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Abstract 

Cullin-RING ligases (CRLs), the largest E3 ubiquitin ligase family, promote ubiquitination and degradation of various 
cellular key regulators involved in a broad array of physiological and pathological processes, including cell cycle pro-
gression, signal transduction, transcription, cardiomyopathy, and tumorigenesis. Autophagy, an intracellular catabolic 
reaction that delivers cytoplasmic components to lysosomes for degradation, is crucial for cellular metabolism and 
homeostasis. The dysfunction of autophagy has been proved to associate with a variety of human diseases. Recent 
evidences revealed the emerging roles of CRLs in the regulation of autophagy. In this review, we will focus mainly 
on recent advances in our understandings of the regulation of autophagy by CRLs and the cross-talk between CRLs 
and autophagy, two degradation systems. We will also discuss the pathogenesis of human diseases associated with 
the dysregulation of CRLs and autophagy. Finally, we will discuss current efforts and future perspectives on basic and 
translational research on CRLs and autophagy.
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Background
The long-term health of a cell is closely associated with 
protein quality control which requires a well-regulated bal-
ance between protein synthesis and degradation [1]. It is 
critical for the maintenance of cellular homeostasis to elimi-
nate unwanted and aberrant intracellular proteins, which is 
charged by both the ubiquitin–proteasome system (UPS) 
and the autophagy–lysosome system in a coordinated man-
ner [2]. Thus, the dysregulation of UPS and autophagy dis-
rupts cellular homeostasis and causes many human diseases, 
such as heart failure, neurodegeneration, and cancer [3, 4].

The UPS, a clearance system, directs target proteins 
with their lysine residues and the N-terminal methio-
nine residue covalently attached by ubiquitin molecules, 
to the 26S proteasome for degradation, leading to the 
elimination of short-lived, misfolded, and damaged pro-
teins [5–8]. Protein ubiquitination is a trio of enzymatic 
steps mediated by E1 (ubiquitin-activating enzyme), E2 

(ubiquitin-conjugating enzyme), and E3 (substrate-spe-
cific ubiquitin ligase) [9]. First, ubiquitin is activated in 
an ATP-dependent reaction catalyzed by E1. Second, the 
activated ubiquitin is transferred to the active site of an 
E2. Finally, an E3, which recognizes and recruits the tar-
get protein, designated as substrate, mediates the transfer 
of the activated ubiquitin directly to a lysine residue on 
the substrate (Fig. 1a). Ubiquitin has seven lysine residues 
(K6, K11, K27, K29, K33, K48, and K63) and the N-ter-
minal methionine residue, on which the poly-ubiquitin 
chains can be formed. The distinct fate of ubiquitinated 
proteins depends on the nature of ubiquitin attachment 
and the type of isopeptide linkage of the poly-ubiquitin 
chain. Target proteins marked with K48- or K11-linked 
poly-ubiquitin chain predominantly are recognized and 
degraded by the proteasome, whereas mono-ubiquitina-
tion and K63-linked polyubiquitination usually alter pro-
tein function and subcellular localization [10–12].

Autophagy is a highly conserved eukaryotic intra-
cellular catabolic degradation process in which 
cytoplasmic contents, like misfolded proteins and dam-
aged organelles, are engulfed by double-membrane 
autophagosomes and degraded in lysosomes fused with 
autophagosomes [13]. In general, autophagy is thought 
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to be a nonselective degradation system, which is differ-
ent from UPS by selectively targeting polyubiquitinated 
proteins for degradation [14]. There are generally three 
types of autophagy: macroautophagy, microautophagy, 
and chaperone-mediated autophagy (CMA) [15, 16]. 
Macroautophagy, generally termed “autophagy” unless 
specified, has received the greatest attention and is the 
best-characterized form of autophagy. Tons of evidences 
have shown that autophagy plays important roles in 
diverse biological processes, such as intracellular protein 
and organelle clearance, starvation adaptation, develop-
ment, and tumorigenesis [17].

Autophagy, or “self-eating”, plays a vital role in the 
maintenance of cellular homeostasis. The self-digestion 
maintains critical physiological functions by providing 
nutrients during fasting and by eliminating the “garbage” 
in cells, such as aggregated proteins, damaged organelles, 
and invading pathogens [4]. Such functions are likely 
key to autophagy-mediated physiological and pathologi-
cal processes as diverse as development, aging, immune 
response, neurodegeneration, heart failure, and cancer [4, 
18]. However, the pro-survival functions of autophagy in 
certain disease settings may be deleterious. A good exam-
ple is the dual role of autophagy in cancer progression 
[19]. On one hand, autophagy acts as a tumor suppressive 

mechanism through the elimination of aggregated pro-
teins and damaged organelles. On the other hand, it is 
a key cell survival mechanism by which it facilitates the 
resistance of established tumors to radiation and chemo-
therapy. Therefore, the recognition of autophagy function 
might depend on the specific context.

Given the primary role of autophagy in cellular homeo-
stasis, it is not surprising that the whole process is tightly 
controlled. Including phosphorylation, ubiquitination, 
and acetylation, multiple types of post-translational mod-
ifications have been found in the regulation of autophagy 
[20]. This review summarizes our current knowledge of 
the role of ubiquitination mainly mediated by CRLs in 
the regulation of autophagy. A thorough understanding 
of the cross-talk between CRLs and autophagy should 
lead to new insights into the development of novel ther-
apy for associated diseases.

