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Abstract
This paper introduces a novel approach to gene selection based on a substantial modifica-

tion of analytic hierarchy process (AHP). The modified AHP systematically integrates out-

comes of individual filter methods to select the most informative genes for microarray

classification. Five individual ranking methods including t-test, entropy, receiver operating

characteristic (ROC) curve, Wilcoxon and signal to noise ratio are employed to rank genes.

These ranked genes are then considered as inputs for the modified AHP. Additionally, a

method that uses fuzzy standard additive model (FSAM) for cancer classification based on

genes selected by AHP is also proposed in this paper. Traditional FSAM learning is a hybrid

process comprising unsupervised structure learning and supervised parameter tuning. Ge-

netic algorithm (GA) is incorporated in-between unsupervised and supervised training to op-

timize the number of fuzzy rules. The integration of GA enables FSAM to deal with the high-

dimensional-low-sample nature of microarray data and thus enhance the efficiency of the

classification. Experiments are carried out on numerous microarray datasets. Results dem-

onstrate the performance dominance of the AHP-based gene selection against the single

ranking methods. Furthermore, the combination of AHP-FSAM shows a great accuracy in

microarray data classification compared to various competing classifiers. The proposed ap-

proach therefore is useful for medical practitioners and clinicians as a decision support sys-

tem that can be implemented in the real medical practice.

Introduction
A large number of genes cannot be possibly analysed by traditional methods. DNA microarray
is a technique that enables researchers to analyse the expression of many genes speedily. DNA
microarray includes a process that labelled mRNA from a test tube is spread onto the microar-
ray, which is made up of thousands of spots. Each DNA spot, which represents one gene, con-
tains multiple identical strands of DNA. The labelled mRNA molecules move around the
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microarray to find and stick to their perfect matches. The quantity of mRNA bound to each
spot on the array specifies the expression level of the various genes.

The DNA microarray technology therefore assists scientists to discover the genetic causes of
anomalies arising in the functioning of the human body. A DNAmicroarray allows researchers
to identify all the differences in gene expression between two different cell types, e.g. between
normal (healthy) and diseased (cancer) cells, in a single experiment. Applications of DNA mi-
croarray data for the classification of disease based on different patterns of gene expression
play a pivotal role in medical research. Classification of microarray data is necessary for real
clinical practice, particularly in diagnosis of heart disease, infectious disease and the study of
cancer. This task raises a huge challenge to researchers in statistics and also computational in-
telligence due to the high-dimensional-low-sample nature of the microarray data.

Wu et al. [1] employed a Laplace naive Bayes model for microarray data classification. The
method takes group effects into account and is robust to outliers, which are commonly seen in
gene expression data because of either chemical or electrical reasons. Chopra et al. [2] other-
wise used gene pair combinations as inputs to the cancer classification algorithms rather than
original gene expression profiles.

Basford et al. [3] considered both supervised and unsupervised classification for microarray
data. The supervised classification is to identify clusters of tissues on the basis of the genes
whereas unsupervised technique deals with the clustering of genes based on the tissues. Alter-
natively, a computational protocol for predicting gene markers in cancer tissues is used for ana-
lysing multiple cancer types in Xu et al. [4].

Yu et al. [5] proposed an undersampling method using the idea of ant colony optimization
to classify imbalanced DNAmicroarray data. Giugno et al. [6] in another approach introduced
a microarray data classification method using association rules. The authors suggested that the
transcript expression intervals competently demonstrate discriminate subtypes in the
same class.

Recently, Reboiro-Jato et al. [7] constructed a web-based interactive tool to assess the dis-
criminative classification performance of custom hypothesis in the form of biologically related
gene sets. The tool is able to provide valuation information for diagnostic analysis and clinical
management decisions.

Although many methods have been proposed for microarray data classification, they can
only provide nonintuitive classification results, which are not comprehensive and applicable to
clinicians in the real practice. The behaviour of classification technique needs to be understood
by human using tools like linguistic rules. Fortunately, this task can be accomplished by the
means of fuzzy logic, which was introduced in 1960s. Application of fuzzy logic can provide cli-
nicians with better understanding of the data and explanations on how diagnosed results are
given. Furthermore, fuzzy logic offers good capability to handle noisy/missing data, which is a
common problem in microarray data [8–10].

Inspired by the above circumstances, this paper proposes a method using fuzzy standard ad-
ditive model (FSAM) for cancer microarray data classification. To enhance the efficiency of
FSAM in dealing with high-dimensional-low-sample microarray data, genetic algorithm (GA)
is incorporated in the FSAM learning process to optimize the FSAM rule structure.

Before performing genetic FSAM for microarray data classification, a subset of the most in-
formative genes must be selected from thousands of genes. We propose herein a novel gene se-
lection by modifying the traditional analytic hierarchy process (AHP) [11] that can then be
quantitatively deployed to integrate outcomes of a number of individual gene
ranking methods.

Gene Selection Genetic Fuzzy System Cancer Microarray
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Gene Selection Methods
Microarray data commonly collected with the number of genes (often in thousands) is much
larger than the number of samples. Many standard techniques therefore find inappropriate or
computationally infeasible in analysing such data. The fact is that not all of the thousands of
genes are discriminative and needed for classification. Most genes are not relevant and do not af-
fect the classification performance. Taking such genes into account enlarges the dimension of
the problem, leads to computational burden, and presents unnecessary noise in the classification
practice [9]. Thus it is crucial to select a small number of genes, called informative genes, which
can suffice for good classification. However, the best subset of genes is often unknown [12].

