 

hypertensive rat blood pressure, whereas it had no effect in Wistar-Kyoto rats. The decrease 

in blood pressure was also associated with improvements in cardiac function and reversal 

of myocardial, perivascular, and renal fibrosis in the spontaneously hypertensive rats. They 

concluded that activating ACE2 can help decrease blood pressure for future antihypertensive 

therapy.88

Agents that stimulate Mas, the end receptor of the ACE-2 product Ang1-7, have been 

studied in preclinical studies, especially for treatment of hypertension. The orally active 

nonpeptide drug, AVE 0991, is a AT2R/Mas agonist. AVE 0991 binding to aortic 

endothelial cell membranes, induces vasorelaxation in rats and acts through a Mas-mediated 

mechanism.90–92 Novel peptide Mas agonist drugs CGEN-856S and CGEN-857 induce 

vasorelaxation in murine aortic rings and a dose-dependent decrease in mean arterial 

pressure in spontaneously hypertensive rats.93 Since Ang1-7 has a short half-life and is 

easily degraded, a few studies aimed at using Ang1-7 analogues that are more stable. 

HPβCD- Ang-(1–7) is a stable Ang-(1–7) analogue. The hydroxypropyl-β-cyclodextrin 

protects Ang-(1–7) from digestive tract enzymes. Chronic oral administration lowers BP 

in rats following ischemia-reperfusion injury.94 Cyclic Ang-(1–7) cAng1-7 is another 

peptidase resistant Ang-(1–7) analogue. It improved endothelial function post-MI in male 

Sprague Dawley rats as well as improved peripheral endothelium-dependent vasodilation, as 

measured in isolated aortic rings.95

A few studies have utilized ACE-2-primed endothelial progenitor cells (ACE2-EPCs) to 

induce protective effects on endothelial cells through their released exosomes.96–98 ACE2 

overexpression can enhance the protective effects of EPCs on endothelial cells injury, 

majorly through the exosomal effects on mitochondrial function and down-regulating the 

Nox2/ROS pathway.96–98

Recombinant human ACE-2 has been tested in healthy individuals in clinical trials 

to determine medication pharmacokinetics and pharmacodynamics99, and has been 

investigated as pipeline drug in a pilot clinical trial to treat adult acute lung injury63. 

ACE-2 targeted therapies might be future beneficial treatments for adult and neonatal lung 

disease.26,100

ACE2 has become the focus of COVID-19 research and drug development efforts. 

Among the novel compounds under development is human recombinant soluble ACE2 
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(hrsACE2 [APN01; Apeiron Biologics, Vienna, Austria]).101 A recent study by Zoufaly 

et al. published in The Lancet Respiratory Medicine describes encouraging data from 

the first severe COVID-19 patient successfully treated with human recombinant soluble 

angiotensin-converting enzyme-2 (hrsACE2).102 The rationale for their study was based on 

two mechanisms of action that theoretically should be of benefit in COVID-19.103 The 

first involves binding the viral spike protein and thereby neutralizing SARS-CoV-2,104 

and the second is minimizing injury to multiple organs, including the lungs, kidneys, 

and heart, because of unabated renin–angiotensin system hyperactivation and increased 

angiotensin II concentrations.18,49,73 The hrsACE2 was previously tested in 89 patients, 

namely in healthy volunteers in phase 1 studies and in patients with acute respiratory 

distress syndrome (ARDS) in phase 2 clinical studies, with an acceptable safety profile.63,99 

Moreover, hrsACE2 can reduce SARS-CoV-2 load by a factor of 1000–5000 in in-vitro 

cell-culture experiments and engineered organoids, directly demonstrating that ACE2 can 

effectively neutralize SARS-CoV-2.104 Data from Zoufaly et al. document upon treatment 

of an adaptive immune response, the disappearance of the virus swiftly from the serum, 

the nasal cavity and lungs, and a reduction of inflammatory cytokine levels that are critical 

for COVID-19 pathology. Notably, the use of hrsACE2 did not impede the generation 

of neutralizing antibodies, leading to a significant clinical improvement of the treated 

patient.102,105

Summary and Conclusions

ACE-2 is a protective enzyme to many organs that locally express components of the renin 

angiotensin system (RAS) within its tissues. The protective mechanisms of the ACE-2 

enzyme are attributed to its role in degrading the pro-injury/pro-fibrotic peptide AngII and 

producing the protective/antiapoptotic peptide Ang1-7 that acts on Mas receptor in what’s 

referred to as “ACE-2/Ang1-7/Mas axis” or “the protective arm of the RAS”. Agonists of 

this protective arm are suggested as therapy for the multiple diseases in which RAS is 

involved. Most recently, as the SARS-Cov-2 receptor, ACE-2 has been the focus of research 

due to the COVID-19 pandemic. This lead researchers to revisit the use of recombinant 

human ACE-2 as a future therapy for lung diseases.
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Figure 1. 
Schematic diagram of the Renin Angiotensin System (RAS).

Abdul-Hafez et al. Page 15

J Lung Pulm Respir Res. Author manuscript; available in PMC 2021 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	ACE-2 molecular/cellular biology
	ACE-2 Enzyme function
	ACE-2 animal models
	ACE-2 roles in disease and therapy
	ACE-2 and Influenza Infections:
	Angiotensin Converting Enzyme-2 (ACE-2) in tissue injury and fibrosis:
	ACE-2 and liver fibrosis:

	ACE-2 in nephropathies
	ACE-2 and Pulmonary Fibrosis
	ACE-2 and Bronchopulmonary Dysplasia
	Role of ACE2 in coronavirus infection
	Future in ACE-2 research
	Summary and Conclusions
	References
	Figure 1