General features of CRLs
Cullin-RING ligases (CRLs), the largest family of E3 ubiq-
uitin ligases, account for ubiquitination of approximately 
20 % cellular proteins degraded by UPS [21]. The following 
part will describe briefly main features of CRLs, including 
their composition, and dynamic regulation of CRL assem-
bly and activation mainly mediated by neddylation.
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The composition of CRLs
Generally, CRLs consist of four elements: cullins, RING-
finger proteins, adaptor proteins, and substrate recog-
nition receptors (Fig.  2). The human genome encodes 
8 cullins (CUL1, 2, 3, 4A, 4B, 5, 7, and 9, also known as 
PARC), 2 RING-finger proteins (RBX1 and RBX2, also 
known as ROC1 and ROC2/SAG, respectively), 4 adaptor 
proteins (SKP1 for CUL1/7, Elongin B/C for CUL2/5, and 
DDB1 for CUL4A/B), and more than 400 substrate rec-
ognition receptors (69 F-box proteins for CRL1, 80 SOCS 
proteins for CRL2/5, about 180 BTB proteins for CRL3, 
and 90 DCAF proteins for CRL4A/B) [22–28]. Thus, at 
least 400 CRLs can be assembled in human cells and 
regulate diverse biological processes by targeted ubiqui-
tination and degradation of thousands of substrates (for a 
recent review, see Ref. [23]).

All CRLs share the similar core architecture with a 
curved cullin protein acting as a molecular scaffold 
[22, 29]. Among all CRLs, CRL1, also known as SCF 

(SKP1-CUL1-F-box), is the most characterized member 
of CRLs [30]. CUL1 consists of three repeats of a five-
helix motif at the N-terminus and a globular domain at 
the C-terminus. SKP1, the adaptor protein, and RBX1 
or RBX2, a RING protein, bind to the N-terminus and 
the C-terminus of CUL1, respectively. Then, SKP1 binds 
to an F-box receptor, which specifically recognizes the 
substrate, whereas the RING protein binds to ubiquitin-
charged E2 and effectively catalyzes the transfer of ubiq-
uitin from E2 to the specific substrate [29, 30]. It is well 
established that the core E3 ligase activity is possessed 
by the CUL1-RBX1/2 complex in which the RING finger 
domain of RBX1/2 binds to two zinc atoms via a C3H2C3 
motif, and that the substrate specificity of SCF is deter-
mined by F-box receptors [24, 31]. Moreover, all cullins 
contain an evolutionarily conserved lysine residue at its 
C-terminus for targeted NEDD8 modification, a reaction 
known as neddylation, which is vital to CRLs activation 
[32].
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The regulation of CRLs activity by neddylation
Neddylation, like ubiquitination, is a process of the 
attachment of ubiquitin-like molecule NEDD8 to target 
proteins, involving the successive actions of E1 NEDD8-
activating enzyme (a heterodimer of APPBP1/UBA3, also 
known as NAE), which activates NEDD8; E2 NEDD8-
conjugating enzyme (UBE2M, also known as UBC12, 
or UBE2F), which carries the activated NEDD8; and E3 
NEDD8 ligase, which recognizes the substrate and cata-
lyzes the transfer of NEDD8 from E2 to the substrate [33] 
(Fig. 1b).

An impressive feature of CRLs is that their activity is 
dynamically regulated by neddylation and deneddyla-
tion. The binding of unmodified cullins to CAND1 (cul-
lin-associated and neddylation-dissociated 1) blocks the 
interaction of the substrate receptor-adaptor complex 
with the N-terminus of cullins. However, covalent conju-
gation of cullin with one NEDD8 molecule removes the 
inhibitory binding to CAND1 and restores the CRLs in 
an active conformation [34–36]. In addition, neddylation 
enhances and stabilizes the recruitment of ubiquitin-
loaded E2 to CRLs, facilitates the initial ubiquitin transfer 
and also increases the elongation rate of poly-ubiquitin 
chain [37–40]. After dissociation of polyubiquitinated 
substrate from CRLs, NEDD8 is detached by the COP9 
signalosome complex (CSN) from cullins for recycling, 
a reaction known as deneddylation [41] (Fig.  2). The 
activation cycle of CRLs by dynamic neddylation and 
deneddylation is essential for the maintenance of cel-
lular homeostasis. Moreover, this cycle assists the recy-
cling of the cullin-RING core that will make it possible 
for the assembly of other CRLs to allow the ubiquitina-
tion of various different substrates as required by the cells 
in a short time [42]. On the other hand, the inactivation 
of all CRLs can be achieved by inhibiting cullin neddyla-
tion. Indeed, MLN4924, a newly discovered inhibitor of 
NAE, blocks the entire neddylation pathway, and thus 
serves as an indirect inhibitor of CRLs [21]. Treatment 
of MLN4924 causes the accumulation of a number of 
CRLs substrates and consequently induces cell apopto-
sis, senescence, and autophagy [43], suggesting that CRLs 
may regulate autophagy.

