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Periodontitis is a complex multifactorial disease that can lead to destruction of tooth
supporting tissues and subsequent tooth loss. The most recent global burden of
disease studies highlight that severe periodontitis is one of the most prevalent chronic
inflammatory conditions affecting humans. Periodontitis risk is attributed to genetics,
host-microbiome and environmental factors. Empirical diagnostic and prognostic
systems have yet to be validated in the field of periodontics. Early diagnosis and
intervention prevents periodontitis progression in most patients. Increased
susceptibility and suboptimal control of modifiable risk factors can result in poor
response to therapy, and relapse. The chronic immune-inflammatory response to
microbial biofilms at the tooth or dental implant surface is associated with systemic
conditions such as cardiovascular disease, diabetes or gastrointestinal diseases. Oral
fluid-based biomarkers have demonstrated easy accessibility and potential as
diagnostics for oral and systemic diseases, including the identification of SARS-
CoV-2 in saliva. Advances in biotechnology have led to innovations in lab-on-a-chip
and biosensors to interface with oral-based biomarker assessment. This review
highlights new developments in oral biomarker discovery and their validation for
clinical application to advance precision oral medicine through improved diagnosis,
prognosis and patient stratification. Their potential to improve clinical outcomes of
periodontitis and associated chronic conditions will benefit the dental and overall public
health.

Keywords: periodontal diseases/periodontitis, patient stratification, precision medicine, biotechnology, saliva,
biomarkers

INTRODUCTION - PERIODONTAL DISEASES

Periodontitis is one of the most prevalent chronic inflammatory diseases (Kassebaum et al., 2014).
An estimated 42% of United States adults have been diagnosed with periodontitis with around 8%
being severely affected (Eke et al., 2018). The clinical manifestation includes the loss of supporting
tooth structures such as alveolar bone, soft tissue and the periodontal ligament (PDL). The
pathogenesis is triggered by an immunoinflammatory response of the host to a bacterial
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challenge (Kornman et al., 2017). Gingivitis is a reversible
periodontal disease that manifests clinically as gingival
inflammation without loss of bone or PDL. In susceptible
individuals, gingivitis can lead to periodontitis when untreated.
Gingivitis always precedes but not always leads to periodontitis.
The transition from a controlled inflammatory state to tissue
destructive inflammation requires both a dysbiotic oral
microbiome and a susceptible host (Hajishengallis et al., 2012;
Hajishengallis, 2014). Besides the infectious nature of
opportunistic pathogenic bacteria and their byproducts, host
genetics governing the immune-inflammatory response as well
as behavioral and environmental risk factors play a critical role in
the initiation and progression of periodontal diseases (Page and
Kornman, 2000). Therefore, the likelihood and rate of
progression relies on multiple patient-related factors and
cannot be generalized (Tonetti et al., 2018). Studies have
shown that independent of external components, disease
progression in different populations occurs in dynamic orders
with similar rates (Loe et al., 1978; Teles et al., 2016). Periodontitis
is an oscillating condition with periods of disease progression,
inactivity, and/or regression (Goodson et al., 1982; Teles et al.,
2018).

Notable with chronic diseases, early diagnosis is key to long-
term treatment success. Classification criteria in the periodontal
field have recently been updated (Papapanou et al., 2018) and
include the categorization regarding the severity and extent of
pathological destruction, as well as the determination of
progression risk in the response to conventional therapy. The
criteria that define periodontitis are mostly surrogate endpoints
that measure localized tissue destruction. This only allows the
quantification of past destruction and hence, limitations on
prediction of future disease activity. Additionally, physical
measurements are subject to error and variability between
clinicians (Goodson et al., 1984). In accordance to the dynamic
nature of periodontitis, the practical prognostic systems are fairly
arbitrary (McGuire and Nunn, 1996; Kwok and Caton, 2007).

As the specialty of periodontics evolved over the past
centuries, endosseous implants entered as reasonable
alternatives in clinical reality. However, novel approaches
come with de novo challenges. Periimplantitis is a pathological
condition occurring in tissue around dental implants (Schwarz
et al., 2018). Similar to periodontitis, periimplantitis results in
inflammation of the surrounding structures and subsequent peri-
implant tissue destruction.

Whether we are evaluating either teeth or implants, clinicians
still find themselves challenged to determine which host factors
are actually destructive, and which may be protective. The most
desirable goal in health care delivery is to accurately monitor
disease onset, progression and treatment outcomes.

Inter-Relationship With Other Oral Diseases
The humanmicrobiota includes thousands of diverse species with
about 700 microbial genus members (MacGregor et al., 2005;
Arweiler and Netuschil, 2016). The oral ecology with its
boundless diversity (of oral microbiota) emphasizes the
persistent symbiosis of microorganisms in the state of health.
Within the oral cavity, hard and soft tissue surfaces are accessible

to the cross-linking interaction of microorganisms and
permeability of pathogenic etiologies. Disturbance of this
equilibrium leads to the most prevalent oral diseases globally
which are dental caries, periodontal disease and cancers of the lips
and oral cavity (Frencken et al., 2017; Peres et al., 2019).
Commonalities of these prevalent diseases are the patient
profile and lifestyle habits (e.g., smoking, diet, stress, etc.).
Poor oral health and infrequent dental visits have been shown
to place patients at higher risk for developing head and neck
cancers (Ahrens et al., 2014). Periodontal disease increases the
risk of premalignant mucocutaneous diseases such as oral
leukoplakia by up to five fold (Meisel et al., 2012).
Contrastingly, loss of periodontal tissues may be of diagnostic
relevance, as progression due to exacerbation of mucocutaneous
diseases that can impair oral hygiene care by patients (Jimenez
et al., 2002). Oro-mucosal diseases are associated with painful
erosions and ulceration of the soft tissues lining the oral cavity. In
order to avoid further discomfort, home care is hindered resulting
in the accumulation of bacterial plaque biofilms and eventually in
the loss of the mucosal tissues including those tooth-supporting
periodontal tissues (Rai et al., 2016). Studies have confirmed the
significance of periodontal pathogens and tooth loss as diagnostic
markers for oral and head-and-neck cancers. (Mager et al., 2005;
Zeng et al., 2013b).

