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FoxP3+ regulatory T cells (Tregs) are a subset of CD4+ T cells that can suppress prolifera-
tion and effector functions of T cells, B cells, NK cells, and antigen-presenting cells. Treg 
deficiency causes dramatic immunologic disease in both animal models and humans. As 
they are capable to suppress the function and the proliferation of conventional CD4+ and 
CD8+ T cells, Treg-based cell therapies are under evaluation for the treatment of various 
autoimmune diseases and are currently employed to prevent graft-versus-host disease 
(GvHD) in clinical trials of hematopoietic stem cell transplantation. Even though tumor 
necrosis factor-α (TNF-α) is well known for its pro-inflammatory role, recent studies show 
that it promotes Treg activation and suppressive function. In the present review, we 
discuss the role of TNF-α in Treg function and the possible implications on the actual 
treatments for immune-mediated diseases, with a particular attention to GvHD.

Keywords: TnF-α, regulatory T  cells, TnFR2, immune regulation, tolerance, hematopoietic stem cell 
transplantation, graft-versus-host disease

inTRODUCTiOn

The recent discoveries of immune suppressive cells such as natural FoxP3+ regulatory T cells (Tregs) 
(1–3), invariant natural killer T cells (4), myeloid derived suppressor cells (5), and others prove the 
complexity of the mechanisms that underlie the immune response. These findings have prompted 
studies of the role of immune suppressive cells in different physiologic and pathologic conditions. 
Tregs are a subset of CD4+ T cells that express the alpha chain of the IL-2 receptor (CD25) and a 
nuclear transcription factor termed forkhead box P3 (FoxP3) (1–3). They can suppress proliferation 
and function of many other immune cells such as CD4+ FoxP3− T cells, CD8+ T cells, B cells, NK cells, 
and antigen-presenting cells. Studies on mouse models and on patients affected by immunodysregu-
lation polyendocrinopathy enteropathy X-linked syndrome, a genetic disease with Treg deficiency 
due to mutations in FOXP3 gene, demonstrated that Tregs are required for immune homeostasis and 
for survival (1–3). These discoveries provided key insights on the cellular mechanisms of immune 
regulation. Tregs are critical for maintenance of tolerance toward the self in secondary lymphoid 
organs and peripheral tissues and play an important role in the control of the inflammatory response 
(1–3, 6). Recently, we and others demonstrated that Tregs can build an immunological niche in the 
bone marrow for hematopoietic stem cells and B cell precursors allowing for their maintenance and 
differentiation (7, 8).

As Tregs suppress the function of conventional T cells (Tcons) and other immune cells, Treg-based 
cell therapies are under evaluation for the treatment of immune-mediated diseases. Recent studies 
showed that adoptive transfer of Tregs prevents graft-versus-host disease (GvHD), a life-threatening 
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immune complication of allogeneic hematopoietic stem cell 
transplantation (HSCT). In this setting, donor Tcons mediate 
alloreactions that eradicate tumor cells [graft-versus-tumor 
(GvT)], but that are also directed against normal tissues (mainly 
skin, gut, and liver), causing GvHD (9, 10). Studies in preclinical 
models and the results of clinical trials prove that infusion of 
Tcons under the control of Tregs prevents GvHD, while preserv-
ing GvT effects (11–14). As Tregs constitute only 1–5% of total 
peripheral blood CD4+ T cells, their paucity and the complexity 
of their isolation limit further clinical applications. Thus, differ-
ent strategies have been tested to expand Treg number and/or 
enhance Treg function in vitro and in vivo (15).

Tumor necrosis factor-α (TNF-α) is widely known for its 
pro-inflammatory activity (16–20). In the clinic it is used to 
enhance immune responses against tumors (21, 22) and several 
drugs have been developed to limit its function for treating 
autoimmune diseases (23–28). Its role in the pathogenesis of 
GvHD has been extensively described: TNF-α is released in 
patients after conditioning regimens with chemotherapy and/
or radiotherapy and during the active phase of acute GvHD, 
and it is believed to enhance CD8+ T cell mediated alloreactiv-
ity exacerbating immune destruction of GvHD target tissues 
(10, 29). Following these studies TNF-α-inhibitory drugs such 
as the monoclonal antibodies infliximab and adalimumab 
and the competitive soluble TNF-α receptor etanercept are 
now in use in the clinic for the treatment of steroid-refractory  
GvHD (30).