Basic concepts of autophagy
Core machinery of autophagy
In mammalian cells, autophagy consists of several 
sequential steps: initiation, autophagosome formation, 
cargo recognition and delivery, autophagosome–lyso-
some fusion, and cargo degradation followed by recycling 
of the resulting macromolecules via permeases, all of 
which are coordinated by different sets of ATGs (Fig. 3). 
Among these steps, autophagosome formation is the key 
process in autophagy, which is regulated by at least four 

complexes, known as the core machinery of autophagy, 
including the ULK1 (a homologue of yeast Atg1) com-
plex, the Beclin-1/Class III PI3K complex, ATG9 and its 
recycling system, and two ubiquitin-like protein conjuga-
tion systems [44–46] (Fig. 3).

The activity of the ULK1 complex (along with ATG13 
and FIP200) is required for the autophagy induction. 
Under physiological conditions, the activated mTORC1 
directly binds to the ULK1 complex and inhibits 
autophagy by phosphorylating ULK1 on Ser757 and 
ATG13 [47, 48]. Under unfavorable conditions, mTORC1 
is inactivated and disconnects from the ULK1 complex. 
ULK1 is then auto-phosphorylated and then phospho-
rylates ATG13 and FIP200. As a result, the whole ULK1 
complex is activated [49–51], which translocates to ER 
or other specific places to help with the nucleation of 
autophagosome formation, followed by the recruitment 
of downstream effectors including the Beclin-1/Class III 
PI3K complex and LC3 (a homologue of yeast Atg8) to 
the site where the nucleation takes place [52].

The Beclin-1/Class III PI3K complex, consisting of 
Beclin-1, Vps34, and Vps15, is essential for the nuclea-
tion of phagophore [53]. It catalyzes the phosphorylation 
of phosphoinositide to produce phosphatidylinositol-
3-phosphate (PI3P), which recruits those effectors con-
taining PX or FYVE domain (such as DFCP1 and WIPI) 
to mediate the formation of the initial sequestering 
vesicle (also known as phagophore) that develops into 
the autophagosome [54, 55]. Accumulating evidences 
revealed that Beclin-1 serves as an adaptor to recruit 
multiple proteins, such as ATG14, Ambra1, UVRAG, and 
Rubicon [56], that modulate the kinase activity of Vps34. 
Additionally, Beclin-1 is highly regulated in autophagy by 
post-translational modifications, including phosphoryla-
tion, ubiquitination, and cleavage [57].

ATG9, a multipass transmembrane protein, is essential 
for autophagosome formation. ATG9 is localized to the 
trans-Golgi network (TGN) and late endosomes. Fol-
lowing the induction of autophagy, ATG9 is rearranged 
from juxtanuclear to peripheral structures, and is then 
retrieved from the completed autophagosome [58]. Thus, 
ATG9 recycling delivers the membrane to the forming 
autophagosome. Both the ULK1 complex and the Bec-
lin-1/Class III PI3K complex are involved in regulating 
this process [46, 59].

The elongation and expansion of the phagophore 
membrane is controlled by two ubiquitin-like conjuga-
tion systems. First, the E1-like enzyme ATG7 and the 
E2-like enzyme ATG10 mediate the covalent conju-
gation of ATG12 to ATG5 [60]. The resulting ATG5-
ATG12 noncovalently interacts with ATG16 to form the 
ATG12-ATG5-ATG16 complex, which acts as the E3 
ligase towards LC3. Next, the E1-like enzyme ATG7 and 
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the E2-like enzyme ATG3 sequentially act to conjugate 
phosphatidylethanolamine (PE) to a glycine residue of 
LC3, which constitutes the other conjugation system with 
ATG12-ATG5-ATG16 complex, the E3-like enzyme [61]. 
This process achieves the conversion of LC3-I, the solu-
ble form of LC3, to LC3-II (also known as LC3-PE), the 
autophagic vesicle-associated form (Figs. 1c, 3). In addi-
tion, it is worth noting that ATG4, a cysteine protease, 
plays critical roles in the proteolysis of the full-length iso-
form of LC3 (pro-LC3), as well as in the deconjugation of 
the lipidated LC3-PE for recycling [62, 63].

Signals that regulate autophagy
Autophagy is induced by a range of cellular stresses, 
including nutrient and energy depletion, ER stress, 
hypoxia, redox stress, and oncogenic activation [64]. It is 
regulated either negatively or positively by the following 
two biologically significant molecules.

mTOR is the well-established negative regulator of 
autophagy. It plays a key role in the coordination of cell 
growth with autophagy in response to physiological and 
environmental conditions [65]. mTOR, an evolutionar-
ily conserved serine/threonine protein kinase, forms two 
structurally and functionally distinct complexes (namely 
mTORC1 and mTORC2) in mammalian cells. mTORC1 
is composed of mTOR, raptor, PRAS40, mLST8, and 
DEPTOR; mTORC2 also contains mTOR, mLST8, and 
DEPTOR, but instead of raptor and PRAS40, the proteins 
rictor, mSin1, and protor exclusively exist in mTORC2 

[66]. Moreover, mTORC1, as a negative regulator of the 
ULK1 complex, inhibits autophagosome formation in 
response to diverse signals [65], whereas mTORC2 inhib-
its autophagy through repressing the transcription of 
some ATGs via AKT-FoxO3 signaling [67, 68] (Figs. 3, 4).