In the chronic condition of periodontitis, the ramifications of
long-standing inflammation can impact the oral microflora and
leading to microbial dysbiosis. Like in periodontitis, the primary
etiology of carious lesions is a microbiological infection combined
with additional multifactorial environmental drivers (Kornman
et al., 2000; Pitts et al., 2017). Yet, the clinical manifestations and
patient symptoms of these two diseases differ significantly.
Progression of carious lesions stimulates nerves within hard
tooth structures, with a possible influence on the pulpal
status–that can elicit pain. On the other hand, periodontitis
tends to have a more silent onset with slower rate of tissue
destruction and hence often more difficult to diagnose early and
predict progression.

Interrelationship With Systemic Conditions
Today’s appreciation of periodontology is manifold,
characterized by a relationship with systemic health. Evidence
supporting the link between periodontal disease and systemic
conditions is accumulating in the literature (Papageorgiou et al.,
2017; Heikkila et al., 2018; Romandini et al., 2018; Sanz et al.,
2018; Sen et al., 2018) (Table 1). This relationship is mainly
attributed to the constant inflammatory state driven by the
presence of virulent oral pathogens. Studies confirmed elevated
levels of inflammatory markers in patients with periodontitis
when compared to healthy controls (Buhlin et al., 2009). This
chronic low-grade inflammation gradually and silently
contributes to the aggregate systemic inflammatory burden.
Chronic inflammation has been known for its close association
with adverse cardiovascular events (Ridker and Silvertown, 2008)
as well as the formation of thrombi (Mukhopadhyay et al., 2019).

Additionally, periodontitis has been associated as a potential
risk for increased morbidity for systemic conditions including
diabetes mellitus, rheumatoid arthritis, obesity, osteoporosis and
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adverse pregnancy events (Bartold and Lopez-Oliva, 2000;
Papapanou, 2015; Penoni et al., 2017; Sanz et al., 2018; Kang
et al., 2019). The bidirectional relationship between diabetes
mellitus and periodontitis has been extensively investigated
and demonstrates that control of one disease positively
impacts the other (Sima and Glogauer, 2013). A recent
preclinical study reported the potential effect of periodontal
inflammation on the pathogenesis of Irritable Bowel disease.
The translocation of oral pathogens during an oral
inflammatory state to the intestines may lead to the disruption
of the colonization resistance of gut-resident microbiota
(Kitamoto et al., 2020).

Although periodontitis primarily involves local destruction of
tissues in the oral cavity, its management requires a whole-body,
long-term strategy tailored to each individual’s profile. The
comorbidity between periodontitis and systemic diseases raises
the importance of reducing the cumulative inflammatory burden
by pursuing early diagnosis and treatment from a dental point of
view (Slots, 2000).

PREDICTION MODELS AND BIOMARKER
SELECTION

Salivary and Crevicular Fluid Diagnostics
A biomarker is a defined characteristic that is measured as an
indicator of normal biological processes, pathogenic processes or
response to an exposure or intervention (Cagney et al., 2018).
There is abundant evidence demonstrating that certain
inflammatory biomarkers are elevated for years prior to
resulting into clinically significant consequences (Ridker and
Silvertown, 2008). These same biomarkers are highly
predictive for disease onset when assessed timely and
accurately. Oral fluids offer a non-invasive opportunity to
weigh risks, predict disease initiation, refine diagnosis and

stratify treatment modalities (Giannobile, 2012; Zhang et al.,
2016).

Risk prediction models are generated using microbiological
elements, salivary protein biomarkers as well as on a genetic/
epigenetic information (Figure 1). The media to obtain these
indicators can be derived from human saliva or gingival
crevicular fluid (GCF). Numerous studies were carried to
analyze the relationships between saliva composition and oral
diseases including periodontitis (Brinkmann et al., 2011;
Giannobile, 2012; Salminen et al., 2014; Kc et al., 2020),
carious lesions (Teng et al., 2015), and oral cancer (Wang
et al., 2015; Zhang et al., 2016).

Dating back to 2008, the term “Salivaomics”was introduced to
facilitate the research focused on disease diagnosis and
monitoring (Wong, 2012). Saliva essentially originates from
blood serum and is filtrated by the salivary glands, effectively
representing the body’s circulating health or disease markers
(Spielmann and Wong, 2011). Saliva is a rich source of
proteins related to oral conditions and systemic health. Saliva
possesses multiple biological functions such as antibacterial,
antiviral, antifungal, wound healing, buffering, tooth
mineralization, food digestion, and coating (Vila et al., 2019).
In addition to these functions, collection of salivary samples is
easy and a non-invasive procedure.

GCF is essentially a serum exudate that accumulates in the
gingival sulcus or pocket that is generally rich in biological
markers. This site-specific fluid is easily obtainable and
generally predictive of periodontal pathogenesis (Zhang et al.,
2016). Over the past 2 decades studies have analyzed biomarkers
in the GCF and their predictive ability in the periodontitis
identification and progression.

Microbiological Markers
Since periodontitis is a chronic inflammatory disease associated
with microbial dysbiosis and host-driven tissue destruction

TABLE 1 | Key Publications on associations of periodontal disease and systemic conditions based on meta-analyses.

Systemic condition Meta-Analysis

Based on studies
exploring biomarkers

Based on epidemiological
studies

Reference Reference

Diabetes mellitus (Atieh et al., 2014; Artese et al., 2015; Garde et al., 2019; Baeza
et al., 2020)

(Darre et al., 2008; Engebretson and Kocher, 2013; Faggion Jr.
et al., 2016; Ziukaite et al., 2018; Jain et al., 2019)

Cardiovascular disease (Mustapha et al., 2007; Paraskevas et al., 2008; Freitas et al.,
2012; Teeuw et al., 2014; Munz et al., 2018; Roca-Millan et al.,
2018; Joshi et al., 2019; Munoz Aguilera et al., 2020)

(Bahekar et al., 2007; Blaizot et al., 2009; Almeida et al., 2018)

Rheumatoid arthritis (Han and Reynolds, 2012; Kaur et al., 2014; Bender et al., 2017;
Calderaro et al., 2017; Eskandari-Nasab et al., 2017; Hussain
et al., 2020)

(Tang et al., 2017; Qiao et al., 2020)

Obesity (Akram et al., 2016) (Papageorgiou et al., 2015)
Irritable bowel disease * (Eskandari-Nasab et al., 2017; Papageorgiou et al., 2017;