Common gene selection approaches are filter and wrapper methods. Filter methods rank all
features in terms of their goodness using the relation of each single gene with the class label
based on a univariate scoring metric. The top ranked genes are chosen before classification
techniques are deployed. In contrast, wrapper methods require the gene selection technique to
combine with a classifier to evaluate classification performance of each gene subset. The opti-
mal subset of genes is identified based on the ranking of performance derived from deploying
the classifier on all found subsets. The filter procedure is unable to measure the relationship be-
tween genes whilst the wrapper approach requires a great computational expense [13].

Brief literature review of gene selection methods
There have been a number of gene selection techniques in the literature for DNA microarray
data classification. Liu at al. [14] introduced an ensemble gene selection method based on the
conditional mutual information for cancer microarray classification. Multiple gene subsets
serve to train classifiers and outputs are combined by a voting approach.

Likewise, Leung and Hung [15] initiated a multiple-filter-multiple-wrapper approach to
gene selection to enhance the accuracy and robustness of the microarray data classification. Liu
et al. [16] suggested another method, called ensemble gene selection by grouping, to derive
multiple gene subsets. The method is based on virtue of information theory and approximate
Markov blanket.

Bolón-Canedo et al. [17] in another approach investigated a gene selection method encom-
passing an ensemble of filters and classifiers. A voting approach was employed to combine the
outputs of classifiers that help reduce the variability of selected features in different
classification domains.

On the other hand, Bicego et al. [18] proposed a hybrid generative-discriminative approach
using interpretable features extracted from topic models for expression microarray data classi-
fication. Orsenigo and Vercellis [19] examined nonlinear manifold learning techniques for di-
mensionality reduction for microarray data classification. Likewise, Ramakrishnan and
Neelakanta [20] studied an information-theoretics inspired entropy co-occurrence approach
for feature selection for classification of DNAmicroarray data.

Recently, Du et al. [21] suggested a forward gene selection algorithm to effectively select the
most informative genes from microarray data. The algorithm combines the augmented data
technique and L2-norm penalty to deal with the small samples’ problem and group selection
ability respectively.

In this paper, to enhance the robustness and stability of microarray data classifiers, we intro-
duce a novel gene selection method based on a modification of the AHP. The idea behind this
approach is to assemble the elite genes from different ranking gene selection methods through
a systematic hierarchy.

The next subsections scrutinize background of common filter gene selection methods,
which are followed by our proposal.

Gene Selection Genetic Fuzzy System Cancer Microarray
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Note that the following gene selection methods are accomplished by ranking genes via scor-
ing metrics. They are statistic tests based on two data samples in the binary classification prob-
lem. The sample means are denoted as μ1 and μ2, whereas σ1 and σ2 are the sample standard
deviations, and n1 and n2 are the sample sizes.

Two-sample t-test
The two-sample t-test is a parametric hypothesis test that is applied to compare whether the av-
erage difference between two independent data samples is really significant. The test statistic is
expressed by:

t ¼ ðm1 � m2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

n1

þ s2
2

n2

s
ð1Þ

In the application of t-test for gene selection, the test is performed on each gene by separating
the expression levels based on the class variable. The absolute value of t is used to evaluate the
significance among genes. The higher the absolute value, the more important is the gene.

Entropy test
Relative entropy, also known as Kullback-Liebler distance or divergence is a test assuming clas-
ses are normally distributed. The entropy score for each gene is computed using the following
expression:

e ¼ 1

2

s2
1

s2
2

þ s2
2

s2
1

� 2

� �
þ 1

s2
1

þ 1

s2
2

� �
ðm1 � m2Þ2

� �
ð2Þ

After the computation is accomplished for every gene, genes with the highest entropy scores
will be selected to serve as inputs to the classification techniques.

Receiver operating characteristic (ROC) curve
Denote the distribution functions of X in the two populations as F1(x) and F2(x) The tail func-
tions are specified respectively Ti(x) = 1-Fi(x), i = 1,2. The ROC is given as follows:

ROCðtÞ ¼ T1ðT�1
2 ðtÞÞ; t 2 ð0; 1Þ ð3Þ

and the area between the curve and the straight line (AUC) is computed by:

AUC ¼
Z 1

0

ROCðtÞdt ð4Þ

The larger the AUC, the less is the overlap of the classes. For gene selection application, genes
with the greatest AUC thus will be chosen.

Wilcoxon method
TheWilcoxon rank sum test is equivalent to the Mann–Whitney U-test, which is a test for
equality of population locations (medians). The null hypothesis is that two populations enclose
identical distribution functions whereas the alternative hypothesis refers to the case two distri-
butions differ regarding the medians. The normality assumption regarding the differences be-
tween the two samples is not required. That is why this test is used instead of the two sample t-
test in many applications when the normality assumption is concerned.

The main steps of the Wilcoxon test [22] are summarized below:
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1. Assemble all samples of the two populations and sort them in the ascending order.

2. The Wilcoxon statistic is calculated by the sum of all the ranks linked with the samples from
the smaller group.

3. The hypothesis decision is made based on the p-value, which is found from the Wilcoxon
rank sum distribution table.

In the applications of the Wilcoxon test for gene selection, the absolute values of the standard-
ized Wilcoxon statistics are employed to rank genes.

Signal to noise ratio (SNR)
SNR defines the relative class separation metric by:

SNRðfi; cÞ ¼
m1 � m2

s1 þ s2

ð5Þ

where c is the class vector, fi is the ith feature vector. By treating each gene as a feature, we
transform the SNR for feature selection to gene selection problem for microarray
data classification.

SNR implies that the distance between the means of two classes is a measure for separation.
Furthermore, the small standard deviation favours the separation between classes. The distance
between mean values is thus normalized by the standard deviation of the classes [23].