AMP-activated protein kinase (AMPK), a master regu-
lator of energy metabolism, is a vital positive regulator of 
autophagy. As a serine/threonine kinase, AMPK is acti-
vated when the levels of AMP and ADP in the cells rise 
owing to various physiological stresses [69]. Upon phos-
phorylated by activated AMPK, a range of substrates 
not only acutely affect metabolism and growth, but also 
are responsible for the long-term metabolic reprogram-
ming. AMPK induces autophagy through phosphoryla-
tion of TSC2 and raptor to inhibit mTORC1 [70, 71], and 
through ULK1 phosphorylation on Ser317 and Ser777 to 
activate ULK1 [47].

Taken together, by integrating both intracellular and 
extracellular signals, mTOR and AMPK function coordi-
nately in the regulation of autophagy (Figs. 3, 4).

The role of CRLs in the regulation of autophagy
More recently, the study on the roles of post-translational 
modifications in regulation of autophagic flux by affect-
ing the activity, recruitment, and turnover of autophagic 
components has become an attractive area due to the 
implications of dysregulated autophagy in multiple dis-
eases [20]. Ubiquitination, an important cellular post-
translational modification, plays a principal role in 
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controlling protein turnover, activation, subcellular local-
ization, and protein–protein interactions. However, cur-
rent knowledge of the roles of E3 ubiquitin ligases in the 

regulation of autophagy is fairly limited. It was reported 
that RNF5, a RING finger E3 ligase, negatively regulates 
autophagy by controlling the stability of ATG4B [72], 
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and that Parkin, a RING-HECT hybrid E3 ligase, induces 
mitophagy through ubiquitination of multiple mitochon-
drial proteins [73, 74]. Furthermore, the role of CRLs, the 
largest E3 ubiquitin ligase family, in regulating autophagy 
is rarely mentioned. Here, we discuss the emerging roles 
of CRLs in the control of autophagy, especially those reg-
ulating autophagy machinery and upstream regulators.

CRLs regulate autophagy machinery
Several components of autophagy machinery are subjected 
to CRLs-mediated regulation. For instance, SCFFBXL20  
targets Vps34, the catalytic subunit of the Beclin-1/
Class III PI3K complex, for ubiquitination and protea-
some degradation, and plays an important role in DNA 
damage-induced suppression of autophagy [75, 76]. 
Meanwhile, ATG14L (Atg14 in yeast), a crucial player 
to initiate autophagosome formation by mediating the 
production of PI3P, is the substrate of CRL3ZBTB16. Thus, 
CRL3ZBTB16 controls the initiation of autophagy by regu-
lating the degradation of ATG14L [77]. In addition, Bec-
lin-1, an adaptor protein in the Beclin-1/Class III PI3K 
complex, can be modified with multiple poly-ubiquitin 
chains catalyzed by distinct E3 ligases [78–80]. Specifi-
cally, CRL4Ambra1 mediates K63-linked polyubiquitina-
tion of Beclin-1 and enhances its association with Vps34 
to promote the activation of Vps34, which is required 
for starvation-induced autophagy [78]. Notably, Ambra1 
(activating molecule in Beclin-1-regulated autophagy), 
also identified as DCAF3 (DDB1 and cullin4 associ-
ated factor 3), has multiple roles in the regulation of 
autophagy. First of all, Ambra1 acts as a substrate recep-
tor for Beclin-1 ubiquitination [78]. Second, Ambra1 
recruits the E3 ligase TRAF6 to promote K63-linked 
polyubiquitination of ULK1, resulting in the stabilization 
and activation of ULK1 [81]. Third, by dynamically inter-
acting with CRL5 and CRL4, Ambra1 temporally controls 
the onset and the termination of autophagy response 
to stress [82]. Under unstressed conditions, Ambra1 
is maintained at low levels through degradation by cul-
lin4-DDB1, and autophagy is off. In the early starvation, 
Ambra1 is detached from cullin4-DDB1 and phosphoryl-
ated by ULK1. Thus, transiently stabilized Ambra1 binds 
to cullin5 to inhibit CRL5-mediated DEPTOR degrada-
tion (see below for details), leading to the suppression of 
mTOR activity. As a result, autophagy is on. In the pro-
longed starvation, cullin4-DDB1 associates with Ambra1 
and targets its polyubiquitination and degradation, lead-
ing to the termination of autophagy [82, 83]. Altogether, 
Ambra1, as a bridge between CRLs and autophagy, plays 
vital roles in the regulation of autophagic flux at differ-
ent stages in response to stress. Additionally, CRL3KLHL20 
regulates IFN-induced autophagic death by the destruc-
tion of DAPK, a serine/threonine protein kinase, which 

is in charge of the dissociation of Beclin-1 from its Bcl-2 
inhibitors by phosphorylating Beclin-1 on Thr119 located 
at a key position within its BH3 domain required for the 
interaction with Bcl-2 family members [84–86] (Fig. 4).

To date, the studies on the roles of CRLs in the regula-
tion of autophagy machinery mainly focus on the ULK1 
complex and the Beclin-1/Class III PI3K complex, both of 
which function in the early stage of autophagy. The roles 
of CRLs in other components of autophagy are fairly lim-
ited. Given that the whole process of autophagy is pre-
cisely coordinated, it will be intriguing and helpful to 
elucidate the roles of CRLs in regulating other autophagy 
machineries, such as ATG9 and its recycling system and 
two ubiquitin-like protein conjugation systems.

