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Abstract: Polyethyleneimine (PEI) induced immune responses were investigated in human bronchial
epithelial (hBE) cells and mice. PEI rapidly induced ATP release from hBE cells and pretreatment
with glutathione (GSH) blocked the response. PEI activated two conductive pathways, VDAC-1 and
pannexin 1, which completely accounted for ATP efflux across the plasma membrane. Moreover, PEI
increased intracellular Ca2+ concentration ([Ca2+]i), which was reduced by the pannexin 1 inhibitor,
10Panx (50 µM), the VDAC-1 inhibitor, DIDS (100 µM), and was nearly abolished by pretreatment
with GSH (5 mM). The increase in [Ca2+]i involved Ca2+ uptake through two pathways, one blocked
by oxidized ATP (oATP, 300 µM) and another that was blocked by the TRPV-1 antagonist A784168
(100 nM). PEI stimulation also increased IL-33 mRNA expression and protein secretion. In vivo
experiments showed that acute (4.5 h) PEI exposure stimulated secretion of Th2 cytokines (IL-5 and
IL-13) into bronchoalveolar lavage (BAL) fluid. Conjugation of PEI with ovalbumin also induced
eosinophil recruitment and secretion of IL-5 and IL-13 into BAL fluid, which was inhibited in IL-33
receptor (ST2) deficient mice. In conclusion, PEI-induced oxidative stress stimulated type 2 immune
responses by activating ATP-dependent Ca2+ uptake leading to IL-33 secretion, similar to allergens
derived from Alternaria.

Keywords: allergic inflammation; purinergic signaling; IL-33; Th2 cytokines; intracellular Ca2+

1. Introduction

The commercial production of engineered nanomaterials (ENMs) is a steadily grow-
ing industry with increasing potential to impact human health as exposure to consumer
products containing ENMs becomes more prevalent [1–5]. Studies addressing the safety of
nanoscale particles indicate that their physicochemical properties (small size (<100 nm),
chemical composition, electronic charge, large surface area to mass ratio, surface coating,
potential for generating reactive oxygen species, and deep penetration) are capable of pro-
ducing adverse effects on lung function including exacerbation of asthma and sensitization
to common allergens [5–9]. Due to their small size, inhaled ENMs become widely dispersed
throughout the airways and alveoli, where uptake into various cell types creates the po-
tential for altering normal cell and tissue function [5,6,10,11]. Moreover, ENMs have been
shown to induce cytotoxicity associated with Ca2+ uptake, mitochondrial depolarization,
and cell membrane damage that can trigger inflammation [5,12].

Certain types of ENMs have important biomedical applications, serving as excel-
lent carrier molecules that are capable of encapsulating drugs, nucleic acids and contrast
agents [13,14]. ENMs derived from branched polyethylenimine (PEI; 25 kDa) were initially
studied and used as non-viral DNA carriers for gene therapy [15]. Subsequently, appli-
cations were extended to other nucleic acids including small RNAs, siRNAs, miRNAs,
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anti-miRNAs, and hammerhead ribozymes [16]. PEI polyplexes are often described as
the gold standard of gene transfection reagents since they exhibit the highest transfec-
tion efficiency among non-viral vectors when used under serum-free conditions [17]. PEI
possesses a large number of positively charged amine groups, which enables electrostatic
condensation with negatively charged molecules such as nucleic acids [14,18]. These amine
groups also absorb protons (the so-called proton sponge effect) which protects DNA and
RNA from nuclease activity within the acidic environment of endosomal/lysosomal com-
partments, ensuring escape of undamaged DNA or RNA into the cytoplasm [16]. When PEI
is used in excess during complexation and condensation reactions, PEI-nucleic acid poly-
plexes are formed that possess a net positive charge. This positive zeta potential enables
electrostatic interactions with specific negatively charged constituents within the plasma
membrane, including heparin sulfate and proteoglycans, which facilitates uptake across
the cell membrane by endocytic, pinocytotic or phagocytic mechanisms [16]. Notably,
cytotoxicity appears to be associated with the positive charge of PEI polyplexes.

In response to the global pandemic caused by SARS-CoV-2 (COVID19), pharma-
ceutical companies and academic research institutions have rushed to create vaccines
ranging from conventional viral and protein based designs to pioneering mRNA-based
vaccines [19–22]. At this time, all clinically used COVID19 mRNA vaccines are delivered by
lipid-based nanoparticles that contain: (1) ionizable lipids that form complexes with mRNA,
(2) phospholipids and cholesterol to facilitate formation and stabilization of the particle,
and (3) PEGylated lipids to minimize non-specific interactions [23]. However, other types
of mRNA delivery vehicles have also been developed based on polymer or polymer/lipid
hybrid formulations that have been used for in vivo antigen delivery [20]. Low molecular
weight (2 kDa), PEI-based polyplexes conjugated to β-cyclodextrin (β-CD) represents an
example of a polymer type nanoparticle, which is efficiently taken up by cells into the endo-
somal compartment where the mRNA separates from the β-CD/PEI conjugate and escapes
into the cytoplasm [24]. In a previous study by Li et al., (2016) a β-CD/PEI conjugate deliv-
ery system was used to immunize BALB/c mice intranasally with HIV gp120 mRNA [25].
The authors found that these nanoparticles effectively penetrated the nasal epithelial bar-
rier by reversibly opening tight junctions, allowing for greater paracellular delivery of
mRNA. The vaccination triggered a strong mucosal anti-HIV gp120 immune response with
a balanced Th1/Th2/Th17-type cytokine profile. β-CD/PEI conjugate platforms have also
been used for in vivo transfection of mRNAs for the model antigen, ovalbumin (OVA),
subcutaneously, intradermally, and intramuscularly into BALB/c mice. Intramuscular
(IM) and intradermal (ID) vaccination generated a mixed Th1/Th2 type immune response,
wherein IM administration yielded a tendency towards Th2-type immunity, while ID
vaccination evoked a Th1 response [25]. In contrast, subcutaneous vaccination failed to
generate a detectable IgG response. Thus, these studies demonstrate the potential of using
polymer-based, PEI containing delivery systems for transfection with mRNA-type vaccines.