A novel gene selection by modified AHP
Each of the above criteria can be employed to derive the ranking of genes and then to select
greatest ranking genes for classification methods. The confidence of using a single criterion for
selecting genes is not always achieved. Considering which criterion should be used is diffident.
This question inspires an idea of taking into account the ranking of all criteria in evaluating
genes. Through this way, elite genes of each criterion would be systematically assembled to
form the most informative and stable gene subsets for classification. It is a difficult practice to
combine ranking of all criteria because the ranges of statistics of criteria are different. The crite-
rion generates a higher range of statistics would dominate those with a lower range. In order to
avoid this problem, we utilize AHP in evaluating genes. The AHP deployment is commonly
dealt with qualitative criteria where their evaluations are derived from experts. Nevertheless,
experts’ knowledge is often limited particularly when the problem being solved is carried out
on a wide number of criteria referring to various knowledge areas. This advocates the use of
quantitative criteria in the AHP. The following presents a novel proposal vis-à-vis a ranking
procedure to utilize quantitative criteria to the AHP for gene selection problem. The criteria
used herein are the five test statistics i.e. t-test, entropy, ROC, Wilcoxon, SNR.

The AHP method as broadly applied in complex multi-criteria decision making is often per-
formed with a tree structure of criteria and sub-criteria [24]. Due to the nature of the criteria
selected here, the tree structure has three levels of hierarchies as illustrated in Fig. 1.

Five criteria are considered simultaneously during the AHP implementation. The five crite-
ria are all quantitative so that we can intuitively put actual figures of these criteria into elements
of the pairwise ranking matrix. This however would distort the matrix relative to other matrices
describing assessments and judgements with respect to other criteria. Conventional applica-
tions of hierarchical analysis often draw on the Saaty rating scale [1, 9] and rough ratios, e.g. 1,
3, 5, 7, 9 to build pairwise comparison matrices [24, 25]. In this research, we propose the scale
[1, 10] for ranking importance or significance of a gene compared with other genes. This scale
will be applied to all criteria in the AHP application.

Gene Selection Genetic Fuzzy System Cancer Microarray
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Suppose X = (xij) is the n×n-dimension pairwise judgement matrix in which each element
xij represents the relative importance of gene i over gene j with respect to a determined criteri-
on, n is the number of genes. The reciprocal characteristic induces the following constraints

xij ¼ 1=xji; 8i 6¼ j; i; j 2 ½1; n� ð6Þ

xii ¼ 1; 8i 2 ½1; n� ð7Þ

If gene i is absolutely more informative than gene j, then we have xij = 10. Accordingly gene j
must be absolutely less important than gene i and xji = 1/10. Where xij = 1, this indicates that
two genes are equally informative. The higher the value of xijε[1,10], the more important the
gene i is in comparing with gene j. Element xij that is greater than 1 is called a superior element.
Otherwise xij is called an inferior element as it is smaller than 1.

Let us define distance dij between two genes i and j with respect to a given criterion (e.g. t-
test, entropy, ROC, Wilcoxon or SNR) by the absolute value of the subtraction between two
statistics ci and cj of two genes.

dij ¼ absðci � cjÞ ! dij ¼ dji ð8Þ

Note that for all criteria, the higher the statistic, the more important the gene is. The proce-
dure to acquire elements of comparison reciprocal matrices is described below where c_max is
the maximum distance of genes regarding the given criterion, c_max =max(dij),8i,j2[0,n], and
c is a temporary variable.

Ranking procedure. FOR all pairs of two genes i and j

c ¼ dij � 9
c max

þ 1 ¼ absðci � cjÞ � 9
c max

þ 1 ð9Þ

IF (ci�cj) THEN xij = c ELSE xij = 1/c END IF
END FOR

The expressions of xij ensure that superior elements of the judgment matrices will be distrib-
uted in the interval [1, 10]. Note that via calculations of the quantitative ranking method, the su-
perior ratios are allowed to be real numbers within [1, 10] so that they can characterize more
rigorously the judgement significance against the original Saaty rating scale. For example, con-
sider four quantitative criteria A, B, C, and D with respective values 0.9, 1.3, 8.7, and 9.2.

Fig 1. The hierarchy of factors for gene selection by AHP.

doi:10.1371/journal.pone.0120364.g001
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According to the Saaty rating scale, criteria B and A (D and C) are considered “equally impor-
tant” and the ratios xBA and xDC will be equally assigned to 1: xBA = xDC = 1. Obviously, the dif-
ference between B and A (or D and C), though small, is neglected. However, with our ranking
method, the ratios xBA and xDC are assigned more precisely and differently 1.4337 = xBA6¼xDC =
1.5422. Likewise, in the Saaty rating scale, criterion C is considered absolutely more important
than criterion A and B, and the ratio xCA and xCB are both assigned 9. In our scale, the ratio xCA
and xCB will be assigned differently 9.4578 and 9.0241 respectively. Hence the “absolute impor-
tance” judgement is relaxed and replaced by more rigorous judgements with different real num-
bers 9.4578 and 9.0241 rather than the same rough number 9 for both xCA and xCB.

After comparison matrices are constructed, hierarchical analysis calculates eigenvectors that
demonstrate ranking scores of genes. Calculations of AHP are described succinctly in Table 1.

While applying the AHP, the matrix is required to be consistent and hence its elements
must be transitive, that is xik = xijxjk. To verify the consistency of the comparison matrix X,
Saaty [25] suggested calculating the Consistency Index (CI) and then Consistency Ratio (CR)
based on large samples of matrices of purely random judgements. Let � = [�1,. . ., �n]

T be an ei-
genvector and λ an eigenvalue of the square matrix X, so:

X� ¼ l� ð10Þ

Consistency IndexCI ¼ ðlmax � nÞ=ðn� 1Þ ð11Þ

Consistency RatioCR ¼ CI=index ð12Þ

CR should not exceed 0.1 if the set of judgements is consistent although CRs of more than 0.1
(but not too much more) sometimes have to be accepted in practice. CR equal to 0 implies the
judgements are perfectly consistent.