CRLs regulate the upstream regulators of autophagy
Since mTOR pathway is a central regulator of autophagy, 
it is conceivable that CRLs regulate autophagy via modi-
fying a variety of components, both upstream and down-
stream, of mTOR pathway [87]. First of all, mTOR itself 
was identified as a substrate of SCFFBW7 that negatively 
regulates mTOR protein stability [88]. Second, DEPTOR, 
a direct mTOR inhibitor, was reported to undergo ubiq-
uitin-mediated degradation by SCFβ-TrCP on phosphoryla-
tion by the setting S6K1/RSK or mTOR/CK1 [87, 89–91], 
and was also proved recently to be a substrate of CRL5 
[82]. Third, CRL4FBW5 controls TSC2 protein stability and 
the subsequent turnover of TSC complex, which is the 
major inhibitor of mTOR pathway [92]. Fourth, HIF1α, a 
negative regulator of mTORC1 via the REDD1-TSC1/2 
axis, is a well-characterized substrate of CRL2VHL [93, 94]. 
Fifth, REDD1, an inhibitor of mTORC1, was subjected to 
CRL4Aβ-TrCP-mediated ubiquitination and degradation 
with GSK-3β as a corresponding kinase for phosphoryla-
tion [95]. Sixth, PHLPP1, a protein phosphatase negatively 
regulating AKT via direct dephosphorylation of activated 
AKT, was identified as a substrate of SCFβ-TrCP in a man-
ner dependent on CK1 and GSK3β [96]. Seventh, IRS1 
and IRS2, as adaptor proteins to mediate insulin/insulin-
like growth factor 1 signaling, are the substrates of CRL-
5SOCS1/3 [97]. IRS1 can also be ubiquitinated and degraded 
either by CRL7FBW8 upon prerequisite phosphorylation by 
mTOR and S6K [98] or by SCFFBXO40 [99]. Eighth, NF1, an 
inhibitor of Ras, was identified as a substrate of SCFFBW7 
[100] and CRL3KBTBD7 [101]. Ninth, Erbin, an inhibitor 
of Ras-Raf signaling, is a newly discovered substrate of 
SCFβ-TrCP, which targets Erbin for degradation to trigger 
autophagy by ROS accumulation [102]. At last, PDCD4, a 
downstream target of mTOR-S6K1 pathway, was reported 
to be a substrate of SCFβ-TrCP dependent on pre-phos-
phorylation at Ser67 by S6K1, and negatively regulates 
autophagy by inhibiting ATG5 protein expression [103, 
104] (Fig. 4).
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Therefore, given the fact that nearly all these CRLs sub-
strates, except for mTOR and IRS1, are negative regula-
tors of mTOR pathway, the general inhibition of CRLs 
would likely cause their accumulation to down-regulate 
mTOR pathway, leading to the induction of autophagy. 
Indeed, MLN4924, an indirect inhibitor of CRLs, induces 
autophagy in multiple cancer cell lines resulting from inac-
tivating mTORC1 by the accumulation of DEPTOR and 
HIF1α [105]. Consistently, silencing of RBX1, one of two 
RING proteins in CRLs, also triggers autophagy response 
by the accumulation of DEPTOR [106]. All these findings 
suggest that modulation of the activity of CRLs regulates 
autophagy induction, which may provide a novel thera-
peutic strategy for autophagy-associated human diseases.

In addition, SCFSKP2 promotes K63-linked ubiquit-
ination of RagA, which recruits GATOR1 to hydrolyze 
RagAGTP and blocks mTORC1 lysosomal localization and 
activation, leading to autophagy induction [107]. Interest-
ingly, AKT is also a nonproteolytic substrate of SCFSKP2.  
SCFSKP2 drives K63-linked ubiquitination of AKT, which 
is vital for ErbB-receptor-mediated AKT membrane 
recruitment and activation in response to EGF [108]. 
Notably, it is a paradox that, on one hand, SKP2-medi-
ated RagA ubiquitination suppresses mTORC1 activa-
tion; on the other hand, SKP2 promotes ubiquitination 
of AKT and increases its activity, which further activates 
mTORC1. Thus, the function of SCFSKP2 in the regulation 
of autophagy depends on certain cell type and its context 
(Fig. 4).

Moreover, PHLPP1 not only triggers macroautophagy, 
but also regulates chaperone-mediated autophagy (CMA) 
[109, 110]. CMA selectively degrades cytosolic proteins 
delivered by a cytosolic chaperone in the lysosomes [15, 
111]. PHLPP1 induces CMA through its inhibitory effect on 
AKT [110]. Given that PHLPP1 is a substrate of SCFβ-TrCP, 
CRLs may regulate CMA by controlling PHLPP1 stability.

CRLs regulate autophagy at the transcriptional level
In addition to regulating autophagy machinery and 
upstream regulators, CRLs also control autophagy at the 
transcriptional level through modification of several key 
transcription factors.