In the present study, we investigated the underlying mechanisms leading to type 2
inflammation associated with PEI exposure. We tested the hypothesis that treatment with
PEI induces type 2 immunity in a manner similar to certain environmental allergens such
as those derived from the fungus Alternaria alternata. We measured ATP release, Ca2+

uptake and IL-33 secretion induced by PEI in human airway epithelial cells and compared
the data to previously published results and new data obtained after exposure to Alternaria.
We also examined the in vivo effects of PEI on acute induction of type 2 cytokine secretion
into bronchoalveolar lavage (BAL) fluid and the effects of combined ovalbumin and PEI
challenge on immune responses in control and IL-33 receptor (ST2) deficient mice. The
results demonstrated that both common and distinct mechanisms for ATP release and Ca2+

uptake were activated by PEI compared to Alternaria. Furthermore, PEI acutely increased
IL-33, IL-5, and IL-13 secretion into the airway lumen and PEI conjugated ovalbumin
produced a type 2 immune response that was significantly reduced in ST2 deficient mice.
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2. Results

Previous studies showed that human bronchial epithelial (HBE) cells exhibit a rapid
(within minutes) and sustained release of ATP following exposure to Alternaria [26]. To
determine if PEI produces a similar response, kinetic measurements of ATP release using a
luciferin/luciferase-based photon emission assay were performed (Figure 1; [27,28]). PEI
(5 µg/mL) induced a sustained increase in extracellular ATP and pretreatment with the
reactive oxygen species (ROS) scavenger, glutathione (5 mM), or with DIDS (100 µM) an
inhibitor of the voltage-dependent anion channel (VDAC-1), reduced the PEI-stimulated
increase in extracellular ATP by ~75% and 79%, respectively (Figure 1A,C,E). Initial rates
of ATP release were determined from linear regression analysis of the ATP kinetic data
(Figure 1A) between 0.5–2.0 min for PEI (6.58 ± 0.43), GSH + PEI (1.79 * ± 0.16) and
DIDS + PEI (1.48 * ± 0.30) (Figure 1B). GSH and DIDS significantly inhibited the initial
rate of release by ~73% and ~78%, respectively (Figure 1B; * p < 0.0001 compared to PEI
alone). GSH + PEI and DIDS + PEI treatment conditions were not significantly different.
Figure 1C shows the effects of probenecid (1 mM), a previously characterized inhibitor
of pannexin 1 channels [29], on PEI-induced ATP release. Probenecid inhibited the PEI-
evoked steady state increase in extracellular ATP by ~31% and when cells were pretreated
with both GSH and probenecid, an additive response was observed, amounting to ~96%
inhibition of the total ATP response. The initial rates of ATP release (Figure 1D) were PEI
(5 µg/mL) = 8.37 ± 0.34, probenecid (1 mM) + PEI = 6.93 ** ± 0.33 (~17% inhibition of the
ATP response; ** p < 0.0264 compared to PEI alone), and Probenecid (1 mM) + GSH (5 mM)
+ PEI = 0.26± 0.15 (~97% inhibition of the ATP response; * p < 0.0001 compared to PEI alone
and Probenecid + PEI; † p < 0.0001 comparing Probenecid + PEI with Probenecid + GSH
+ PEI). Two additional inhibitors of pannexin-1, including the selective peptide blocker
10Panx (50 µM) and the antibiotic, trovafloxacin mesylate (TVM; 20 µM) inhibited the
PEI (5 µg/mL)-induced increase in extracellular ATP by 32 and 38%, respectively [30,31].
When TVM (20 µM) was added in combination with DIDS (100 µM) or GSH (5 mM), the
PEI-stimulated increase in extracellular ATP was inhibited by ~95% and ~99%, respectively
(Figure 1E). Figure 1F shows the results of initial rate measurements derived from linear
regression analysis of the data presented in Figure 1E where PEI = 5.38 ± 0.27, 10Panx +
PEI = 4.47 ** ± 0.13 (** p < 0001 compared to PEI alone) and TVM + PEI = 4.10 * ± 0.11
(* p < 0.0001 compared to PEI alone). DIDS and GSH produced additive responses that
essentially abolished PEI-evoked ATP release (TVM + DIDS + PEI = 0.64 * ± 0.05 and TVM
+ GSH + PEI = 0.001 * ± 0.0003 where * p < 0.0001 compared to PEI alone and † p < 0.0001
when compared with TVM + PEI).

hBE cell exposure to PEI induced a sustained increase in intracellular [Ca2+] ([Ca2+]i)
similar to Alternaria. Figure 2A shows images of hBE cells loaded with the ratiometric
Ca2+-sensing indicator Fura 2 after exposure to Alternaria (100 µg/mL), PEI (5 µg/mL)
or house dust mite extract (HDM, 200 µg/mL) and Figure 2B shows the kinetics of the
Ca2+ response. Removal of Ca2+ from the extracellular solution abolished the increase in
[Ca2+]i induced by PEI (steady state ∆F340/F380 following PEI exposure = 0.0036 ± 0.006,
which was not significantly different from basal [Ca2+]i). This result indicated that the
PEI-stimulated increase in [Ca2+]i was due to an increase in Ca2+ uptake across the plasma
membrane. The PEI-evoked increase in [Ca2+]i was more rapid than that produced by
Alternaria, but similar to the more transient Ca2+ response induced by HDM. Figure 2C
shows that inhibitors of ATP release (10Panx (50 µM), DIDS (100 µM) and GSH (5 mM))
reduced PEI-stimulated Ca2+ uptake by amounts corresponding to their inhibitory effects
on PEI-stimulated ATP release.
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were significantly different from PEI alone; Brown-Forsythe and Welch ANOVA with Dunnett’s T3 

posttest. (C). Effects of probenecid (1 mM) and probenecid + GSH (5 mM) on PEI-induced ATP re-

lease (PEI (5 μg/mL) alone, n = 8; Probenecid (1 mM) + PEI, n = 4; Probenecid + GSH (5 mM) + PEI, 

n = 4). (D). Initial rates of ATP release calculated from data generated in Figure 1C. Data points were 

fit using linear regression analysis (PEI (5 μg/mL) alone, n = 8; Probenecid (1 mM) + PEI, n = 4; 