TNF-α is synthetized as a trimeric type II transmembrane 
protein, which can be cleaved to give rise to soluble extracel-
lular TNF-α. Both membrane and soluble TNF-α are biologically 
active (16–20). TNF-α can bind two receptors, TNF receptor 1 
(TNFR1) and 2 (TNFR2). Membrane TNF-α acts preferentially 
through TNFR2. TNFR1 is widely expressed on a variety of cells 
and its engagement triggers pro-inflammatory responses. TNFR2 
expression is almost exclusively restricted to immune cells and 
its binding promotes cell survival and proliferation (17–20). 
TNFR1 contains a cytoplasmic “death domain,” which recruits 
the adaptor molecule TNFR1-associated death domain protein 
(TRADD). TNFR1 interacts with different signaling complexes 
through TRADD, leading to either cell survival or cell death, 
depending on cellular context and signaling regulation. TNFR2, 
that lacks the cytoplasmic death domain sequence, binds directly 
TNFR-associated factor 2 and activates the nuclear factor 
“kappa-light-chain-enhancer” of activated B  cells (NF-κB) and 
mitogen-activated protein kinase (MAPK) pathways (19, 20). 
TNFR1-deficient mice display defects in immunity to infection 
and in inflammatory response. In contrast, TNFR2-deficient 
mice show signs of exacerbated inflammation (31). In line with 
these data, TNFR1-deficient mice are resistant to myelin oligo-
dendrocyte glycoprotein-induced experimental autoimmune 
encephalomyelitis, that is a model of multiple sclerosis, while 
TNFR2-deficient mice exhibit more severe disease (32–34). 
In the same model, TNF-α-deficient mice also show extensive 
inflammation, demyelination, and high mortality (35). As Tregs 
preferentially express TNFR2, recent studies explored TNF-α 
impact on Treg function (36–38). Many of them highlight, not 
without controversies, the possibility that TNF-α could enhance 

Treg suppressive activity, suggesting a new regulatory function 
for TNF-α.

In this review, we will describe how TNF-α impacts on Treg 
phenotype and function and how Treg immune responses can 
be modified by TNF-α exposure over time. We will report 
controversial studies on human Tregs where TNF-α role is not 
fully elucidated yet. We will also discuss the possible implications 
of these studies on the actual treatments for immune-mediated 
diseases mainly focusing on GvHD and we will propose future 
clinical directions.

iMMUne-ReGULATORY ROLe OF TnF-α 
in Treg FUnCTiOn

Role of TnF-α in Mouse Treg Function
The first clear indication of a role of the TNF-α/TNFR2 pathway 
in Treg function derived from studies in mice (36). In vitro, TNF-
α in the presence of IL-2 increases the expression of CD25 and 
FoxP3, enhances the proliferation of Tregs and the suppression 
they exert on effector T cell proliferation. Mouse Tregs express 
higher levels of TNFR2 than CD4+ CD25− T  cells, while both 
subsets barely express TNFR1 (36). CD4+ CD25+ TNFR2+ Tregs 
display an activated phenotype (CD45RBlow, CD62low, CD44high, 
high levels of CD69, CD103, GITR, and CTLA-4) and are 
more suppressive in vitro than CD4+ CD25+ TNFR2− cells (39).  
In vitro, TNF-α in combination with IL-2 selectively upregulates 
the expression of TNFR2 and other members of the TNF-α recep-
tor superfamily, including OX40, 4-1BB, and FAS on Tregs (40). 
Studies in TNFR2-deficient mice showed that TNFR2 is required 
for natural Treg optimal function in vivo. In fact, wild-type Tregs 
controlled colitis induced by the transfer of naïve CD4+ T cells 
into Rag1−/− mice, while TNFR2-deficient Tregs did not (41, 42). 
Similarly, neutralization of TNF-α exacerbated skin inflamma-
tion and was associated with a reduction of Tregs in the draining 
lymph nodes in a murine model of psoriasis-like disease (43).