We already discussed that accumulation of HIF1α, 
as a well-established substrate of CRL2VHL, is partially 
responsible for MLN4924-induced autophagy [105]. 
In fact, besides via the HIF1α-REDD1-TSC axis to 
block mTORC1 activity, resulting in autophagy induc-
tion, HIF1α itself, as a transcription factor, could induce 
autophagy directly by transcriptional regulation of its 
target genes. In response to hypoxia, HIF1α is activated 
and promotes the transcription of BNIP3 and BNIP3L 
(also known as NIX), both of which disrupt the Bcl-2/
Beclin-1 complex, leading to the release of Beclin-1 from 

Bcl-2 and the subsequent induction of autophagy [112, 
113]. In addition, NIX/BNIP3, also located at the outer 
membrane of mitochondria, contains a WXXL/WXXL-
like motif that binds to LC3 and its homolog GABARAP, 
leading to mitophagy induction [114, 115]. Thus, CRLs 
may also regulate mitophagy by inducing the transcrip-
tion of NIX/BNIP3 via HIF1α.

Meanwhile, the transcription factor FoxO3 regulates 
autophagy in skeletal muscle by transactivating NIX/
BNIP3 [116]. In addition, FoxO factors (such as FoxO1 
and FoxO3) induce autophagy by promoting the expres-
sion of multiple ATG genes, including ATG4B, ATG8, 
ATG12, Vps34, and Beclin-1, during muscle atrophy 
[116–118]. And cytosolic FoxO1 is also required for 
autophagy induction in a transcription-independent 
manner via the interaction of acetylated FoxO1 with 
ATG7 [119]. Given the critical role of FoxO factors in 
regulating autophagy, the specific CRLs in charge of 
their stability were identified. Both FoxO1 and FoxO3 
were ubiquitinated and degraded by SCFSKP2 [120, 121]. 
Additionally, FoxO3 is also the substrate of SCFβ-TrCP in 
an IKKβ-dependent manner [122]. Moreover, Atrogin-1 
(also known as MAFbx or FBXO32), as a muscle-specific 
F-box protein that forms a complex with SKP1-CUL1-
RBX1, mediates K63-linked polyubiquitination and con-
sequent transactivation of FoxO1/FoxO3 and is a central 
node in the regulation of autophagy during muscle atro-
phy [117, 123].

ATF4, a transcription factor induced by severe 
hypoxia and involved in the unfolded protein response 
(UPR), up-regulates LC3B by directly binding to its pro-
moter to facilitate autophagy [124, 125]. ATF4, a short-
lived protein with a half-life time of about 30  min, is 
degraded rapidly by proteasome, following SCFβ-TrCP-
mediated polyubiquitination [126]. More importantly, 
bortezomib, a potent inhibitor of the 26S proteasome, 
activates autophagy by proteasomal stabilization of 
ATF4 and ATF4-induced up-regulation of LC3B [124]. 
β-catenin, another well-known substrate of SCFβ-TrCP, 
inhibits autophagosome formation by suppressing p62 
(also known as SQSTM1, an autophagy adaptor protein) 
expression via TCF4 [127]. Thus, SCFβ-TrCP paradoxically 
regulates autophagy through repressing LC3B or induc-
ing p62, two key proteins in the process of autophagy 
(Fig. 4).

In conclusion, all these studies highlight the impor-
tance and complexity of CRLs in the regulation of 
autophagy. Given that 1) these findings are mostly asso-
ciated with mTOR pathway, the ULK1 complex, and the 
Beclin-1/Class III PI3K complex; 2) one specific CRL can 
target various substrates; 3) the specific substrate is sub-
jected to the regulation of multiple CRLs; 4) autophagy 
can be regulated at the transcriptional, translational, 
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and post-translational levels, further studies should be 
directed to elucidate the functional network of CRLs in 
the whole process of autophagy.

The effects of autophagy on CRLs and UPS
Accumulating evidences indicate that the active cross-
talk exists between UPS and autophagy, two major intra-
cellular clearance systems [2, 128, 129]. Inhibition of UPS 
enhances autophagic activity possibly as a compensatory 
mechanism [129, 130]. In contrast, long-term inhibition 
of autophagy has been shown to compromise the degrada-
tion of proteasomal substrates, which leads to the accumu-
lation of short-lived regulatory proteins, particularly some 
oncoproteins, with predicted deleterious consequences 
[131]. For example, p62, a selective autophagy recep-
tor for the ubiquitinated protein aggregates, is degraded 
by autophagy. Twist1, an oncogenic transcription fac-
tor, is polyubiquitinated by SCFFBXL14 and subsequently 
degraded by the proteasome [132]. However, accumulated 
p62 caused by autophagy deficiency binds to polyubiqui-
tinated Twist1 and inhibits its proteasomal destruction, 
in consequence, promoting tumor cell growth and metas-
tasis [133]. p62 abrogates the clearance of ubiquitinated 
short-lived proteins destined for proteasomal degradation 
through two possible manners: (1) p62 disrupts the bind-
ing of ubiquitinated proteins with their partners that escort 
them to the proteasome [131, 133]; (2) p62 together with 
proteasomal substrate forms oligomer, which would be too 
bulky to be degraded by the proteasome in its narrow cat-
alytic pore [128]. Paradoxically, p62 was also reported to 
interact with ubiquitinated proteins and deliver them (such 
as Tau) to the proteasome for degradation [134, 135]. This 
discrepancy may be caused by diverse protein substrates, 
specific cellular context, and different cell types. Notably, 
p62 also can impair CRLs-mediated ubiquitination. Spe-
cifically, p62 was accumulated in autophagy-defective cells 
and interacts with Keap1 on the NRF2-binding site to dis-
rupt the ubiquitination of NRF2 mediated by CRL3Keap1, 
resulting in the hyperactivation of NRF2, which may con-
tribute to hepatoma development [136–138]. Moreover, 
ATG16L1, an essential component of the autophagosome, 
is necessary for the neddylation of CUL3 with unknown 
mechanism, which is required for the ligase activity of 
CRL3 [139]. Taken together, autophagy can adjust UPS via 
multiple mechanisms. Future studies to explore precise 
molecular mechanisms should facilitate the development 
of novel therapeutic strategies for autophagy-defective 
human diseases.