When calculations for five criteria are completed, we obtain the so-called option perfor-
mance matrix consisting of five eigenvectors that has the form shown in Table 2.

Finally the ranking of genes is the multiplication of the performance matrix and the vector
representing the important weight of every criterion. The weight vector can be obtained by
evaluating the important level of each criterion regarding the goal using the same procedure as
described above. However, to avoid a bias judgement, we consider five criteria having an equal-
ly important level regarding the goal. Then the weight vector is (1/5; 1/5; 1/5; 1/5; 1/5)T. It is

Table 1. AHP calculation procedure.

X G1 . . . Gn Sum of values Eigenvector (ε) Eigenvalue (λ)

G1 x11 . . . x1n S1 = (x11+ . . . +xn1) �1 ¼ x11
S1
þ . . .þ x1n

Sn

� �
=n l1 ¼ ½x11 ;...;x1n �:½�1 ;...;�n �T

�1

. . . . . . . . . . . . . . . . . . . . .

Gn xn1 . . . xnn Sn = (x1n+ . . . +xnn) �n ¼ xn1
S1

þ . . .þ xnn
Sn

� �
=n ln ¼ ½xn1 ;...;xnn �:½�1 ;...;�n �T

�n

ε+ . . . +εn = 1 λmax = max(λ1,. . .,λn)

doi:10.1371/journal.pone.0120364.t001

Table 2. Five eigenvectors of the option performancematrix.

T-test Entropy ROC Wilcoxon SNR

Gene 1 εT1 εE1 εR1 εW1 εS1

. . . . . . . . . . . . . . .

Gene n εTn εEn εRn εWn εSn

doi:10.1371/journal.pone.0120364.t002
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thus obvious that the ranking of genes is automatically normalized and it shows the important
level of each gene taking into account not only a single criterion but all criteria simultaneously.
Highest ranking genes are then selected for classification afterwards. In this paper, to testify the
performance of classification techniques, a wide range number of genes is determined. Details
of the number of genes selected are presented in the experimental section.

Genetic Fuzzy System for Microarray Data Classification

Fuzzy standard additive model (FSAM)
The FSAM system F: Rn ! Rp consists ofm if-then fuzzy rules, which together can uniformly
approximate continuous and bounded measurable functions in a compact domain [26, 27]. If-
part fuzzy sets Aj�Rn can be any kind of membership functions. Likewise, then-part fuzzy sets
Bj�Rp can be chose arbitrarily because FSAM utilizes only the centroid cj and volume Vj of Bj
to calculate the output F(x) given the input vector xεRn.

FðxÞ ¼ Centroidð
Xm

j¼1
wjajðxÞBjÞ ¼

Xm

j¼1
wjajðxÞVjcjXm

j¼1
wjajðxÞVj

¼
Xm

j¼1
pjðxÞcj ð13Þ

Each of them fuzzy rules in the word form “If X = Aj Then Y = Bj” is represented by a fuzzy
rule patch of the form Aj×Bj�Rn×Rp. FSAM therefore graphically covers the graph of the
approximand f withm fuzzy rule patches. If-part set Aj�Rn is characterized by the joint set
function aj: R

n![0, 1] that factors: aj xð Þ ¼ a1j x1ð Þ . . . anj xnð Þ. Then-part fuzzy set Bj�Rp is

similarly modelled by the membership function bj: R
p! [0, 1] that has volume (or area) Vj and

centroid cj. The convex weights expressed by:

pjðxÞ ¼
wjajðxÞVjXm

k¼1
wjakðxÞVk

ð14Þ

induce the FSAM output F(x) as a convex sum of then-part set centroids. FSAM in particular
or fuzzy system in general requires the order of kn+p-1 rules to characterize the function f: Rn !
Rp in a compact domain.

Learning is a vital process of FSAM to construct a knowledge base that is a structure of if-
then fuzzy rules. The FSAM learning process conventionally includes two basic steps: a) unsu-
pervised learning for constructing if-then fuzzy rules and b) supervised learning for tuning rule
parameters [28].

The supervised learning often starts from a randomly initialized set of parameters and ends
when it meets the determined stopping criteria. As training process costs much time and is
often trapped in local minima, the initialization of parameters is thus a nontrivial issue. The
unsupervised learning process, which is often accomplished by a clustering method, e.g. fuzzy
c-means, helps to initialize parameters of fuzzy rules more skilfully (Fig. 2).

Fig 2. Hybrid system combines unsupervised and supervised learning.

doi:10.1371/journal.pone.0120364.g002
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Microarray data normally associate with the high-dimensional nature that leads the FSAM
classification to a rule explosion system facing the curse of dimensionality [29]. With a large
number of rules, FSAM requires a large number of samples to train the system. This however
contradicts with the low-sample characteristic of the gene expression microarray data. It is
thus essential to optimize the rule structure to enhance efficiency of the learning process and
the generalization capability of FSAM.

In this paper, we propose the use of an evolutionary learning process, i.e. GA, to optimize
the number of fuzzy rules before the supervised learning is performed. The evolutionary learn-
ing component is designed also to alleviate the computational cost of the succeeding supervised
learning. The entire integration between GA and FSAM to formulate a genetic fuzzy system is
illustrated in Fig. 3. Details of each learning component are presented in the
following subsections.