Probenecid + GSH (5 mM) + PEI, n = 8). Initial rates of ATP release were determined from the slopes 

Figure 1. Effects of PEI on the kinetics of ATP release from hBE cells. (A). Time course measurements
of ATP release following exposure to PEI (5 µg/mL) alone (n = 16) or after pretreatment (1 h) with
glutathione (GSH: 5 mM; n = 9) or DIDS (100 µM; n = 8). (B). Initial rates of ATP release measured
between 0.5 and 2.0 min after exposure. Data points were fit using linear regression analysis (PEI
alone, n = 16; GSH + PEI, n = 9; DIDS + PEI, n = 8, * p < 0.0001, ** p < 0.0264 compared to PEI alone;
† p < 0.0001 comparing Probenecid + PEI with Probenecid + GSH + PEI). Initial rates of ATP release
were determined from the slopes and plotted in the bar graph. GSH + PEI and DIDS + PEI conditions
were significantly different from PEI alone; Brown-Forsythe and Welch ANOVA with Dunnett’s T3
posttest. (C). Effects of probenecid (1 mM) and probenecid + GSH (5 mM) on PEI-induced ATP release
(PEI (5 µg/mL) alone, n = 8; Probenecid (1 mM) + PEI, n = 4; Probenecid + GSH (5 mM) + PEI, n = 4).



Int. J. Mol. Sci. 2021, 22, 9071 5 of 18

(D). Initial rates of ATP release calculated from data generated in Figure 1C. Data points were fit using
linear regression analysis (PEI (5 µg/mL) alone, n = 8; Probenecid (1 mM) + PEI, n = 4; Probenecid +
GSH (5 mM) + PEI, n = 8). Initial rates of ATP release were determined from the slopes and plotted
in the bar graph. Probenecid + PEI and Probenecid + GSH + PEI conditions were significantly
different from PEI alone (* p < 0.0001) and GSH (5 mM) + Probenecid was significantly different
from Probenecid (1 mM) + PEI († p < 0.0001); ANOVA with Tukey’s posttest. (E). Effects of pannexin
1 inhibitors, 10Panx peptide (50 µM; n = 3) and Trovafloxacin mesylate (TVM, 20 µM; n = 5) on PEI
(5 µg/mL; n = 10)-induced ATP release. GSH (5 mM; n = 3) and DIDS (100 µM; n = 3) produced
additive effects when co-administered with TVM (20 µM), which abolished ATP release. (F). Initial
rates of ATP release calculated from data shown in Figure 1E. Data points were fit using linear
regression analysis (PEI (5 µg/mL) alone, n = 10; 10Panx peptide (50 µM; n = 3), TVM (20 µM; n = 5),
DIDS (100 µM) + TVM + PEI, n = 3 and GSH (5 mM) + TVM + PEI, n = 3). Initial rates of ATP release
were determined from the slopes and plotted in the bar graph. 10Panx + PEI, Trovafloxacin mesylate
(TVM) + PEI, DIDS + TVM + PEI and GSH + TVM + PEI conditions were significantly different from
PEI alone (* p < 0.0001) or from TVM + PEI; ANOVA († p < 0.0001) with Tukey’s posttest.

In a previous study, Alternaria-induced Ca2+ uptake was inhibited by oATP, suggesting
a possible role for P2X receptors in facilitating Ca2+ entry into the cell [30]. In Figure 2D,
treatment of hBE cells with oATP (300 µM) inhibited PEI-evoked Ca2+ uptake by ~50%.
Similarly, treatment with the selective TRPV1 antagonist A784168 (100 nM) also inhibited
~50% of the PEI-stimulated Ca2+ response, and when both oATP and A784168 were added
in combination, PEI-induced Ca2+ uptake was completely blocked. In contrast, 100 nM
A784168 had no significant effect on the Alternaria-induced increase in [Ca2+]i (Figure 2E).

Stimulation of hBE cells with PEI produced an increase in uptake of the fluorescent
cationic dye Yo Pro-1 (mw 629). Figure 3A shows Yo Pro-1 labeling of both the nucleus
and cytoplasm of hBE cells after exposure to PEI (5 µg/mL) for 15 min. Pretreatment with
oATP (300 µM) abolished PEI-induced Yo Pro-1 uptake (Figure 3B). Quantitation of the
oATP effect is shown in Figure 3E (* p < 0.0001, n = 25). Figure 3C,D show rhodamine
B (mw 479) labeling of hBE cells before and after Alternaria stimulation. In the absence
of Alternaria, the cell membrane was essentially impermeable to rhodamine B. However,
Alternaria (100 µg/mL) exposure for 15 min induced rhodamine B uptake into most of
the HBE cells. A quantitative comparison between the number of rhodamine B-labeled
cells before and after Alternaria exposure is shown in Figure 3F (* p < 0.0001, n = 5). The
kinetics of PEI and ATP-induced Yo Pro-1 uptake are shown in Figure 3G. Note that the PEI
response is more rapid than ATP and Alternaria (100 µg/mL) on Yo Pro-1 uptake shown in
Figure 3H.