CRLs and autophagy in diseases
Given the facts that UPS and autophagy are two corner-
stones in the maintenance of cellular homeostasis, and 
CRLs are the largest E3 ligase family, it is conceivable that 

the dysfunction of CRLs and autophagy contributes to 
the pathogenesis of various human diseases. In this part, 
we will mainly discuss the diseases associated with the 
dysfunction of both CRLs and autophagy.

3‑M syndrome
Genetic studies have demonstrated a crucial role of 
CUL7 E3 ligase in controlling growth. CUL7 germline 
mutations, resulting in loss of its functional cullin 
domain, are responsible for 3-M syndrome, charac-
terized by prenatal and postnatal growth retardation 
[140]. The cause of these growth defects with CUL7 
germline mutations may owe to the accumulation 
of CRL7 substrates. Indeed, IRS1, one of CRL7 sub-
strates, was stabilized in Cul7−/− MEFs with senes-
cence phenotype. The increased IRS1 activates its 
downstream AKT and MEK/ERK pathways, both of 
which were shown to induce senescence [98]. This 
kind of senescence, also known as oncogene-induced 
senescence, is closely associated with development 
and tumorigenesis [141, 142]. Accumulating evidences 
revealed that autophagy facilitates oncogene-induced 
senescence [102, 143, 144]. Thus, the accumulation of 
IRS1 or other unknown substrate(s) of CRL7 may con-
tribute to the senescence through affecting autophagic 
flux. Recently, CRL5 and CRL4 were found to control 
the onset and the termination of autophagy, respec-
tively, by dynamically interacting with Ambra1 [82]. 
In fact, the data also showed that Ambra1 could bind 
to CUL7. However, the underlying physiological func-
tions are not further explored [82]. These may offer 
one potential hint that CUL7-mediated autophagy 
by interacting with Ambra1 may also contribute to 
senescence.

Neural disease
FBXL20 (also known as SCRAPPER), a synapse-localized 
F-box protein, was proved to regulate neuronal synaptic 
tuning via the destruction of RIM1, which is required for 
synaptic vesicle release [145]. Scrapper knock-out mice 
displayed abnormal electrophysiological synaptic activity 
resulting from upregulation of RIM1. Moreover, FBXL20 
is responsible for the ubiquitination and proteasomal 
degradation of Vps34, which controls intracellular vesic-
ular processes, such as autophagy and endocytosis [75]. 
In light of the roles of endocytosis [146] and autophagy 
[147] in regulating synaptic development and plastic-
ity, the control of Vps34 levels by SCFFBXL20 may pro-
vide an important regulatory mechanism for synaptic 
transmission and plasticity. Since many neural diseases 
are caused by excessive neurotransmitter release, future 
studies on FBXL20 might help elucidate their molecular 
pathogenesis.
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Although a causal pathogenetic linkage between CRLs 
and neural disorders and diseases has not been estab-
lished, the ubiquitin conjugates and/or inclusion bod-
ies associated with ubiquitin have been discovered to be 
accumulated in a wide array of chronic neurodegenera-
tive diseases [3]. In addition, NEDD8, one of the ubiqui-
tin-like proteins, is also accumulated in ubiquitin-positive 
inclusions in various neurodegenerative disorders [148, 
149]. Given that cullins are the best-characterized sub-
strates of neddylation, the possible involvement of CRLs 
in the pathogenesis of neurodegeneration should not be 
neglected. In the mouse model of Huntington’s disease, 
inhibition of GPCR signaling by AMD3100, a selective 
GPCR antagonist, can induce autophagy by suppressing 
CRL3ZBTB16-mediated ATG14L degradation, leading to 
the expanded polyQ degradation and the preservation 
of neuronal functions [77]. Meanwhile, activated IRS2, a 
substrate of CRL5 [97], can induce autophagy in modified 
neural cell lines, used as models for Huntington’s disease, 
to enhance the clearance of polyQ proteins [150]. Thus, 
CRLs would play important roles in the pathogenesis of 
neurodegenerative diseases through their key substrates 
associated with autophagy.