Unsupervised learning by the fuzzy c-means (FCM) clustering
The FCM clustering method [30] is applied to initialize parameters of FSAM. We organize the
corresponding input and output data into a unique observation of p+1 dimensions where p is
the number of inputs and one output corresponding to the class being classified. Denote xi is
the ith organized observation (i = 1,. . .,N), xi is presented as follows:

xi ¼ ½input1i ; input2i ; :::; inputpi ; outputi� ð15Þ

where inputji is the jth input of the ith observation and outputi is the output of the ith observa-
tion. By clustering the sample of N observations having the above format, we are able to derive
the C resulting clusters corresponding with C fuzzy rules of the FSAM. Once the FCM cluster-
ing is completed, centres of the resulting clusters are assigned to centres of the membership
functions (MFs). The centres of the output of each rule will be assigned equal to the output
value of the corresponding cluster. The widths of the MFs of each rule are initialized based on
the standard deviation of the data.

The sincmembership function sin(x)/x recommended as the best shape for a fuzzy set in
function approximation is used to construct if-then fuzzy rules [31]. The jth sinc set function
(Fig. 4) centered atmj and width dj > 0 is defined as below:

ajðxÞ ¼ sin
x �mj

dj

 !
=

x �mj

dj

 !
ð16Þ

Running the FCM clustering a number of times equal to the GA population size, we are able to
obtain the initial population for GA, which is described in the following.

Fuzzy rule structure optimization by GA
A GA [32] is an unorthodox search or optimization technique operated on a population of
n artificial individuals. Individuals are characterized by chromosomes (or genomes) Sk, k =
{1,. . .,n}. The chromosome is a string of symbols, which are called genes, Sk = (Sk1,. . .,SkM), and

Fig 3. The evolutionary learning component in the learning process of FSAM.

doi:10.1371/journal.pone.0120364.g003
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M is a string length. Individuals are evaluated via calculation of a fitness function. To evolve
through successive generations, GA performs three basic genetic operators: selection, crossover
and mutation.

A roulette wheel selection method is used to select the individuals that go on to produce an
intermediate population. Parents are selected based on their fitness. Chromosomes have more
chances to be selected if they are better (have higher fitness) than the others. Imagine all chro-
mosomes in the population are placed on a roulette wheel, and each has its place big according
to its fitness function.

The wheel is rotated and the selection point indicates which chromosome is selected when
the wheel is stopped. It is obvious that the chromosome with bigger fitness will be selected
more times (competing rule in the evolutionary theory).

The crossover operator selects random pairs from the intermediate population and per-
forms 1-point crossover. Genes from parent chromosomes are selected to create new offspring.

Finally, individuals are mutated and they form the new population. The mutation prevents
falling all solutions in the population into a local optimum of the problem being solved. A few
randomly chosen bits are switched from 1 to 0 or from 0 to 1.

Through chromosomes’ evolution, GA searches for the best solution(s) in the sense of the
given fitness function. We employ GA to train the complicated FSAM comprising many pa-
rameters. The fitness function is designed with the aim to reduce the number of fuzzy rules and
also to decrease the learning error at the same time. The following formula is proposed:

fitðmÞ ¼ lnð�s2Þ þ lognðmÞ
n

ð17Þ

Wherem is the number of fuzzy rules, n is the number of data samples, and s�2 is the error
term defined by the following equation:

�s2 ¼ 1

n

Xn

j¼1
ðyi � FðxiÞÞ2 ð18Þ

where yi is the real value and F(xi) is the output of the FSAM. Parameters of FSAM are coded
into genes of the GA chromosomes/individuals. With a population of individuals, GA can si-
multaneously explore different parts of the training model’s parameter space and thus it is able
to find the global solution to simultaneously minimize the error term and reduce the number
of fuzzy rules.

Fig 4. An example of the Sincmembership function.

doi:10.1371/journal.pone.0120364.g004
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FSAM supervised learning
A supervised learning process is carried out to tune parameters of the FSAM system. The gradi-
ent descent algorithm can adjust all parameters in the FSAM. We attempt to minimize the
squared error:

EðxÞ ¼ 1

2
½f ðxÞ � FðxÞ�2 ð19Þ

The vector function f: Rn ! Rp has components f(x) [f1(x),. . .,fp (x)]
T and so does the vector

function F Let xkj represent the k
th parameter in the membership function aj. Then the chain

rule allows the gradient of the error function (Equation 19)with respect to xkj , with respect to

the then-part set centroidcj ¼ ðc1j ; . . . ; cpj ÞT , and with respect to the then-part set volume Vj to

be derived [28, 29].
A gradient descent learning rule for a FSAM parameter has the form:

xðt þ 1Þ ¼ xðtÞ � mt

@E
@x

ð20Þ

Where μt is the learning rate at iteration t.
Generally, there are two ways to adjust parameters: batch form refers to the update process

that occurred when all training samples have completely passed through the system. Incremen-
tal form refers to the update that occurred as soon as a sample was processed. With significant-
ly nonlinear data, incremental adjustment often proves effective and more stable, and it is
therefore applied in this study.

The momentum technique is also integrated so as to enhance the convergent speed of the
parameter tuning process [33]. The learning formula with momentum is given by:

xðt þ 1Þ ¼ xðtÞ � mt

@E
@x

þ �:DxðtÞ ð21Þ

where ε is the momentum coefficent.