PEI (5 µg/mL; n = 55) also caused DNA fragmentation as revealed in comet assays
that show significant († p < 0.0001) tail formation following exposure for 30 min (Figure 4).
If cells were pretreated (1 h) with the ROS scavenger glutathione (5 mM; n = 70) or
with inhibitors of ATP release (DIDS (100 µM; n = 59) or 10Panx (50 µM; n = 67), DNA
fragmentation was significantly (* p < 0.0001) blocked. Similarly, when PEI (5 µg/mL)
stimulated Ca2+ uptake is blocked by combined pretreatment with oATP (300 µM) and
A784168 (100 nM), DNA damage was also inhibited (* p < 0.0001; n = 53).
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Figure 2. Allergen and PEI induced increases in [Ca2+]i. (A). Pseudo-color images of hBE cells loaded
with the ratiometric Ca2+ indicator, Fura-2. The resting level of intracellular [Ca2+] is shown in the
untreated (Untx) control image. After exposure to PEI (5 µg/mL) or Alternaria (100 µg/mL), the
increase in [Ca2+] is indicated by a change in color from blue to yellow/orange. In cells treated
with 200 µg/mL HDM, the peak Ca2+ response was less than observed with PEI or Alternaria. (B).
Comparison of the kinetics of PEI (5 µg/mL; n = 36), Alternaria (100 µg/mL; n = 36) and HDM
(200 µg/mL; n = 36)—evoked Ca2+ responses. (C). Inhibitors of pannexin 1 (10Panx, 50 µM; n = 36),
VDAC-1 (DIDS, 100 µM: n = 36) and oxidative stress (GSH, 5 mM; n = 36), which block ATP release
also reduced PEI (5 µg/mL)-induced increases in [Ca2+]i. (D). The selective TRPV1 antagonist
(A784168, 100 nM, n = 36) and the P2X-receptor antagonist (oATP, 300 µM; n = 36) inhibited ~50%
of the PEI-induced Ca2+ response. When hBE cells were pretreated with both antagonists, the PEI-
stimulated Ca2+ response was completely blocked. (E). In contrast, the TRPV1 antagonist A784168
(100 nM; n = 36) does not inhibit Alternaria-evoked increases in [Ca2+]i.
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uptake into a population of 150 hBE cells before and after Alternaria (100 μg/mL; n = 5 experiments) 
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Figure 3. Yo Pro-1 and rhodamine uptake into hBE cells following treatment with PEI (5 µg/mL)
and Alternaria (100 µg/mL). (A). Yo Pro-1 fluorescence detected in hBE cells after exposure to PEI
for 15 min. (B). Pretreatment with oATP (300 µM) blocks PEI-induced Yo Pro-1 uptake. (C). Control
experiment showing that hBE cells do not exhibit rhodamine uptake. (D). Alternaria (100 µg/mL)
stimulates rhodamine influx. (E). PEI (5 µg/mL; n = 25) induced YoPro-1 uptake measured in units
of relative fluorescence intensity is blocked by oATP (300 µM; n = 25; * p < 0.0001). (F). Rhodamine
uptake into a population of 150 hBE cells before and after Alternaria (100 µg/mL; n = 5 experiments)
exposure (* p < 0.0001). (G). Kinetics of PEI (5 µg/mL; n = 9) and ATP (250 µM; n = 10)-induced Yo
Pro-1 uptake. (H). Kinetics of Alternaria (100 µg/mL; n = 5) induced Yo Pro-1 uptake.
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Figure 4. Results of comet assays showing that PEI (5 µg/mL) causes DNA fragmentation. (A). Im-
ages showing PEI induced comets before and after pretreatment with the oxidant scavenger GSH
(5 mM), two inhibitors of ATP release (DIDS (100 µM) and 10Panx (50 µM)) and a combination of
inhibitors that block Ca2+ uptake (oATP (300 µM) and A784168 (100 nM)). (B). Measurements of
% DNA present in the tails of comets exposed to PEI (5 µg/mL; n = 55) before († p < 0.0001) and
after pretreatment with GSH (5 mM; n = 70), DIDS (100 µM; n = 59), 10Panx (50 µM; n = 67) and
oATP (300 µM) + A784168 (100 nM), n = 53 (* p < 0.0001). The Brown-Forsythe and Welch ANOVA
followed by Dunnett’s T3 multiple comparison’s test was used to determine significant differences
between groups.

Figure 5 shows that PEI, like Alternaria, increases IL-33 mRNA expression and protein
secretion. IL-33 is a cytokine known to be stored in the nucleus of bronchial epithelial
cells [32–34]. Allergen exposure induces proteolytic processing and secretion of IL-33
into the extracellular fluid, where it binds to ST2 receptors expressed by immune cells
to stimulate expression and release of Th2 cytokines, including IL-5 and IL-13 [35,36].
The increase in IL-33 mRNA expression was significant within 3 h following exposure
to PEI (* p < 0.0001). Furthermore, increased expression of IL-33 mRNA was blocked
(† p < 0.0008) under conditions where oxidative stress was inhibited by pretreatment with
5 mM GSH or when the PEI-induced increase in intracellular [Ca2+] was blocked by removal
of extracellular Ca2+ or when ATP release was inhibited with both DIDS (100 µM) and TVM
(20 µM) (Figure 5A). PEI also induced a concentration-dependent increase in IL-33 secretion
from GET33 cells (* p = 0.0002; ** p < 0.0001; Figure 5B), which was inhibited († p < 0.0001)
by the same pretreatment conditions that also reduced IL-33 mRNA expression (Figure 5C).
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In vivo experiments involving intranasal administration of PEI into mouse airways
revealed increased levels of IL-5, IL-13 (** p = 0.0113; * p = 0.0260) and IL-33 (* p = 0.0324)
in BAL fluid after 4.5 h (Figure 6A,B). Intranasal challenge with PEI complexed with the
model antigen ovalbumin (OVA) also produced significant increases (* p = 0.03, comparing
OVA with OVA + PEI and ST2 KO; OVA with ST2 KO; OVA + PEI) in plasma IgE levels
that were not significantly reduced in ST2 deficient mice (Figure 6C). Although IL-33 is
known to induce follicular helper T cells, it is important to note that other proinflammatory
molecules/pathways can also drive IgE secretion by these cells. Thus, the IgE response is
less dependent on the IL-33/ST2 pathway [37]. In addition, mice previously exposed to
OVA+PEI produced more IL-5 and IL-13 in BAL fluids as compared to those exposed to
OVA alone when they were challenged with OVA. When this experiment was repeated,
using ST2 deficient mice, BAL levels of IL-5 and IL-13 were significantly reduced compared
to control mice (Figure 6D). Moreover, analysis of immune cell recruitment into BAL fluid
samples following OVA challenge of mice that had been exposed to OVA+PEI showed
significant increases in lymphocytes and eosinophils, with no significant recruitment
of neutrophils. However, ST2 deficient mice exhibited a significantly lower amount of
eosinophil recruitment into BAL fluid relative to control mice (Figure 6E). These results are
consistent with induction of type 2 immunity following challenge with PEI alone or when
challenged with PEI-OVA complexes.
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Figure 5. PEI stimulates IL-33 mRNA expression and secretion. (A). Exposure of immortalized hBE cells transfected
with full length human IL-33 gene (GET-33 cells) to Alternaria (Alt) 100 µg/mL for 0.5 and 3 h resulted in a significant
(* p < 0.0001) increase in IL-33 mRNA expression after 3 h. A similar increase was observed following exposure to PEI
(5 µg/mL) at 3 h. Pretreatment with GSH (5 mM) or removal of extracellular [Ca2+] (Ca2+-free conditions) or inhibition of
ATP release with both DIDS (100 µM) and TVM (20 µM) significantly blocked the PEI-induced increase in IL-33 mRNA
expression († p < 0.0008). (B). Treatment of GET-33 cells with PEI for 1 h produced a concentration-dependent increase
in IL-33 secretion (* p < 0.0002; ** p < 0.0001). (C). PEI (5 µg/mL) induced IL-33 secretion (* p < 0.0001) was inhibited
(† p < 0.0001) under; (i) Ca2+-free conditions, (ii) when oxidative stress was blocked by pretreatment with GSH (5 mM) and
(iii) when ATP release was completely inhibited using DIDS (100 µM) + TVM (20 µM). Multiple comparisons were made
using a one-way ANOVA followed by Tukey’s posttest for each figure.
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polyplexes. (A). Intranasal PEI stimulates IL5 and IL-13 secretion into BAL fluid (* p = 0.0260; ** p < 0.0113). (B). PEI
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eosinophils was reduced in ST2 deficient mice (Eos: † p < 0.0290 comparing OVA + PEI to ST2 KO; OVA + PEI). Unpaired
t-tests were used in A and, B, and a one-way ANOVA followed by Tukey’s multiple comparison’s posttest was used in (C–E).