Lauritano et al., 2019; She et al., 2020)
Osteoporosis * (Penoni et al., 2017; Xu et al., 2020)
Oral cancer (Wang et al., 2018; Zhang et al., 2019) (Zeng et al., 2013a; Yao et al., 2014; Ye et al., 2016)

*, No Meta-Analysis identified since 2007.
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(Kornman, 2008; Darveau, 2010), it is recognized that a single
oral pathogen would not be sufficient to induce themost common
forms of periodontitis. However, historically there were several
studies focused on small subgroups of patients with rapidly
progressing bone destruction occurring around certain teeth
(molars and incisors), called localized aggressive periodontitis,
which was found to associate with a specific bacterium, named
Aggregatibacter actimomycetemcomitans (Aa). This specific
pathogen was once used as a strong diagnostic to monitor
treatment outcome (Socransky and Haffajee, 1992) as there
were clinical studies showing that sites with residual infection
of Aa resulted in further clinical attachment loss around teeth
(Christersson et al., 1985; Fine et al., 2013). Systemic antibiotic
therapy (tetracycline or metronidazole) was indicated to target
this pathogen (Slots and Rosling, 1983; Kornman and Robertson,
1985). More recently, the focus has shifted to investigate a
separate group of highly virulent bacteria that were identified
under the deep periodontal pockets in patients with chronic
periodontitis in the general population. They are the “red
complex bacteria”(Socransky et al., 1998) or the keystone
pathogens (Hajishengallis et al., 2012).

Those red complex and keystone pathogens have been
implicated in many studies that showed their association and

predictive value for periodontitis. In a 12-months longitudinal
study using subgingival plaque with real-time PCR to predict
periodontitis progression, red complex pathogens [including
Porphyromonas gingivalis (Pg), Tannerella forsythensis (Tf) and
Treponema denticola (Td) in conjunction with E. corrodens (Er),
F. nucleatum (Fn) and P. intermedia (Pi)] equally contributed to
strong sensitivity and specificity values (Kinney et al., 2014).
Additionally, P. gingivalis and T. denticola in saliva, together with
elevated levels of MMP-8 can also be a strong indicator for severe
periodontitis (Gursoy et al., 2018; Nascimento et al., 2019; Sorsa
et al., 2020). However, at the initial periodontitis lesion, the red
complex cannot accurately predict a robust inflammatory
response for gingivitis. In a human experimental gingivitis
study utilizing checkboard DNA-DNA hybridization, it was
found that the orange complex, especially Fusobacterium
nucleatum (Fn), predisposes patients to a more pronounced
inflammation (Lee et al., 2012). F. nucleatum is an early
colonizer that bridges the pathogens and thus identified as an
emerging opportunistic pathogen that plays a critical role in the
dysbiosis of microbiome (Hajishengallis, 2015). However,
metatranscriptomic analyses of the human oral microbiome
found that F. nucleatum upregulates all genes involved
inL-lysine metabolism to short chain fatty acid butyrate, which

FIGURE 1 | The systems approach to advance precision oral medicine. Schematic diagram illustrating integration of modifiable and nonmodifiable risk factors, and
immune-metabolic signatures for biomarker identification, patient stratification, and understanding of molecular mechanisms for oral diseases. The oral soft and hard
tissue phenotype is determined by genetic, environmental, and microbial factors. The phenotype is reflected by tissue integrity and immune functions that control the
pathogenicity of the oral biofilms. Integrative analysis of data sets (e.g., genomics, proteomics, lipidomics) are used to dissect the changes in tissue structure and
immune functions in different subjects and thereby identify biomarkers associated with specific phenotypes. Subject segmentation is necessary for improved clinical trial
design and precise treatment approaches. It can also serve as a basis for analysis of dynamic responses to treatment strategies and the identification of molecular
mechanisms underlying different phenotypes. Bioinformatic analyses using AI on comprehensive ‘omics data sets to interpret network dynamics across omics layers
help develop precise and personalized treatment schemes for oral and associated systemic conditions.
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can establish a favorable growth environment for disease-
associated communities but is also a beneficial regulator of
host-microbiome balance in the gut, and potentially in the oral
cavity (Chang et al., 2014; Jorth et al., 2014; Schulthess et al., 2019).
The concept of dysbiosis and the recognition of host-microbe
interaction mandates the field to not only consider specific oral
pathogens but also several host biomarkers including receptors for
microbiome metabolites, lipid mediators of inflammation,
chemokines, cytokines, enzymes and other proteins. Combining
clinical measures, pathogen levels, and cytokines like interleukin
(IL)-1β, osteoprotegerin (OPG) and matrix metalloproteinases
(MMP)-8 can provide up to 74% sensitivity for predicting
periodontitis progression (Kinney et al., 2014).

With the growing use of dental implants, particularly in patients
with tooth loss due to periodontitis, peri-implantitis and its
increasing prevalence has gained tremendous attention to
elucidate the pathogenesis and develop predictable
therapeutic approaches. T. denticola was found associated
with peri-implantitis, and combined with the levels of IL-1β,
vascular endothelial growth (VEGF) and tissue inhibitors of
metalloproteinases (TIMP)-2 in the peri-implant crevicular
fluid (PICF), it enhances the diagnostic accuracy for disease
activity (Wang et al., 2016). In a 6 months, prospective
interventional clinical trial, lower post-treatment pathogen
levels in a panel of oral bacteria, together with >30%
reduction of IL-1β, VEGF, and IL-6 in PICF had a 77%
sensitivity to predict a favorable treatment outcome (Renvert
et al., 2017). More recently, using next generation sequencing
technologies, previously unculturable potential pathogens were
identified in periodontitis and peri-implantitis lesions, and the
level of dysbiosis highly correlated with disease severity (Kroger
et al., 2018; Shi et al., 2018).

The methodological advancements in high-throughput
sequencing and bioinformatics have provided unprecedented
resolution in profiling the oral microbiome and host-
microbiome interfaces. Using molecular methods, we have
significantly expanded the number of bacterial species (more
than two hundred) identified in oral microbiome. However, the
field is calling for functional investigation of the bacteria within
the biofilm microenvironment and of the associated host oral
immune functions to elucidate the ultimate impact of host-
microbe interaction on dysbiosis and tissue destruction (Wade,
2011; Krishnan et al., 2017). For example, patients with localized
aggressive periodontitis may have selective impaired phagocyte
functions (especially for F. nucleatum) resulting in overgrowth
of opportunistic pathogens relative to commensal bacteria,
which represents a potential mechanism for “host-mediated
dysbiosis” of the microbiome (Wang et al., 2015). Ultimately,
understanding the host-microbe interactions and the influence
of dysbiosis in each individual holds the key for future
diagnostics and therapeutics.