Experimental Results

Performance evaluation metrics
It is well-known that there are often a small number of samples in the gene expression microar-
ray datasets. In order to train as many examples as possible, the leave one out cross validation
(LOOCV) [34, 35] is organized. The strategy divides all samples at random into K separate sub-
sets, where K is the number of samples. As with the traditional k-fold cross validation, this
strategy uses K-1 subsets for training whilst the k-th sample is for testing. The LOOCV accura-
cy is computed as follows:

LOOC Vaccuracy ¼ ACC
K

ð22Þ

where ACC is the number of correctly classified examples in K experiments.
Sensitivity and specificity are also employed to measure performance of classification tech-

niques. The sensitivity of a test refers to the proportion of patients with disease who test posi-
tive. Conversely, specificity measures the proportion of patients without disease who test
negative. Another important performance metric in medical application, which is area under
the ROC curve (AUC) is also calculated.
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Detailed experiments
Two benchmark datasets used for experiments in this section are the diffuse large B-cell lym-
phomas (DLBCL) dataset [36] and the leukemia cancer dataset [23].

DLBCL and follicular lymphomas (FL) are two malignancies to be classified. The classifica-
tion models are constructed using gene expression profiles to distinguish between these two
lymphomas. The DLBCL dataset composes of 7070 genes and 77 samples where DLBCL con-
tributes 75.3% with 58 examples and the rest 24.7% are of FLs with 19 samples.

The leukemia dataset is one of the most renowned gene expression cancer datasets. The
dataset includes information on gene-expression in samples from human acute myeloid
(AML) and acute lymphoblastic (ALL). The dataset consists of 5147 genes with 72 samples.
ALL samples occupy 65.3% (47 samples) whereas AML contribute 34.7% (25 samples).

Six gene selection methods, i.e. t-test, entropy, ROC, Wilcoxon, SNR and our proposed
modified AHP presented in section 2, are carried out to select most discriminative genes for
classification. For the sake of comparisons with the FSAM, three other classification ap-
proaches including multilayer perceptron (MLP), support vector machine (SVM), and fuzzy
ARTMAP (FARTMAP) are also deployed. Each of the classification techniques is performed
on various numbers of the most significantly informative genes. The wide range number of
genes selected includes [3; 6; 10; 15; 20; 30]. Too small or too large number of genes beyond the
mentioned range would lead to a performance reduction.

In the data pre-processing step, some filter approaches are employed to remove genes with
low absolute values, little variation, small profile ranges or low entropy. These genes are gener-
ally not of interest because their quality is often bad due to large quantization errors or simply
poor spot hybridization [37]. The gene profiles are then normalized using the quantile normal-
ization technique [38].

Different gene selection approaches result in different subsets of informative genes. The lists
of 30 genes ranked top by each gene selection method in the DLBCL and leukemia datasets are
assembled in S1 Table and S2 Table in the Supporting Information section. Table 3 and 4 show

Table 3. Overlap matrix among gene selectionmethods: the DLBCL dataset.

T-test Entropy ROC Wilcoxon SNR AHP

T-test 30 16 27 26 7 24

Entropy 16 30 14 14 2 18

ROC 27 14 30 29 10 25

Wilcoxon 26 14 29 30 11 25

SNR 7 2 10 11 30 12

AHP 24 18 25 25 12 30

doi:10.1371/journal.pone.0120364.t003

Table 4. Overlap matrix among gene selectionmethods: the Leukemia dataset.

T-test Entropy ROC Wilcoxon SNR AHP

T-test 30 25 23 25 9 23

Entropy 25 30 24 25 11 24

ROC 23 24 30 28 15 25

Wilcoxon 25 25 28 30 13 26

SNR 9 11 15 13 30 16

AHP 23 24 25 26 16 30

doi:10.1371/journal.pone.0120364.t004
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the overlap among 30 selected genes of six gene selection methods t-test, entropy, ROC, Wil-
coxon, SNR and AHP.

It is seen that there is a great overlap between AHP and ROC or between AHP and Wil-
coxon methods. In the DLBCL dataset, there are 25 common genes out of 30 selected genes be-
tween AHP and Wilcoxon and also between AHP and ROC (Table 3). Likewise, in the
leukemia dataset, 25 common genes are found between AHP and ROC. This number is 26 be-
tween AHP and Wilcoxon (Table 4).

Notably, Wilcoxon and ROC share most of the genes selected in both datasets. The number
of common genes between two methods is 29 and 28 out of 30 in the DLBCL and leukemia
datasets respectively. The similarity of these two methods as well as their disconnection with t-
test, entropy, and SNR are explainable as ROC and Wilcoxon are nonparametric tests that are
not based on the normality assumption. On the other hand, SNR is the most dissimilar ap-
proach among the six investigated methods.

Fig. 5 and 6 demonstrate the 3D projections of three most informative genes selected by the
modified AHP method in the DLBCL and leukemia datasets respectively. Subsets of genes se-
lected by the AHP exhibit a clear separation between two classes. The selection of these subsets
largely affects the performance of classification techniques deployed afterwards. The AHP se-
lection of 3 genes is different from those of the other methods (see S1 Table and S2 Table).
Rather than using outcomes of individual methods, AHP combines top informative genes
across methods. For example, in the DLBCL dataset, three genes selected by AHP are ‘KPNA2’,
“CIRBP’ and ‘P4HB’. Likewise, genes with symbols ‘CCND3’, ‘FAH’ and ‘PSMA6’ are selected
in the leukemia dataset.

The average LOOCV accuracy across different numbers of genes of the four classification
methods, i.e. MLP, SVM, FARTMAP and FSAM is reported in Table 5 and 6 for the DLBCL
and leukemia datasets respectively. The statistics in brackets show the maximum performance
associated with the corresponding number of genes right after the hyphen.

Fig 5. 3D projection of three genes in the DLBCL dataset selected by AHPmethod.

doi:10.1371/journal.pone.0120364.g005
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Discussions
It is found that there is a great dominance of the AHP gene selection method compared to the
other investigated gene selection methods. This is recognized by averaging the LOOCV accura-
cy across four classification methods for each gene selection method.