3. Discussion

Previous studies have demonstrated that allergens derived from Alternaria alternata,
house dust mites (HDM) and cockroaches stimulate ATP release from airway epithelial
cells, which functions as a critical early step in the processing, nuclear mobilization, and
secretion of IL-33 [27,38–40]. In the case of Alternaria allergen exposure, two mechanisms
of ATP release have been described: a conductive pathway involving VDAC-1 and exo-
cytosis of ATP contained within membrane vesicles [28,41]. ROS scavengers including
GSH and N-acetylcysteine (NAC) inhibited Alternaria-evoked ATP release mediated by
VDAC-1, indicating a role for oxidative stress in activating the channel [41]. The disul-
fonic stilbene compound DIDS also blocked VDAC-1 mediated ATP release to the same
extent as GSH and NAC [41]. In the present study, GSH and DIDS each inhibited approx-
imately 75% of the initial rate of ATP release induced by PEI, consistent with inhibition
of VDAC-1-dependent ATP release, previously observed in response to Alternaria expo-
sure. Pretreatment of hBE cells with three known inhibitors of pannexin-1, inhibited the
remaining PEI-stimulated, GSH and DIDS-insensitive ATP release. Pannexin-1 channels
are well known for conducting ATP across the plasma membrane and earlier studies have
shown that they are activated by variety of stimuli including increases in extracellular [K+],
membrane depolarization, mechanical stimulation, increases in [Ca2+]i, and increases in
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ROS, although the molecular mechanisms are not completely understood [42,43]. In an
earlier study, it was reported that exposure of human bronchial epithelial cells to cigarette
smoke induced ATP release that was reduced by inhibitors of pannexin 1 channels [44].
Furthermore, pannexin-1 deficient mice displayed significant inhibition of cigarette smoke-
induced ATP release into the BAL. Our observation that pretreatment with GSH failed
to inhibit pannexin-1 mediated ATP release suggests that a mechanism other than oxida-
tive stress is responsible for PEI-induced increases in pannexin-1 activity. This result is
consistent with previous findings where oxidative stress induced by Alternaria did not
activate pannexn-1 dependent ATP efflux [26,41]. From the results of the present study, we
conclude that PEI and Alternaria activate a common pathway for ATP release involving
VDAC-1, however, unlike Alternaria, PEI does not induce vesicular ATP release [28].

Another important similarity between the epithelial response to PEI and allergens from
Alternaria and HDM is the increase in [Ca2+]i in response to ATP release [28,40]. However,
the PEI-evoked Ca2+ response was more rapid than observed with Alternaria, and more
sustained than the transient increase induced by HDM extract. Inhibition of ATP release
using blockers of pannexin 1 or VDAC-1 also significantly inhibited PEI-induced increases
in [Ca2+]i, providing evidence of an underlying role for purinergic signaling in regulation
of the PEI response. Similarly, reducing ROS levels with GSH nearly abolished the PEI-
stimulated increase in [Ca2+]i, indicating that, like Alternaria, inhibition of ATP release
by reducing oxidative stress also blocks the increase in [Ca2+]i. Removal of extracellular
Ca2+ completely inhibited the effect of PEI on [Ca2+]i, demonstrating that Ca2+ uptake
was responsible for increasing [Ca2+]i, as previously shown for Alterneria [27]. Two Ca2+

uptake mechanisms were shown to be involved in the PEI response, one that was blocked
by oATP and another that was inhibited by the potent (IC50 = 25 nM) and selective TRPV1
antagonist A784168 [45]. When both uptake pathways were blocked, no increase in [Ca2+]i
was produced following PEI exposure, demonstrating that PEI-stimulated Ca2+ uptake can
be completely accounted for by activation of oATP and A784168 sensitive pathways. In an
earlier study, the increase in [Ca2+]i evoked by Alternaria extract was completely blocked
by oATP, which was shown to be the result of P2X receptor inhibition [27]. Interestingly,
A784168 failed to block the Alternaria-stimulated increase in [Ca2+]i suggesting that TRPV1
does not appear to be not involved in mediating Ca2+ uptake induced by Alternaria
extract [46].