Protein Biomarkers
Precision medicine demands a systems wide approach to
integrate multi-level data in search for accurate and reliable
biomarkers of disease activity, and novel therapeutic targets to
improve the management of chronic conditions in all fields of

medicine (Giannobile et al., 2013). Protein biomarkers pave the
way to individualized prevention, diagnosis and treatment.
When considering the periodontal pathogenic processes,
periodontitis can be generally divided into three phases:
inflammation, connective tissue degradation, and bone
resorption. During each phase of the disease activity, specific
biomarkers have been identified to provide a general sense of
what stage of pathologic breakdown the patient is currently
residing (Korte and Kinney, 2016) (Table 2). Numerous studies
were carried out to analyze the relationships between oral
diseases and saliva composition. The most recent systematic
review reported macrophage inflammatory protein-1 alpha, IL-
1β, IL-6, and MMP-8 as promising diagnostic biomarkers (Kc
et al., 2020).

The pro-inflammatory cytokines IL-1β and tumor necrosis
factor alpha (TNF)-α were frontrunner targets in the quest for
molecular biomarkers of periodontitis activity (Page and
Kornman, 2000). Decreases in IL-1β and TNF-α levels were
found to reduce periodontitis progression (Delima et al.,
2001). Further, the relationship between inflammatory cell
infiltrates and tissue degradation is centered on the production
of MMPs: collagenases, gelatinases and the stromelysins. They are
synthesized by resident gingival and innate immune cells
including epithelial cells, fibroblasts, neutrophils and
macrophages. TIMPS control the local extracellular MMP
activity in tissue remodeling, allowing a constant balance of
reparative and destructive phases in soft tissue matrices
(Meikle et al., 1994; Reynolds and Meikle, 2000). In the same
sense, inflammatory osteolysis and bone remodeling are regulated
by several bone metabolites and immune mediators (Giannobile,
1999; McCauley and Nohutcu, 2002; Kinney et al., 2007).
Receptor-activator of NF-κβ ligand (RANKL), a member the
TNF-superfamily, is an essential pro-osteoclast factor, which,
together with its decoy receptor OPG, is critical for bone
resorption-formation coupling. RANKL binds to RANK, which
leads to the activation and differentiation of osteoclasts with
subsequent bone destruction. In active periodontitis, levels of
RANKL are increased and levels of OPG are decreased, therefore
RANKL/OPG ratio may serve as a biomarker for periodontitis.

Recent studies have shown that site specific GCF biomarkers
can be effective measures of periodontal treatment efficacy [e.g.,
hypoxia induced factor-1 alpha (HIF-1α), VEGF and TNF-α
levels] and hence their ability to surveil therapeutic modalities
(Afacan et al., 2020). When evaluating the sensitivity of GCF-
based tests, longitudinal studies found that addition of biofilm-
associated pathogens may have higher predictive value for
periodontitis progression (Kinney et al., 2014).

Use of Genetics for Risk Stratification and Prognosis
Page and Kornman suggested that the pathological mechanism of
periodontitis, is centered around the host’s responses against
microbial challenges, a paradigm that continues to this day
(Hajishengallis and Korostoff, 2000; Page and Kornman, 2000).
Environmental and genetic risk factors are mediators of the host
immune-inflammatory response, and connective tissue and bone
metabolism. The susceptibility to periodontitis is fundamentally
polygenic in nature and regulated through genes induced by
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TABLE 2 | Oral-based biomarkers with major effector functions associated with oral and systemic diseases.

Type of Biomarker Major effector functions References

Inflammation IL-1β Potent proinflammatory stimulator (Kornman et al., 1997; Akdis et al., 2011)
Potent effects on cell proliferation, differentiation and function of
many innate and specific immunocompetent cells
Strong correlation with periodontal disease progression

IL-6 Regulator of T- and B-cell growth (Akdis et al., 2011; Lee et al., 2012)
Directs leukocyte trafficking
Induces production of acute-phase protein
Increase levels of periodontal disease

IL-10 Restriction of excessive inflammatory responses (Ouyang and O’Garra, 2019)
Upregulation of innate immunity and promotion of tissue repair
mechanisms

IL-8 Recruitment and activation of neutrophils (Lee et al., 2012)
Attracts NK cells, T cells and basophils

TNF-α Macrophage activation (Erdemir et al., 2004; Akdis et al., 2011)
Inducing apoptosis of epithelial cells in the mucosa
Regulates MHC class I and II protein and antigen presentation
expression
Stimulates gingival fibroblasts to produce collagenase

CRP Increases rapidly in response to trauma, inflammation and
infection

(Freitas et al., 2012)

Activates the complement pathway, apoptosis, phagocytosis,
nitric oxide (NO) release, production of cytokines

IFN-γ Key cytokine in bridging innate and adaptive immune system (Akdis et al., 2011)
Regulate MHC I and II class protein expression
Inhibition of cells growth primarily by increasing levels of cyclin-
dependent kinase inhibitors
Proapoptotic affects

PGE2 Lipid mediator that regulates activation, maturation and cytokine
secretion of several immune cells

(Agard et al., 2013)

Induced during bacterial pathogenesis
Tissue destruction MMP-8 Degradation of interstitial collagens (Kinney et al., 2007)

Prevalent host proteinase in periodontal disease
MMP-9 Proteolytic degradation of extracellular matrix proteins (Cui et al., 2017)

Mediator of tissue destruction and immune responses in
periodontal disease

MMP-13 Expressed by epithelial cells during prolonged inflammation (Offenbacher et al., 2010)
Efficiently degrading type II collagen

TIMP Naturally occurring MMP inhibitor that bind MMPs in a 1:1
stoichiometry

(Pietruska et al., 2009; Cui et al., 2017)

Decreased levels after periodontal treatment
Cathepsin-B Degrades extracellular components, type IV collagen, laminin and

fibronectin
(Buck et al., 1992)