Several reports show that Treg activation through the TNF-α/
TNFR2 pathway can be exploited to enhance protection from 
GvHD in mouse models of allogeneic HSCT. In a mouse model 
of HSCT serum of mice during acute GvHD contained high 
levels of TNF-α that induced Treg proliferation and suppressive 
function. Donor TNF-α-primed Tregs prevented GvHD and 
prolonged mouse survival at an unfavorable Treg:Tcon ratio 
compared with unprimed Tregs. Importantly, the donor T cell 
mediated GvT effect against a leukemia cell line was unaffected 
(44). In another study, donor Treg-mediated protection from 
GvHD was abrogated by using a TNFR2 blocking mAb, or when 
either TNFR2-deficient Tregs or TNF-α-deficient T  cells were 
infused (45). Finally, Chopra et  al. showed that treatment of 
irradiated recipient mice with a TNFR2 specific agonist protein 
successfully expanded radiation-resistant host Tregs in  vivo, 
resulting in prolonged survival and reduced GvHD severity 
after transplantation. The GvT effect and the function of donor 
T cells against pathogens (e.g., cytomegalovirus) were preserved 
even after host–Treg expansion induced by the TNFR2 agonist. 
The beneficial effects of the TNFR2 agonist were abrogated in 
TNFR2-deficient mice (46).
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Role of TnF-α in Human Treg Function
Like mouse Tregs, human Tregs preferentially express TNFR2 
(37, 38). The majority of human CD4+ CD25+ TNFR2+ cells 
express FOXP3 and high levels of CD45RO, a marker of acti-
vated effector and memory T cells. In vitro, they suppress Tcon 
proliferation and function more efficiently than CD4+ CD25+ 
TNFR2− cells (38). Okubo et al. showed that TNF-α or a TNFR2 
agonist antibody promote in  vitro expansion of TNFR2+ Tregs 
when added to standard expansion protocols (culturing medium 
with anti-CD3/CD28 stimulus and IL-2, in the presence or not 
of rapamycin) (47). TNFR2 stimulated and expanded Tregs had 
a striking homogeneous phenotype (CD4+ CD25high FOXP3+ 
CTLA4+ CD127− CD62L+ Fas+ HLA-DR+ CD45RO+ CCR5− 
CCR6− CCR7− CXCR3− ICOS−), they were endowed with a 
greater suppressive function, and produced lower levels of IFN-γ 
and IL-10. In fact, such highly suppressive Tregs co-expressing 
TNFR2 could ameliorate the onset of autoimmune diseases. For 
example, in type 1 diabetic patients the same authors observed 
an increase in resting CD45RA+ Tregs and a decrease in activated 
CD45RO+ Tregs. In vitro treatment with TNF-α or TNFR2 agonist 
antibody corrected the activation defect of Tregs in these patients 
(48). Thus, TNFR2 activation could trigger survival and prolifera-
tion of human Tregs through the NF-κB and MAPK pathways.

Despite the similarities between mouse and human Tregs 
expressing TNFR2, there are conflicting data on the effects of 
TNF-α on human Tregs. Some studies suggest that Treg function 
is impaired in rheumatoid arthritis (RA) patients and treatment 
with anti-TNF-α antibodies restores it (49–52). Tregs from patients 
with active RA or with active Systemic Lupus Erythematosus have 
been showed to express reduced levels of FOXP3 but increased 
levels of TNFR2 and to have defective function in vitro (50, 53). 
The mechanisms underlying Treg defective function are not well 
understood and TNFR2 expression levels could not be involved in 
the pathogenesis of these autoimmune disorders. Moreover, func-
tion of Tregs from patients with various autoimmune diseases 
could have been affected by many factors, including disease status 
and previous treatments. Furthermore, anti-TNF-α therapy has 
been shown to be associated with the induction of a population 
of CD62L−-induced Tregs rather than a recovery in natural 
Treg function (54). In another study, the anti-TNF-α antibody 
adalimumab was shown to bind to membrane TNF-α expressed 
by monocytes and to promote Treg expansion by paradoxically 
enhancing TNFR2-mediated signaling in RA patients (55).

Conflicting data also arose from in  vitro analyses of TNF-α 
effects on Tregs from healthy donors. Some studies showed 
that suppression of Tcon proliferation exerted by Tregs was 
impaired in the presence of TNF-α (50–52, 56, 57). On the other 
hand, other authors reported that TNF-α in combination with 
IL-2 increased CD25 and FOXP3 expression and induced Treg 
proliferation and function (47, 48, 58). Different experimental 
conditions could account for these inconsistencies, such as Treg 
selection methods and purity, length of Treg exposure to TNF-α 
and its concentration, and TNF-α effects on effector T  cells in 
coculture experiments. Our personal observations support the 
notion that TNF-α upregulates the expression of Treg specific 
markers and it does not impair Treg function in vitro. However, 
these contradictory results highlight the need for an extensive 

investigation of the role of TNF-α in Treg function in  vivo, in 
humanized preclinical models.