In addition to transporting metal cations such as Na+ and Ca2+, TRPV1 receptors
and several P2X receptor subtypes also conduct large organic cations including YoPro-1,
rhodamine, 4,6-diamidino-2-phenylindole (DAPI), ethidium bromide, and N-methyl-D-
glucamine (NMDG) [47–50]. In the present study, we showed that both PEI and Alternaria
stimulate YoPro-1 and rhodamine influx across the plasma membrane. The PEI-dependent
increase in cationic dye uptake appeared to be linked to ATP release since YoPro-1 uptake
was completely blocked by oATP. Previous studies have shown that oATP is capable of
inhibiting multiple P2X receptor subtypes (P2X1, P2X2, P2X7) known to transport organic
cations, but not TRPV1 receptors or P2Y2 receptors [51–53]. The exact mechanism by
which PEI activates TRPV1 receptors is presently unclear. Previous studies with silica
nanoparticles (SiNPs) have suggested that cell surface perturbations resulting from SiNP
particles striking the plasma membrane can produce TRPV1 activation by mechanical
stimulation [54]. In contrast, insoluble electrophilic compounds present in coal fly ash
particles activate TRPV1 through interactions with amino acids within the pore-loop region
of the channel [55]. Diesel exhaust particles can also open TRPV1 channels in epithelial
cells by indirectly activating protease-activated receptor 2 (PAR2), resulting in Ca2+ mobi-
lization from internal stores, inflammatory mediator release and matrix metalloprotease
activation [54]. Increasing extracellular concentrations of Na+, Mg2+, and Ca2+ also opens
TRPV1 channels expressed in HEK293 cells and oocytes presumably by interacting with
two glutamate residues (E600 and E648) located near the pore region of the channel [56].
Similarly, charge-dependent TRPV1 activation occurs following exposure to polyamines
including spermine and putrescine [57]. These findings agree with earlier results showing
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that eosinophil granule proteins activate pulmonary sensory nerves that express TRPV1
channels [58]. Thus, it appears plausible that positively charged PEI nanoparticles also
interact electrostatically with TRPV1 to produce channel opening and uptake of Ca2+;
however, activation by this mechanism does not appear to facilitate conduction of large
cations such as YoPro-1.

In addition to stimulating ATP release and increasing both intracellular [Ca2+] and
organic cation uptake, PEI exposure produced DNA fragmentation. Inhibiting PEI-induced
oxidative stress with GSH significantly reduced fragmentation, as did inhibition of ATP
release and Ca2+ uptake. Genotoxic effects of linear and branched PEI polymers were in-
vestigated previously using a human squamous carcinoma cell line (A431 cells). Branched,
but not linear PEI polymers, induced some tail formation in comet assays, indicating
DNA fragmentation [59]. Moreover, DNA damage resulting from double-stranded breaks
(DSBs) was also caused by exposing human bronchial epithelial cells (BEAS-2B cells) to
HDM allergens [60,61]. HDM increased oxidative damage to proteins, lipids and nucleic
acids (8-oxyguanine), reduced cell proliferation, and caused cell death. GSH and catalase
prevented DNA fragmentation suggesting a role for oxidative stress in genotoxicity. In-
terestingly, DNA fragmentation was measured after 6 h of exposure to HDM, whereas in
the present study, PEI-induced DNA fragmentation was detected after exposure for only
30 min [60]. As observed with HDM, oxidative stress appeared to be involved in producing
DNA fragmentation. However in contrast to HDM, direct nucleotide oxidation to form
8-oxyguanine does not seem to be involved in PEI-induced fragmentation. This speculation
is based on the observation that inhibition of ATP release and increases in intracellular
[Ca2+] have inhibitory effects on DNA damage that are similar to blocking oxidative stress
with GSH. Given that the increase in [Ca2+]i is downstream of PEI-induced oxidative stress,
it seems likely that raising intracellular [Ca2+] may stimulate DNase activity, perhaps by
activating caspase 3. Further experiments will be required to determine whether increased
caspase 3 activity is involved in mediating the effects of PEI on DNA fragmentation.

PEI and Alternaria also stimulated IL-33 mRNA expression. Moreover, oxidant scav-
enging with GSH along with inhibiting increases in [Ca2+]i or blocking ATP release reduced
the response. The increase in mRNA expression was associated with a concentration-
dependent increase in IL-33 secretion into the extracellular fluid, which was also inhibited
by the same pretreatment conditions that reduced IL-33 mRNA expression and similar to re-
sults of previous studies showing that Alternaria stimulates IL-33 secretion [26,27,34,62,63].
In addition, in vivo experiments showed that intranasal administration of PEI stimulated
IL-33 secretion into the BAL fluid. Increased expression and secretion of IL-33 suggested
that PEI was capable of inducing type-2 immunity. This conjecture was confirmed in
subsequent in vivo studies where increases in the levels of Th2 cytokines, (IL-5 and IL-13)
and the cytokine alarmin IL-33 were detected in the BAL fluid of mice exposed to PEI alone.
Similarly, increases in BAL fluid [IL-5] and [IL-13] in mice treated with PEI/ovalbumin
polyplexes were reduced in ST2 deficient mice. Furthermore, PEI/ovalbumin-induced in-
creases in the number of eosinophils within the BAL fluid were also lower in ST2 knockout
mice. These findings support the conclusion that IL-33 release induced by PEI, stimulated
type 2 immune responses in vivo. They are also consistent with a previous in vivo study
showing that PEI alone activated genes involved in Th1 and Th2 immunity in spleen lym-
phocytes and that the response was enhanced when PEI was formulated with DNA [64].
More recently, PEI was shown to exhibit robust mucosal adjuvanticity and protective
immunity against influenza and herpes simplex virus-2 when administered intranasally
with hemagglutinin or glycoprotein D antigens co-formulated with PEI [65]. Moreover,
when branched PEI was used for surface functionalization of a graphene oxide (GO) based
vaccine delivery vector, enhanced interactions between GO and recombinant influenza
hemagglutinin (HA) occurred that resulted in positively charged nanoparticles with mu-
cosal adjuvant activity [66]. Intranasal administration of GO-HA nanoparticles, in the
absence of any additional adjuvants, stimulated robust, antigen specific immune responses
that were protective against homologous and heterologous influenza viruses.
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4. Materials and Methods
4.1. Materials