In the DLBCL dataset, the application of AHP method on average generates nearly 98%
LOOCV accuracy that is the greatest statistic compared to those of the remaining gene selec-
tion methods (see Fig. 7). Likewise, in the leukemia dataset, the highest LOOCV accuracy,
more than 97%, is also resulted from the AHP gene selection method (see Fig. 8). This demon-
strates the robustness of the AHP gene selection method as it can produce high classification
performance regardless of classification techniques or number of genes selected.

Fig 6. Three informative genes in the leukemia dataset selected by AHPmethod.

doi:10.1371/journal.pone.0120364.g006

Table 6. LOOCV accuracy on the leukemia dataset.

T-test Entropy ROC Wilcoxon SNR AHP

MLP 95.83 (98.61–15) 95.14 (98.61–15) 96.30 (98.61–20) 95.14 (100–30) 91.20 (94.44–30) 97.69 (100–6)

SVM 93.75 (98.61–15) 94.68 (100–15) 93.29 (100–10) 94.91 (100–10) 88.19 (98.61–10) 96.06 (100–6)

FARTMAP 96.30 (98.61–3) 94.44 (98.61–30) 96.53 (98.61–6) 96.30 (98.61–6) 94.44 (98.61–15) 96.76 (100–6)

FSAM 96.99 (100–10) 96.53 (98.61–30) 97.22 (100–10) 97.92 (100–15) 95.60 (100–15) 98.38 (100–15)

doi:10.1371/journal.pone.0120364.t006

Table 5. LOOCV accuracy on the DLBCL dataset.

T-test Entropy ROC Wilcoxon SNR AHP

MLP 94.44 (98.61–30) 94.44 (98.61–30) 95.83 (98.61–6) 95.37 (97.22–10) 92.59 (95.83–20) 96.97 (98.70–3)

SVM 95.24 (97.40–6) 91.77 (97.40–30) 97.84 (100–10) 97.62 (100–3) 97.84 (98.70–3) 98.05 (100–3)

FARTMAP 93.51 (98.70–15) 94.37 (98.70–10) 92.86 (98.70–6) 94.81 (100–6) 96.10 (100–3) 97.19 (100–3)

FSAM 94.59 (97.40–10) 94.37 (98.70–15) 98.27 (100–6) 96.32 (98.70–10) 97.84 (100–10) 98.70 (100–6)

doi:10.1371/journal.pone.0120364.t005
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ROC and Wilcoxon are the second best methods, which can result in high classification ac-
curacy just after the AHP approach. The overlap of selected genes among the ROC, Wilcoxon
and AHP criteria explains the performance resemblance among them (see Table 3 and 4).

On the other aspect, it is seen that FSAM demonstrates the greatest average LOOCV accura-
cy across gene selection criteria among investigated classification methods.

Fig. 9 and 10 exhibit the dominance of FSAM against the other methods. In both DLBCL
and leukemia datasets, FSAM achieves approximately 97% accuracy on average across gene se-
lection methods. SVM performs rather competently in the DLBCL dataset but it is the worst in
the leukemia dataset. MLP and FARTMAP show approximate performance as MLP dominates
FARTMAP in the DLBCL dataset whilst the reverse performance is found in the
leukemia dataset.

Notably, FSAM can classify correctly all testing samples with absolutely 100% accuracy with
some gene selection methods. For example, in the DLBCL dataset, 6 top ranked genes selected
by the ROC or AHP can lead to maximum accuracy by the FSAM classifier. Likewise, 10 genes

Fig 7. LOOCV accuracy average across classifiers in the DLBCL dataset.

doi:10.1371/journal.pone.0120364.g007

Fig 8. LOOCV accuracy average across classifiers in the Leukemia dataset.

doi:10.1371/journal.pone.0120364.g008
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selected by the SNR method can also serve FSAM to obtain 100% accuracy (see Table 5). Alter-
natively, in the leukemia dataset, 10 t-test or ROC genes can be used by FSAM to achieve the
greatest accuracy. Otherwise, 15 genes selected by Wilcoxon, SNR or AHP method can also be
inputs to FSAM for 100% accuracy classification (see Table 6).

Fig. 11 and 12 graphically show the LOOCV accuracy and AUC obtained by four classifiers
based on different number of genes driven by the SNR gene selection method in the DLBCL
and leukemia datasets respectively. It is consistent with the results in Table 5 and 6 that FSAM
demonstrates a steady performance through various numbers of genes. FARTMAP is very sen-
sitive to the number of inputs and its performance hugely fluctuates when the number of genes
varies. The same goes for MLP and SVM. SVM performance is rather stable in the DLBCL
dataset but it diverges largely in the leukemia dataset. For example, with 15 SNR genes, SVM
achieves the best with above 98% accuracy and AUC. However, it drastically drops down
under 80% when 30 SNR genes are employed (see Fig. 12).

Fig. 13 and 14 on the other hand present the comparisons based on the average LOOCV ac-
curacy, AUC, sensitivity and specificity measures of four classifiers using AHP genes in the

Fig 9. Average LOOCV accuracy across gene selectionmethods in DLBCL dataset.

doi:10.1371/journal.pone.0120364.g009

Fig 10. Average LOOCV accuracy across gene selection methods in leukemia dataset.

doi:10.1371/journal.pone.0120364.g010
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DLBCL and leukemia datasets respectively. In line with the LOOCV accuracy measure, the
FSAM performance regarding AUC also demonstrates the top ranking in both dataset.