Cardiac disease
Atrogin-1, also known as FBXO32, is a skeletal and car-
diac muscle-specific F-box protein [151]. Atrogin-1 was 
demonstrated as a critical player in skeletal muscle atro-
phy programs, and it is tightly regulated at the transcrip-
tional level by FoxO factors [152]. Meanwhile, Atrogin-1 
also induces the transcriptional activity of FoxO1/FoxO3 
dependent on their K63-linked polyubiquitination medi-
ated by SCFAtrogin-1. These findings were confirmed in 
Atrogin-1 transgenic and knock-out mouse models, 
strongly indicating its crucial role in the inhibition of 
cardiac hypertrophy [123]. Moreover, accumulating data 
have proved that the autophagic activity governed by 
FoxO factors at multiple steps significantly contributes to 
cardiac homeostasis and disease [153]. All these studies 
suggest CRLs affect cardiac remodeling through regu-
lating autophagic flux, which was further demonstrated 
in vivo. In Atrogin-1 knock-out mice, Atrogin-1 depletion 
causes cardiomyopathy and premature death resulting 
from impaired autophagy [154]. Mechanistically, SCFA-

trogin-1 promotes the ubiquitination and degradation of 
CHMP2B, which is part of an endosomal sorting complex 
required for autophagy [155]. Atrogin-1 deficiency failed 
to destroy CHMP2B, resulting in sequential serious con-
sequences: autophagy impairment, protein aggregation, 
activation of unfolded protein response (UPR) signaling 
pathways, and ultimately, cardiomyocyte apoptosis [154]. 
In addition, cardiomyocyte-restricted Csn8 knock-out 
(CR-Csn8KO) mouse model also proved the important 

role of Atrogin-1 in cardiomyocyte necrosis and dilated 
cardiomyopathy via autophagy impairment caused by 
down-regulation of Rab7, which is indispensable for 
autophagosome-lysosome fusion [156]. The underlying 
molecular mechanisms could be that (1) Atrogin-1 is 
down-regulated in Csn8-null heart, which is consistent 
with the theory that CSN-mediated deneddylation sta-
bilizes F-box proteins [157, 158]; (2) Atrogin-1 enhances 
the transactivation of FoxO1/FoxO3 by promoting their 
ubiquitination; (3) Rab7 is a target gene of FoxO fac-
tors [159]. Taken together, Atrogin-1 plays a vital role 
in maintaining the homeostasis of cardiac myocytes 
through regulating autophagic flux.

Cancer
Given that CRLs play a fundamental role in regulating a 
wide range of biological processes, including signal trans-
duction, gene transcription, DNA replication, cell cycle 
progression, and apoptosis among others, it is anticipated 
that deregulation of CRLs is related to uncontrolled cell 
proliferation, ultimately leading to cancer [23]. It is widely 
accepted that autophagy plays an important role in tumo-
rigenesis, hence autophagy regulated by CRLs more or 
less contributes to cancer development. For instance, (1) 
RBX1 knock-down triggers protective autophagy. Block-
age of autophagy pathway significantly enhances the 
inhibition of tumor cell growth induced by RBX1 knock-
down [106]. Similarly, (2) MLN4924, a general inhibitor 
of CRLs, also triggers a protective autophagy in many 
human cancer cell lines through mTORC1 inhibition 
resulting from the accumulation of DEPTOR and HIF1α, 
two well-known substrates of CRLs. Thus, autophagy 
inhibitors remarkably increase the apoptosis induced by 
MLN4924 [105]. Nevertheless, (3) Rbx2 deletion in the 
skin inhibits autophagy and oncogene-activated senes-
cence induced by KrasG12D, and consequently, promotes 
skin papillomagenesis. Thus Rbx2 acts as a skin-specific 
tumor suppressor by promoting autophagy via targeting 
its substrates: Erbin and Nrf2 [102].

Conclusions and future perspectives
In summary, autophagy and UPS are crucial in the main-
tenance of cellular homeostasis, hence both of them 
need to be precisely orchestrated. CRLs, the largest E3 
ubiquitin ligase family, mediate the degradation or activ-
ity alteration of many components and regulators in 
the autophagy pathway to control autophagic activity. 
Meanwhile, autophagy also conversely affects the activ-
ity of CRLs and UPS. The cross-talk between CRLs and 
autophagy deserves further intensive investigation to 
elucidate how the dysfunction of CRLs and autophagy 
contributes to the development of various human dis-
orders, such as neural diseases, cardiac diseases, and 
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cancer, which should provide new insights into drug dis-
covery targeting CRLs and autophagy. In consideration 
of the facts that (1) CRLs are being validated as promis-
ing anti-cancer targets; (2) MLN4924, a small molecule 
indirect inhibitor of CRLs, which is currently in several 
Phase I clinical trials against a number of human malig-
nancies, induces protective autophagy; (3) the inhibitors 
of autophagy significantly sensitize cancer cells, particu-
larly resistant cancer cells, to MLN4924 treatment, future 
studies focused on CRLs and autophagy would eventually 
benefit human anti-cancer therapy.

Although some associations of CRLs and autophagy 
have been clarified, many fundamental questions still 
remain to be addressed: (1) what are other components 
of autophagy machinery and regulators associated with 
autophagy as the substrates of CRLs? (2) How does 
autophagy regulate the activity of CRLs and UPS? (3) Are 
the findings in cell culture settings consistent to those in 
physiological settings (knock-out/knock-in mouse mod-
els and patient samples)? (4) What is the function of deu-
biquitination in autophagy? Some recent studies have 
shown that deubiquitinases, enzymes catalyzing a reverse 
process for protein ubiquitination, also play a regulatory 
role in autophagy, such as USP36 and A20 [79, 160]. The 
answers to these fundamental questions would certainly 
uncover the precise roles of CRLs in the regulation of 
autophagy and autophagy-associated diseases, and pro-
vide molecular basis for rational drug design by targeting 
CRLs and autophagy.
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