Bone remodeling OPG Decoy receptor for RANKL (Bostanci et al., 2007)
Inhibits osteoclast formation

RANKL Stimulates RANK on the surface of stem cells to form osteoclasts (Bostanci et al., 2007)
Regulation of bone destruction

ICTP Pyridinoline cross-links with high specificity for bone (compared to
histidine cross-links for soft tissue and skin)

(Giannobile, 1999; Al-Shammari et al., 2001)

Osteoclastic bone resorption initiates the release of cross-linked
immunoreactive telopeptides

Calprotectin Antimicrobial and antifungal activities (improving resistance to P.
gingivalis)

(Kinney et al., 2007)

Inhibits immunoglobulin production
Neutrophil recruitment and production

Osteonectin Affinity to collagen and hydroxyapatite leading to tissue
mineralization

(McCauley and Nohutcu, 2002)

Key role in remodeling and repair
Osteocalcin High concentration during bone turnover (Giannobile et al., 1995)
Osteopontin Highly concentrated at sites where osteoclasts are attached to the

underlying mineral surface
(McCauley and Nohutcu, 2002; Kinney et al., 2007)

Holds a dual function in bonematuration andmineralization as well
as bone resorption
Highly glycosylated extracellular matrix protein with levels in active
sites of bone metabolism

IL, Interleukin; NK cells, Natural killer cells; TNF, Tumor necrosis factor; CRP, C-reactive protein; MHC, Major histocompatibility complex; IFN, Interferon; PGE, Prostaglandin E; MMP,
matrix metalloproteinases; TIMP, Tissue inhibitor of metalloproteinases; OPG, Osteoprotegerin; RANKL, Receptor activator of nuclear factor kappa-B ligand; ICTP, C-telopeptide
pyridinoline cross-links.
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environment interactions (Schaefer, 2000). The heritability of
periodontitis has been investigated in familial and twin studies,
estimating to be around 30–50% after being adjusted for covariates
(Michalowicz et al., 2000; Nibali et al., 2019).

The human genome sequencing and subsequent functional
investigations advanced our understanding of genetic regulation,
gene by environment interactions and their roles in complex
chronic conditions. The current emerging paradigm proposes
that specific disease phenotypes can be attributed to the effects
of combinations of various genetic risk alleles and their interaction
with internal and external factors (Schaefer, 2000). Severe
periodontal genotypes may carry susceptibility alleles more
frequently. IL-1 is a potent pro-inflammatory cytokine and is
involved in the pathogenesis of many human chronic
conditions including cardiovascular, metabolic, autoimmune and
others (Sims and Smith, 2010). For periodontitis, the IL-1 genotype
has a regulatory effect on the local inflammatory processes
(Kornman et al., 1997; Offenbacher et al., 2018). IL-1A allele 2
and IL-1B+3953 allele 2 genotypes were recognized as strong
indicators for severe periodontitis in an adult populations
(Kornman et al., 1997). Carriers of these alleles produce more
IL-1 by blood mono-and polymorphonuclear cells, and have a
higher IL-1 prevalence in GCF (Rogus et al., 2008; Latella et al.,
2009). IL-1 genotypes have been consistently associated with
periodontitis within diverse ethnic groups. A high frequency of
the IL-1b allele 1 was observed in localized juvenile periodontitis
patients in an African-American population (Walker et al., 2000).

Longitudinal studies of IL-1 gene polymorphisms (Cullinan
et al., 2001) and the genome-wide association studies (GWAS)
shed light on the IL-1 role as a critical risk factor for periodontitis
and determinant of the pro-inflammatory host response. These
findings support patient stratification based on the IL-1 genotype
for tailored measures to prevent periodontitis progression and
associated tooth loss (Giannobile et al., 2013).

Epigenetics implies DNAmodification that does not change the
DNA sequence, but rather influences gene expression and the
consequent disease activity (Schmidl et al., 2018). Epigenetic
alterations are known to affect transcription and translation of
genes through DNA methylation, post-translational modification
of histones and/or non-coding RNA (Barros et al., 2000; Larsson
et al., 2015). Several studies have found hypomethylation profiles
within the interferon (IFN)-γ, IL-6, and TNF-α promoters, which
was associated with increased IFN-γ, IL-6, and TNF-α transcription
in gingival biopsies from patients with periodontitis (Zhang et al.,
2010; Kobayashi et al., 2016). Furthermore, a hypermethylation
pattern of the prostaglandin-endoperoxide synthase 2 (PTGS2)
promoter was found associated with reduced PTGS2 transcription,
consistent with a dampening of cyclooxygenase- expression that
had been reported in gingival samples collected from sites with
periodontitis (Zhang et al., 2010). One study found that microbial
challenges induced changes in DNA methylation affecting the
barrier function of oral epithelial cells (Barros et al., 2020).

The impact of risk variants and their interaction on modifying
disease susceptibility is currently being investigated (Freitag-Wolf
et al., 2019). Complex diseases like periodontitis are significantly
influenced through genes by environment interactions. McGuire
et al. reported that the IL-1 genotype-positive heavy smoker patients

had significantly worse tooth survival rates (McGuire and Nunn,
1999). Parkhill reported that IL-1β, IL-1-Receptor Antagonist and
IL-1β genotype combined with smoking in Caucasians are risk
factors for early onset periodontitis (Parkhill et al., 2000). Smoking
was associated with DNA hypomethylation in the SOCS1 promoter
of epithelial cells isolated from saliva of periodontitis subjects
(Martinez et al., 2019). Also, DNA hypomethylation of the IL-8
gene promoter in oral epithelial cells from periodontitis subjects was
decreased (Oliveira et al., 2009).

Advances in analyzing equipment have recently been developed
and the next generation sequencer (NGS) has emerged as a
powerful tool. Due to NGS, GWAS have been widely accepted
and performed worldwide to elucidate linkages between genetic
background and potential susceptibility to diseases.

GWAS for periodontal diseases reported 41 consensus master
regulator genes (Sawle et al., 2016) and signals for periodontal
complex traits (Offenbacher et al., 2016). More specifically, in
patients with chronic periodontal conditions four genes (NIN,
ABHD12B, WHAMM, and AP32) have been identified (Rhodin
et al., 2014). Sanger sequencing revealed the association of NOD2
mutations in a Japanese population with aggressive periodontal
disease (Sudo et al., 2017).