Alternaria (Alternaria alternata) and house dust mite (Dermatophagoides pteronyssinus)
were purchased from Greer Laboratories (Lenoir, NC, USA). Polyethylenimine (PEI), 4,4′-
diisothiocyanatostilbene-2,2′-disulfonic acid disodium salt hydrate (DIDS), L-glutathione
(GSH), ATP, adenosine 5′-triphosphate, periodate oxidized sodium salt (oATP), probenecid,
rhodamine B, ovalbumin and NaOH were purchased from Sigma-Aldrich Chemicals (St
Louis, MO, USA). 10Panx, trovafloxacin mesylate (TVM), A784168 were purchased from
Tocris (Minneapolis, MN, USA). ATP determination kit, Hanks’ balanced salt solution (HBSS),
acetoxymethyl ester form of fura-2 (fura-2 AM), SYBR® Gold, Yo Pro-1 and EDTA were
obtained from ThermoFisher Scientific (Waltham, MA, USA).

4.2. Methods
Cell Culture Conditions

Human bronchial epithelial (hBE) cells were immortalized following transfection of
genes encoding cyclin-dependent kinase-4 and human telomerase reverse transcriptase [67].
Cell monolayers were grown on two-well chamber slides (Laboratory-Tek, VWR Interna-
tional, Chicago, IL, USA) for Ca2+ imaging and dye uptake experiments, or on 35 mm
culture dishes (Corning Life Sciences, Lowell, MA, USA) for ATP release measurements
and for comet assays. The cells were cultured in bronchial epithelial cell growth medium
with growth factor supplements (PromoCell GmbH, Heidelberg, Germany) and incubated
at 37 ◦C in a humidified atmosphere of 5% CO2 in air.

4.3. ATP Release Measurements

ATP release into the medium was measured in real time using a luciferin/luciferase
bioluminescence ATP determination kit. Cell monolayers were washed and replaced with
1 mL of standard reaction solution (SRS) containing luciferin/luciferase and loaded into a
Glomax 20/20 luminometer (Promega, Madison, WI, USA). The background luminescence
signal was measured for 1 min followed by PEI exposure and the change in luminescence
was measured continuously for 10 min. The background luminescence signal was sub-
tracted from the PEI-stimulated signal, then converted to [ATP] using an ATP calibration
curve (range: 0.1–100 nM) and expressed as nM/cm2. The data points from 0.5–2.0 min
after PEI exposure were used for linear regression analysis and the slope represented the
initial rate of ATP release expressed as pmol/(min·cm2).

4.4. Intracellular [Ca2+] Measurements

hBE cells grown on chamber slides (48–72 h), they were washed with HBSS containing
10 mM HEPES buffer and incubated with Fura-2 AM for 1 h. The cells were washed again
and replaced with HBSS buffer, then mounted onto the stage of an inverted fluorescence
microscope for measurements of intracellular Ca2+ concentration ([Ca2+]i). Fluorescence
was measured using a Nikon UV 20× objective at excitation wavelengths of 340 nm/380 nm
and an emission wavelength of 510 nm. MetaMorph software (Molecular Devices, San Jose,
CA, USA) was used for image acquisition and data analysis. Relative changes in [Ca2+]i
were determined and expressed as the fluorescence ratio when the cells were excited at
340 nm and 380 nm (F340/F380).

4.5. Organic Cation Uptake Experiments

hBE cells were grown on two-well chamber slides for 48 h prior to use in dye uptake
experiments. Culture media was replaced with 1 mL HBSS solution containing 10 mM
HEPES, pH 7.4 and 2 µM Yo Pro-1. Chamber slides were then mounted onto the stage
of a fluorescence microscope and images of the cells were acquired with a Prime 95B
sCMOS digital camera (Teledyne Photometrics, Tucson, AZ, USA) using a 40× fluorescence
objective (peak excitation/emission λ = 490/520 nm). Time course experiments were
initiated with the addition of PEI (5 µg/mL) or Alternaria (100 µg/mL) or ATP (250 µM)
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and images of the cells were captured at 0.5 or 1.0 min intervals for 15 min and analyzed
using Micro-Manager 1.4 software (https://micro-manager.org/ access date: 23 October
2017). A similar protocol was used for the rhodamine B uptake experiments, where cells
were incubated in HBSS containing 0.5 µM rhodamine B for 10 min prior to addition
of Alternaria (100 µg/mL) for 15 min. Images of the cells were acquired using a 20×
fluorescence objective (peak excitation/emission λ = 545/570 nm).

4.6. Comet Assay

The effects of PEI on DNA fragmentation were examined using a CometAssay® Kit
(Trevigen, Gaithersburg, MD, USA). After PEI exposure, cells were trypsinized and com-
bined with molten LM Agarose (37 ◦C) at a 1:10 v/v ratio. The combined cell-LM Agarose
solution was pipetted onto comet slides and placed flat at 4 ◦C in the dark for 10 min,
then slides were immersed in 4 ◦C lysis solution for 30–60 min to lyse the cells. To un-
wind and denature the DNA, the slides were immersed in alkaline electrophoresis so-
lution (200 nM NaOH, 1 mM EDTA) for 20 min and then placed in an electrophoresis
slide tray with a protective overlay on top. Gel electrophoresis was performed using
the CometAssay® ES unit, with 4 ◦C alkaline electrophoresis solution at 21V for 30 min.
The slides were gently immersed twice in distilled H2O, then in 70% ethanol for 5 min
each. After drying the slides at 37 ◦C for 10 min, SYBR® Gold staining solution contain-
ing 10 mM Tris-HCl, 1 mM EDTA was placed onto the dried agarose and stained for
30 min in the dark. DNA fragmentation was visualized using an inverted fluorescence
microscope with a Nikon 10x fluorescence objective at excitation/emission wavelengths of
496 nm/522 nm. Quantitative and statistical analyses were performed using CometScore 2.0
software (http://rexhoover.com/index.php?id=cometscore) access date: 22 April 2021 and
DNA fragmentation was expressed as percent DNA in the head and tail.