AnTi-TnF-α THeRAPieS AnD TnFR2 
PATHwAY BLOCKADe

The intrinsic pro-inflammatory role of TNF-α and its ability to 
induce production of other inflammatory cytokines (e.g., IL-1, 
IL-6, GM-CSF, IFN-γ) made TNF-α an ideal therapeutic target 
for conditions where a reduction of inflammatory response was 
needed (23–28, 59, 60). Thus, drugs that block or reduce TNF-
α activity have been developed to treat autoimmune diseases, 
such as RA, inflammatory bowel diseases, psoriasis, ankylosing 
spondylitis, and others. The recombinant anti-TNF-α antibody 
infliximab, which blocks both soluble and membrane TNF-α, 
demonstrated clear clinical efficacy in the treatment of Crohn’s 
disease and RA. Following this initial success several other anti-
TNF-α drugs were tested in the clinic and anti-TNF-α treatment 
is now a fundamental step in the treatment of autoimmunity 
(25, 61).

Studies on GvHD after HSCT showed that TNF-α levels are 
increased in patients with acute GvHD and tend to correlate with 
disease onset and progression (10, 29, 30, 62). TNF-α is rapidly 
released by tissue macrophages after the conditioning regimen 
and it induces donor T  cell activation and further prolifera-
tion possibly triggering GvHD. Thus, anti-TNF-α therapy was 
rapidly considered in this condition: infliximab and etanercept 
(a human recombinant TNF-α receptor that competes for and 
inactivates soluble and membrane TNF-α) have been used to 
treat steroid-refractory GvHD (30, 63, 64). After initial studies 
that were suggesting clinical efficacy, the lack of response in a 
big portion of patients, the high-risk of life-threatening infec-
tions that may follow the treatment, and the possibility of GvHD 
exacerbations or rapid progression after treatment, are limiting 
their clinical use and leave doubts on their application in this 
setting (63).

The clinical effects of anti-TNF-α therapy should be reconsid-
ered by virtue of the new insights on TNF-α/TNFR2 pathway in 
Treg function. As TNF-α inhibition can reduce Treg in vivo sup-
pressive function, the potential benefit of the treatment in inflam-
matory conditions could be limited. Anti-TNF-α treatments are 
not effective in some of the autoimmune diseases in which TNF-α 
is involved. Moreover, patients treated with anti-TNF-α drugs can 
develop other immune-mediated complications (65, 66). In fact, 
in multiple sclerosis, whose pathogenesis appears to be sustained 
by TNF-α (67), TNF-α blockade resulted in unexpected disease 
progression and onset of new lesions with demyelination (68).

As Tregs are critical for GvHD protection and control over 
time, limiting Treg function could be a potential pitfall of TNF-α 
blocking therapy in the HSCT setting. TNF-α that is produced 
after conditioning regimens with radiotherapy and/or chemo-
therapy can bind TNFR2 and at the same time activate Tregs 
and alloreactive T cells (44, 69). The higher TNFR2 expression 
in Tregs in comparison to the other T cell subsets makes them 
avid of the cytokine and could favor their activation (Figure 1). 
Furthermore, Tregs prevent GvHD mainly during the early 
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FiGURe 1 | Effects of TNF-α on Treg function during graft-versus-host disease (GvHD) onset, maintenance, and progression. (A) The release of TNF-α that follows 
tissue damage (e.g., gut) due to conditioning regimens with chemotherapy and/or radiotherapy in HSCT induces T cell activation. Its preferential action on Tregs 
through TNFR2 helps limiting CD4+ and CD8+ effector T cell function during the early phases of GvHD. (B) At later stage, TNF-α may further activate alloreactive 
T cells contributing to GvHD maintenance and/or progression.

FiGURe 2 | Goals of selective TNFR2 activation on Tregs. TNF-α/TNFR2 pathway could be activated in vitro to ameliorate quality of Treg cellular products. Selective 
TNFR2 agonists may result in preferential Treg activation and expansion in vivo. Such strategies could be explored for graft-versus-host disease (GvHD) prevention, 
treatment of autoimmune diseases, and tolerance induction to organ transplantation.
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phase after transplant (15, 70). Thus, the use of anti-TNF-α 
drugs as GvHD prophylaxis may be particularly counteractive as 
it could block Treg-mediated suppression of donor alloreactive 
T cell proliferation in secondary lymphoid tissues (30, 71, 72). 