Due to the diversity in the pathogens, environmental factors
and genetics, further studies need to be performed in order to
develop their association with periodontitis.

DIAGNOSTIC DEVICES

Salivary Proteome and Salivary Genome
The expression proteome combines the terms proteins and genes,
and implies the simultaneous study of all proteins in a cell and
protein complements of the genome (Parker et al., 2010). Studies
in periodontology using proteomic analysis of whole saliva from
chronic periodontitis patients were able to show the suppression
of several salivary proteins related to protective functions and oral
homeostasis (Hartenbach et al., 2020).

The advancement of analyzing equipment such as NGSs and
mass spectrometry (MS) allowed the emergence of the new field
of “Omics.” Omic technologies analyze genetic or molecular
profiles and obtain a complete assessment of the functional
activity of biochemical pathways with their structural genetic
sequence differences among individuals. (Aardema, 2002). The
complementary advances in information technology and
sequencing devices in this decade have enabled analysis of vast
amounts of Omics information, contributing to better
understanding of disease activity to improve our prediction for
disease onset and progression (Eicher et al., 2020). In recent years,
various investigations were carried out using preclinical animal
and translational Omics analyses to elucidate pathological
mechanisms (Rhodin et al., 2014; Offenbacher et al., 2016;
Sawle et al., 2016; Sudo et al., 2017; Maekawa et al., 2019;
Shin et al., 2019). Since Omics probe different cellular layers,
they are categorized at DNA, RNA, protein, or metabolite levels
(Yugi et al., 2016). Accordingly, current studies encompass
genomics/epigenomics, transcriptomics, proteomics and
metabolomics. The oral microbiome research has recently
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moved to a higher level of granularity using these approaches to
both host and microbe investigations. For example,
transcriptomics allows us to understand the conserved disease-
associated gene expression profile in the microbiome for the onset
of gingivitis and progression to periodontitis (Yost et al., 2015;
Nowicki et al., 2018). Another more general approach is
metagenome analysis, with the purpose to identify novel
biocatalyst genes to increase our understanding of microbial
ecology (Streit and Schmitz, 2004). It enables investigators to
screen for activities and functions of interest.

Studies in periodontology using proteomic analysis of whole
saliva from chronic periodontitis patients were able to show the
suppression of several salivary proteins related to protective
functions and oral homeostasis (Hartenbach et al., 2020). In
2019, deep sequencing combined with rapid shotgun analysis
for ultra-deep and quantitative saliva proteome characterization
identified 5,500 host proteins and more than 2,000 microbial
proteins in samples of periodontitis patients, with a strong
correlation between dynamics of the oral microbiome and
salivary proteins (Grassl et al., 2016).

The “shotgun” proteomics analysis revealed that S100A8 and
S100A9 in saliva are potential biomarkers for active periodontitis
(Shin et al., 2019). In support of this, several studies have revealed
their pathogenic roles in periodontitis progression (Maekawa
et al., 2019; Liu et al., 2020). S100A8 and S100A9, two pro-
inflammatory calcium-binding S100 proteins acting as damage-
associated molecular patterns, were implicated in pathogenesis of
rheumatic diseases having strong associations with the disease
activity and potential as therapeutic targets (Austermann et al.,
2018). S100A9 was also reported to increase IL-6 production and
RANKL expression in osteocyte-like cells suggesting potential as
osteoimmune biomarker for inflammatory osteolysis (Takagi
et al., 2020).

Liquid biopsies are an emerging innovative strategy with
reduced invasiveness, especially in the medical field of cancer
(Heitzer et al., 2019). So far, biopsy samples are mainly blood and
serve for the detection of tumor components including
circulating tumor cells, circulating tumor DNA, cell-free RNA,
extracellular vesicles, and miRNA. Unlike solid biopsies, liquid
biopsy are less invasive and easier to obtain with the purpose of
early disease detection (Sierra et al., 2020), prognosis and follow-
up (Wan et al., 2017). Recently, attention has also been drawn
toward oral fluid-based liquid biopsies for detecting RNA and
miRNA in saliva and GCF.

miRNAs are gene regulatory molecules in multicellular
organisms and likely influence the output of many protein-
coding genes (Bartel, 2004). Over the past decade, research
related to microRNAs (miRNA) in periodontitis has
accumulated (Kebschull and Papapanou, 2000; Xie et al., 2011;
Perri et al., 2012; Stoecklin-Wasmer et al., 2012). To date, 25
miRNAs were reported to be significantly up-regulated and six
miRNAs down-regulated in inflamed gingival tissues in
periodontal patients (Luan et al., 2017; Luan et al., 2018).
Several studies on the expression of miRNAs using various
dental tissue cells such as gingival fibroblasts (Sipert et al.,
2014; Matsui and Ogata, 2016) and PDL cells (Chen et al.,
2015) have been performed (Sehic et al., 2017).

Recently, Saito et al. investigated 600 miRNAs in GCF and
found that they had a different profile compared to GCF in
healthy subjects (Saito et al., 2017). The expression of miR-1226
in GCF in patients with severe chronic periodontitis was
significantly down-regulated (Mico-Martinez et al., 2018) while
other groups reported that miRNAs associated with
inflammation (e.g., miR-146a and miR-155) were significantly
up-regulated in chronic periodontitis with type 2 diabetes.
Furthermore, pilot studies have reported increased expression
of miR-143-3p (Nisha et al., 2019), miR-381-3p (Fujimori et al.,
2019) in chronic periodontitis patients. Interestingly, these
microRNAs expressions in GCF were reduced after non-
surgical therapy when compared to the level of healthy
controls (Radovic et al., 2018).

Due to the scarcity of studies on miRNAs in GCF and saliva
(Saito et al., 2017; Atsawasuwan et al., 2018; Mico-Martinez et al.,
2018; Radovic et al., 2018; Fujimori et al., 2019; Al-Rawi et al., 2020)
further studies are still needed. Wearable sensors in the oral cavity
may allow detection of miRNA changes, which may be useful for
more detailed diagnosis and tracking of dynamics in periodontitis.

In search for functional and regulatory periodontitis
biomarkers small extracellular vesicles (sEV) in saliva related
to miRNAs were recently investigated. One study reported that
three miRNAs, hsa-miR-140-5p, hsa-miR-146a-5p and hsa-miR-
628-5p in sEV, may have potential as diagnostic biomarkers for
periodontitis (Han et al., 2020).