4.7. Quantitative Reverse-Transcription PCR (qRT-PCR)

Total RNA was extracted from hBE cells transfected with the full-length human IL-33
gene (GET-33 cells) using RNeasy Mini Kit (Qiagen, Hilden Germany). One µg of total
RNA quantified by Qubit Fluorometric assay (ThermoFisher, Waltham, MA, USA) was
reverse transcribed to cDNA using a High Capacity RNA to cDNA kit (ThermoFisher). One
µg cDNA, TaqMan probes (Hs00369211_m1, Hs02786624_g1), and TaqMan Fast Advanced
Master Mix (ThermoFisher) were used to preform qRT-PCR on a Step-One-Plus Real-time
PCR machine. The expression level was normalized to the threshold cycle number (Ct) of
an internal reference gene (GAPDH).

4.8. In Vivo Experiments

Wild-type (WT) BALB/c mice were purchased from Jackson Laboratories. ST2−/−

(Il1rl1−/−) mice on a BALB/c background were kindly provided by Dr. Andrew N.
McKenzie (Medical Research Council Laboratory of Molecular Biology, Cambridge, UK).
All animal experiments were performed with the approval of and following the regulatory
guidelines and standards set by the Institutional Animal Care and Use Committee of Mayo
Clinic (protocol A59315, approved 18 November 2015). Female mice ages 6–13 weeks old
were held under specific pathogen-free conditions prior to use in experiments.

For acute PEI exposure, WT BALB/c mice were administered a single intranasal
(i.n.) dose of phosphate buffered saline solution (PBS) with 12.5 µg PEI under isoflu-
rane anesthesia. In chronic exposure experiments, WT BALB/c or ST2−/− mice were
intranasally challenged with 10 µg ovalbumin (OVA) in the absence of an adjuvant with or
without 25 µg PEI following the treatment scheme below. After the final administration
bronchoalveolar lavage (BAL) fluid was collected through a tracheostomy tube at 1 h
after euthanasia with pentobarbital. Cell numbers in BAL fluid were counted using a
hemocytometer. Eosinophils, neutrophils, lymphocytes, or macrophages were identified
using standard morphologic criteria under light microscopy and percentages of these cells
were determined.

https://micro-manager.org/
http://rexhoover.com/index.php?id=cometscore
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4.9. Cytokine Release Measurements

Measurement of IL-5, IL-13, and IL-33 concentrations in BAL fluid and GET-33 cell
culture media or Hank’s buffered saline solution (HBSS) were performed using Quantikine
or Duoset ELISA kits (R&D Systems, Minneapolis MN, USA), following the manufacturer’s
instructions. Note that sensitivity for IL-5 was 8 pg/mL, for IL-13, 4 pg/mL and for IL-33,
14 pg/mL. Protein concentrations in the BAL fluid were quantitated using a BCA Protein
Assay Kit (Bio-Rad Laboratories, Hercules, CA, USA).

4.10. IgE Assay

IgE measurements were performed following the protocol by Kobayashi et al., 2009 [68].
Briefly, ELISA plates (Immulon 4 HBX; Thermo Labsystems, Philadelphia, PA, USA) were
coated with 5 µL/mL rat anti-mouse IgE mAb (LO-ME-3; Bio-Rad, Hercules, CA) in 0.1 M
carbonate buffer (pH 9.5) for 2 h at 37 ◦C. Blocking was performed with PBS containing
1% BSA (MilliporeSigma, Burlington, MA, USA) overnight at 4 ◦C. After blocking, plasma
samples diluted with PBS containing 1% BSA and 0.05% Tween 20 were added to the
plates, and incubated for 2 h at room temperature. Afterwards, plates were treated with
1 µg/mL OVA or OVA + PEI, which had been biotinylated using a microbiotinylation kit
(MilliporeSigma,), for 1 h at room temperature, followed by 1/5000 streptavidin-poly-HRP
(ThermoFisher) for 30 min at room temperature. After the final washing, peroxidase sub-
strate (TMB substrate kit) was added and the reaction stopped 20 min later with 1 M HCl.
After each step, plates were washed with PBS containing 0.05% Tween 20. A microplate
autoreader (Thermomax; Molecular Devices, San Jose, CA, USA) was used to measure
absorbance at 450 nm.

4.11. Statistics

Data are presented as means ± standard error. Statistical comparisons between means
from multiple treatment conditions were determined using a Brown-Forsythe and Welch
one-way ANOVA followed by Dunnett’s T3 posttest or by a standard one-way ANOVA
followed by Tukey’s multiple comparisons test. A two-tailed, unpaired t test was used
for statistical comparisons between two means. Graphics and statistical analyses were
performed using GraphPad PRISM 8.0 (San Diego, CA, USA).

5. Conclusions

The findings of the present study provide new insights into the mechanisms by which
PEI induces type 2 immunity. The airway epithelial response to PEI exposure was similar to
that of certain allergens that stimulate ATP release and subsequently increase intracellular
[Ca2+]. Most of the ATP release occurred in response to oxidative stress and Ca2+ uptake
was required for increasing IL-33 mRNA transcription and secretion into the extracellular
media. These findings indicate that mucosal adjuvanticity associated with PEI alone or
with PEI polyplexes requires early induction of ATP release as a means of promoting IL-33
mobilization and secretion from the airway epithelium. Subsequent interaction of IL-33
with ST2 receptors associated with ILC2 cells, Th2-type CD4+ T cells, and perhaps other
inflammatory cells facilitates the production and release of Th2 cytokines like IL-5 and
IL-13, which ultimately leads to development of an allergic inflammatory response.
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