Anti-TNF-α drugs are usually used in steroid-refractory GvHD 
(63). At this stage, TNF-α may have a limited role in sustaining 
the function of cytotoxic donor alloreactive T cells, which have 
been already activated and expanded. Moreover, it could be 
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possible that TNF-α blockade limits Treg residual function, thus 
contributing to disease progression or loss of clinical response 
in some patients. An optimal window for the use of anti-TNF-α 
therapy could be the very onset of GvHD when TNF-α recruits 
and activates donor cytotoxic T cells.

CLiniCAL PeRSPeCTiveS

Based on the data discussed above, stimulation of the TNF-α/
TNFR2 pathway is expected to activate and expand Tregs (36, 38, 
39, 44, 47). CD4+ FoxP3+ Tregs, thanks to their high expression of 
TNFR2, are preferentially activated when the whole CD4+ T cell 
pool is exposed to TNF-α. In these conditions, they acquire a pro-
liferative and functional advantage in comparison to the effector 
CD4+ FoxP3− T cells suggesting selectivity of the TNF-α/TNFR2 
pathway in the CD4+ T cell subset (44). Vaccination with Bacillus 
Calmette Guérin, a strong inducer of TNF-α secretion, promoted 
in vivo specific expansion of CD4+  CD25high FOXP3+  Tregs in 
one subject (47). On the other hand, CD4+ CD25− effector T cells 
upregulate TNFR2 expression after TCR stimulation and become 
more resistant to Treg-mediated suppression (69). In addition, 
TNFR2 expression by effector CD4+ T  cells was required to 
induce full-fledged experimental colitis in one study (73). Thus, 
the effects of the activation of the TNF-α/TNFR2 pathway should 
be carefully evaluated in vivo.

Compared with the available anti-TNF-α drugs, blocking anti-
bodies that selectively inhibit TNFR1 or TNFR2 could be used for 
different clinical purposes (61). Anti-TNFR1 antagonists could 
be more effective for the treatment of autoimmune diseases, as 
they do not interfere with Treg function. As Tregs co-expressing 
TNFR2 are abnormally abundant in human and murine tumors 
and can support their growth (39, 74), blocking TNF-α/TNFR2 
pathway could be a therapeutic option in cancer (75). Indeed, 
a TNFR2 antagonist antibody has been shown to concomitantly 
suppress Treg function and promote effector T cell proliferation 
in vitro (76).

As TNFR2 is highly expressed by a Treg subset with maximal 
suppressive function, it could be used as a marker for Treg selec-
tion for adoptive therapy purposes. At the same time, treatments 
that specifically stimulate TNFR2 could selectively boost Treg 
function. TNFR2 agonists can activate and expand Tregs ex vivo 
and possibly in vivo (47). The use of Treg-based cellular therapies 
is limited by the paucity of Tregs in the periphery and the com-
plexity of in vitro manipulation required for their expansion while 

preserving function and purity. TNFR2 agonists may represent an 
alternative strategy to expand in vitro a Treg population endowed 
with higher purity and enhanced activity, thus improving results 
of current Treg-based clinical trials for GvHD prevention in 
HSCT. Moreover, the ability of TNFR2 agonists to expand highly 
suppressive Tregs in vivo should be carefully evaluated in preclini-
cal models. Such studies could open the possibility of Treg-based 
immunotherapies for autoimmune diseases where regulation of 
T cell response is impaired or for tolerance induction to organ-
transplantation (Figure 2).

COnCLUDinG ReMARKS

TNF-α has been widely known for its pro-inflammatory activity, 
but the effects that follow the stimulation of its two main receptors 
should be carefully taken in consideration when evaluating the 
pathogenesis and the treatment of immune-mediated diseases. 
In this context, new discoveries on the role of TNF-α/TNFR2 
pathway may provide relevant tools for a correct use in the 
clinic of anti-TNF-α treatments and for improving Treg-based 
therapies. While the blockade of this pathway is under investiga-
tion for cancer treatment, TNFR2 stimulation could be used to 
induce and expand Tregs thus controlling detrimental immune 
responses. Further studies are needed to evaluate whether Treg 
activation via TNFR2 could enhance yield, purity, and efficacy of 
Treg-based cell therapies. Such approach could have a potential 
for quick clinical translation in HSCT trials where Tregs are in use 
to prevent GvHD and boost immune reconstitution. The rising 
growth of studies on mouse and human Treg function strongly 
support a new role for TNF-α and TNFR2 as key players in the 
complex interplay between immune cells during immune regula-
tion and tolerance.
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