Modern matrix-assisted laser desorption ionization time-of-
flight (MALDI-TOF) MS can perform quick and accurate
proteome analyses to characterize a wide spectrum of samples.
A study using MALDI-TOF MS examined the differentially
expressed peptide peaks in saliva, GCF, and dental plaque
samples and revealed high sensitivity and specificity in
diagnosing periodontitis (Antezack et al., 2020).

Taken together, these technological advances in Omics
performance and the need for a systems approach to achieve the
goal of precision medicine highlight the next Frontier in multi-level
Omics studies on large populations to define periodontitis phenome
and refine biomarker arrays with high predictive values for disease
progression. Moreover, multi-level omics analyses (Trans-OWAS)
emerge to elucidate more comprehensive mechanisms in diseases to
ultimately define disease phenotypes based on pathogenesis rather
than amount and pattern of tissue destruction (Yugi et al., 2016).
Trans-OWAS analysis is reconstructing a global biochemical
network by connecting multi-omic layers. Further technologies,
combining multi-omics with deep learning will help develop
diagnostic systems using various biomarkers, clinical parameters
and demographic data to create databases that perpetually refine the
phenome (Figure 2).

Biosensors and Microelectro-Mechanical
Systems
The most reliable and common methods for detecting protein and
gene expression are conventional techniques such as ELISA and
quantitative PCR (qPCR), respectively. These analyses achieve both
high sensitivity and high specificity. However, qPCR analysis
requires physical manpower, prolonged reaction times,
expensive equipment and significant training (Zhu et al., 2020).
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In recent years, the accelerated progress in biotechnologies led
to the development of biosensors and microelectro-mechanical
systems (MEMS). Biosensors recognize the analytes that are sent
to reader devices via electrical signals (Kim et al., 2019). MEMS
essentially miniaturized the system of biosensors using
microfluidics, microdevices and micro total analysis systems
with a reduction of the reagents and reaction time (Seker
et al., 2011). These technologies enable the rapid detection of
analytes with greater sensitivity. Currently, toxins can also be
detected using biosensors (Chauhan et al., 2016). Recent
advancements that occurred in the field are significant.
However, overall commercialization and clinical translation
seems to be modest (Kaisti, 2017).

Lab-on-a-chip (LOC) is a subset of MEMS integrating
laboratory function on an integrated chip. LOC can provide
in vitro diagnostic results ad-hoc. After the recognition of the

specific analyte, the information is transduced to an integrated chip
(Nguyen et al., 2018). In 2020, a new polymeric LOC based on a
microfluidic capillary flow assay with on-chip dried reagents was
created to detect unbound cortisol in saliva. Increased cortisol
levels were reported in mentally-challenged patients (Heinze et al.,
2016), thus monitoring cortisol level in saliva can be a valuable
predictor for early detection of psychological disorders.

Another technique known as integrated two-dimensional paper
network implements an automated multi-step processing for viral
detection, enabling us to identify the presence of viruses within
minutes. Influenza virus can be identified by surface glycoproteins
and hemagglutinin. This technology has already been applied to
other viruses such as norovirus, rotavirus, adenovirus, influenza
virus, and respiratory syncytial virus (Zhu et al., 2020).

Various field-effect transistor sensors can enable detection
of ions, molecules, oligonucleotides and proteins in a fast

FIGURE 2 | Patient stratification workflow for oral screening and monitoring. Multi-level omics analyses (Trans-OWAS) analyses are used to construct the
relationships between periodontal phenotypes, which collectively define the phenome, and key biomarkers identified across omics layers. The combination of genetic (1)
and environmental information (2) to develop deep learning algorithms from dense population-wide data helps us design periodontal phenotype-specific biomarker
panels to more accurately and precisely predict disease progression and response to therapy. This further allows for validation of diagnostic systems based on
pathogenesis rather than amount and pattern of tissue destruction. Population-wide trans-OWAS integration (3) and deep learning identify and perpetually redefine
phenotypes and refine by-phenotype biomarker panel array systems (4). This facilitates patient stratification for high predictive values of tests to determine disease
susceptibility. Salivary screening for disease activity biomarkers classifies individuals as being at low, moderate or high risk for disease onset or progression. This allows
for timely disease assessment and precise management by combining clinical examinations with further targeted salivary tests and pharmacogenomic analyses.
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response time (Kaisti, 2017). Furthermore, biosensors using
wireless graphene nanosensors are able to detect oral
microorganisms at a single cell level on hard tissue surfaces
like tooth enamel (Mannoor et al., 2012). Mannoor et al., 2012
confirmed that biosensors placed on a tooth were capable of
remote monitoring and detection of bacteria in saliva.
Additionally, biosensors on mouthguards have been
reported to analyze metabolites (Kim et al., 2014) and the
uric acid (Kim et al., 2015) in saliva. This device could detect
analytes with high sensitivity and stability, and monitor them
in a real-time manner. Heikenfeld et al. (Heikenfeld et al.,
2019) reported recent trends to wear the lab, and in the future
the implantation of the lab could follow. In oral environments,
there are many opportunities to place the LOC technology in
association with restorations of teeth or dental implants, or

simply wear the LOC embedded into a mouthguard
(Figure 3).

Focus should be directed to discover oral locations in order to
monitor patient health conditions, systemic disease, and detect
viral and bacterial infections.

Various technologies emerge constantly and develop rapidly.
Machine learning using artificial intelligence (AI) accelerates the
development of identification of biomarkers for application in
dental medicine (Bianchi et al., 2020). As of this moment,
technologies have developed to a point where we have achieved
a reduction in size of sensors, providing multiple salivary analytes
simultaneously and improvements in the sensitivity and specificity
of testing. Ongoing developments and innovative approaches will
help in the detection of the risk of oral disease, disease onset, and
monitoring of oral and systemic conditions.

FIGURE 3 | The evolution of diagnostic devices and wearable lab-on-a-chip’s (LOC) for precision medicine applications. (A): The most common diagnostic
approaches to measuring soluble biomarkers are “sample-to-lab” and “lab-to-sample,” i.e., samples are either collected from patients, transferred to the lab and
analyzed, or tests are delivered directly at the point-of-care for rapid actionable results in the clinic. Technological advancements of the 21st century allow for the
development of LOC analyzers to gather diagnostic information chairside in real time. (B) The emerging integration of wearable LOC’s in health care allows for
continuous monitoring of physiological and pathological processes, and provide dense individual-level data for Artificial Intelligence (AI)-assisted personalized
management. The next Frontier in LOC development may be the fabrication of biocompatible implantable sensors for continuous measurement of soluble biomarkers
difficult to measure through the skin. Such advancements will expand diagnostic capabilities, at-home care and telemedicine; (C): Example of a wearable biosensor
integrated into a mouthguard to capture a single analyte in saliva over time and transduce the signal via Wi-Fi for analysis; (D): Example of a graphene-based nanosensor
adhered to the tooth surface andmarginal gingiva to capture and quantify multiple analytes over time. Data is processed onboard and deep learning algorithms applied to
establish personal physiological thresholds and out of personal norm trends.Wirelessly transferred output data supports clinical decisions during in-office or teledentistry
appointments.
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FIGURE 4 | Screening and SARS-CoV-2 point-of-care (POC) Testing for Oral health care (OHC) Decision Making and Serosurveillance. Screening and testing can
provide actionable results at POC. COVID-19 screening and prevention protocols in OHC settings should be implemented within the clinical decision trees on delivery of
elective or urgent care. Pre-appointment screenings via patient portals or mobile phone apps supplemented with in-house measurement of body temperature and POC
testing can be the basis for safe practices and rational use of advanced personal protective equipment. This protocol first establishes who is at low-to-moderate risk
(<65 years old, no known risk factors for severe disease outcome, no known exposure to individuals with active disease or recent travel to and from locations with
outbreaks, no symptoms and temperature <100°F/37.8°C) vs. high-risk (>65 years old, existing risk factors for severe disease outcome, known exposure to individuals
with active disease or travel to and from outbreak locations in the past 14 days, or present symptoms and body temperature >100°F/37.8°C). It then determines by
testing if a patient was likely never infected, was previously infected and is immunized or is currently infected with SARS-CoV-2. Non-infected and immunized patients will
benefit from both urgent and elective care. Infected asymptomatic should benefit from urgent care only with appropriate prevention measures. All treatments should be
deferred for symptomatic infected individuals until recovery. Recovered COVID-19 patients with undetectable virus should benefit from urgent and elective care. Referral
of positive cases to primary care physicians, and of immunized, but virus negative patients to blood donation, and contact tracing support will contribute to early
management and control of disease spread.
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COVID-19 POINT-OF-CARE TESTING IN
ORAL HEALTH CARE SETTINGS

Oral health care (OHC) practices can contribute to broad-
based COVID-19 prevention and management measures
through screening, point-of-care (POC) diagnostic tests
and appropriate referral of patients in these settings
(Figure 4). The integration of POC testing platforms for
nucleic acids and antibodies into OHC workflows will allow
for continuity of care, rational use of advanced personal
protective equipment, reduction in transmission at community
level, serosurveillance and contact tracing support during
pandemics with pathogens transmitted through respiratory
droplets, including SARS-CoV-2.

SARS-CoV-2 is detected in saliva of infected individuals
(Wyllie et al., 2020; Azzi et al., 2020; Iwasaki et al., 2020;
Sabino-Silva et al., 2020; To et al., 2020a; To et al., 2020b). Both
saliva and posterior oropharyngeal swab sampling are less
invasive, more acceptable to patients, and reduce exposure
risks for healthcare workers compared to nasopharyngeal swab
sampling. Therefore, salivary diagnostics can provide a
convenient and cost-effective POC platform for fast
detection of SARS-CoV-2 RNA. Further, using reliable self-
collection devices can facilitate direct-to-patient diagnostic
testing. The FDA has authorized specific SARS-CoV-2
testing on saliva samples collected at home using a
designated self-collection kit (FDA, 2020). The feasibility
and reliability of POC testing in OHC settings depends on
simplicity and accuracy of the assay, availability and training
of personnel to carry out the tests, and efficient integration
without significant interruption of care.

New serological tests are being developed as IgM, IgG or
combined lateral flow or ELISA assays to measure antibodies
against SARS-CoV-2. They are intended for the qualitative
detection and differentiation of IgM (developed early during
infection) and IgG (developed late during infection) antibodies
to SARS-CoV-2 in serum, plasma or venipuncture whole blood
specimens from patients suspected of COVID-19 by a
healthcare provider. The validation of such assays on
fingerpick blood samples supports the feasibility of testing
for anti-SARS-CoV-2 antibodies at the POC, including in
OHC settings. It is important to note that: 1) assays to
certify an individual’s immunity need to be correlated with
protection and have near-perfect specificity when
seroprevalence is low e.g., 5% or less; 2) assays to ascertain
population-level exposure need well defined sensitivity and
specificity for the target population, allowing for adjustment
of seroprevalence estimates (Bryant et al., 2020). Further,
identification of viral RNA via PCR-free isothermal reaction
allows for SARS-CoV-2 identification in saliva samples, but
large studies are needed to establish assay accuracy and
precision. To achieve precise estimates of disease burden,
optimal thresholds for sensitivity/specificity should be set
depending on local prevalence and intended use of the assay,
prioritizing specificity at the expense of sensitivity in low-
prevalence settings, and the opposite in high-prevalence
settings.

FUTURE PERSPECTIVES

This review presented a general overview of innovation in point-
of care in the periodontal field, however emerging research
regarding this topic is ongoing and will allow for future
systemic analyses as more data becomes available. There have
been many advancements in the development of rapid, chairside
POC diagnostics in the biomedical diagnostics arena for the
timely assessments of disease diagnosis. With the strong needs
within the infectious diseases field for non-invasive and rapid
assessment, the use of LOC microfluidics and biosensors offers
new avenues in oral disease identification and risk assessment.
While the detection of biomarkers of disease in periodontology
remains overall limited, innovations in biomedical engineering
have provided strong potential in dental medicine. The coupling
of computational approaches (AI, machine learning and deep
learning) will exploit clinical, biological and other omics data
elements based on large data sets for the better stratification of
patients. The multi-analyte technologies and use of these
approaches will undoubtedly lead to more accurate and
comprehensive determinants of other polygenic diseases
beyond periodontitis.
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