In the DLBCL dataset, AUC of FSAM reaches the top along with that of SVM (Fig. 13). Al-
ternatively, the AUC measure of FSAM in the leukemia dataset achieves the greatest value
compared to those of MLP, SVM and FARTMAP (Fig. 14).

There is a theoretical trade-off effect between the sensitivity and specificity measures. It is
showcased herein in both experiments. FSAM specificity is ranked top in the DLBCL
dataset although its sensitivity is dominated by that of SVM (Fig. 13). In contrast, FSAM speci-
ficity is inferior to those of MLP and SVM in the leukemia dataset. However, its sensitivity
greatly dominates those of MLP, SVM and FARTMAP (Fig. 14). Obviously, sensitivity and
specificity are mutual measures as either of them increases then the other decreases and
vice versa.

Fig 11. LOOCV accuracy and AUC in the DLBCL dataset with different SNR genes.

doi:10.1371/journal.pone.0120364.g011

Fig 12. LOOCV accuracy and AUC in leukemia dataset with different SNR genes.

doi:10.1371/journal.pone.0120364.g012
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In general, the performance dominance of AHP-FSAM is explained by the combination be-
tween the stability of AHP-based gene subsets and the robustness of the genetic FSAM in clas-
sification. By combining outcomes of different gene ranking methods, AHP obviously
generates an elite subset of genes that compile the quintessence of each individual method. On
the other hand, the genetic FSAM itself deployed on various gene selection approaches also
demonstrate its powerfulness and consistency in classification across different number of
genes. The contradiction between the low-sample characteristic of microarray data and the
rule explosion of fuzzy system is handled efficiently through employment of GA. GA reduces
number of rules and thus enables FSAM to be learnt with a small number of microarray data
samples. The combination proposed in this paper strengthens the classification performance
by individually improving the efficiency of not only the gene selection (i.e. the modified AHP)
but also that of the classifier (i.e. the genetic FSAM).

Fig 13. Average accuracy, AUC, sensitivity and specificity across different number of AHP genes in
the DLBCL dataset.

doi:10.1371/journal.pone.0120364.g013

Fig 14. Average accuracy, AUC, sensitivity and specificity across different number of AHP genes in
the leukemia dataset.

doi:10.1371/journal.pone.0120364.g014
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Independent validation of the proposed method
This section presents independent validation of the proposed method by comparing it with
various classifiers presented in [6, 39] using 11 datasets utilized in those papers. All datasets
can be downloaded from the BRB-Array Tools Data Archive for Human Cancer Gene Expres-
sion repository at http://linus.nci.nih.gov/~brb/DataArchive_New.html. Details of each dataset
are described in Table 7.

Table 8 reports results of FSAM and the competing classifiers. FSAM is implemented using
a wide range number of genes [3; 6; 10; 15; 20; 30] selected by the modified AHP as in two ex-
periments in subsection 4.2. The maximum and average LOOCV accuracy across different
number of genes are presented in the first two columns of Table 8, which are denoted as FSAM
(max) and FSAM (average) respectively. In the FSAM (max) column, the corresponding num-
ber of genes to the maximum accuracy is shown in brackets.

MIDClass is the notation of Microarray Interval Discriminant Classifier, which was intro-
duced in [6] using associate rules. SGC-t and SGC-W are Single Gene Classifiers proposed in
[39] based on t-test and Wilcoxon-Mann-Whitney test. DLDA, k-NN, SVM and RF denote Di-
agonal Discriminant Analysis [40], k-Nearest-Neighbor [41], Support Vector Machine [42]

Table 7. Description of the datasets [6, 39].

Datasets Descriptions

Brain Cancer 60 samples, 46 patients with classic and 14 patients with desmoplastic brain cancer

Breast Cancer 1 99 samples, patients that did (n = 45) and did not relapse (n = 54)

Breast Cancer 2 60 samples, disease-free (n = 32) or cancer recurred (n = 28)

Gastric Tumor 132 samples, 103 tumor samples and 29 normal controls

Lymphoma 58 samples. Patients that did (n = 32) and did not cured (n = 26)

Lung Cancer 1 41 samples, squamous cell lung carcinoma (21) or pulmonary carcinoid (20)

Lung Cancer 2 181 samples, 31 mesothelioma samples and 150 adenocarcinoma

Melanoma 70 samples, 45 cases of malignant melanoma patients and 25 of non-malignant patients

Myeloma 173 samples, 137 patients with bone lytic lesions,36 patients without

Pancreatic Cancer 49 samples, 24 ductal carcinoma samples and 25 normal controls

Prostate Cancer 102 samples, 50 non-tumor prostate and 52 prostate tumors

doi:10.1371/journal.pone.0120364.t007

Table 8. Comparisons of FSAMwith competing classifiers.

Datasets FSAM (max) FSAM (average) MIDClass SGC-t SGC-W DLDA k-NN SVM RF

Melanoma 100 (6) 99 98.5 97 96 97 97 97 97

Breast Cancer 1 76 (15) 70 76 63 69 61 53 52 43

Brain Cancer 87 (10) 84 83 80 77 65 73 60 70

Breast Cancer 2 85 (10) 81 90 58 50 73 67 73 67

Gastric Tumor 95 (3) 94 94 89 80 81 96 97 95

Lung Cancer 1 100 (*) 100 98 98 95 95 98 98 98

Lung Cancer 2 100 (15) 99 99 93 93 99 99 99 99

Lymphoma 79 (10) 68 69 76 71 66 52 59 57

Myeloma 86 (3) 85 84 68 67 75 78 74 79

Pancreatic Cancer 96 (3) 93 78 69 90 63 61 65 55

Prostate Cancer 96 (30) 94 92 89 89 78 93 93 93

(*) FSAM obtains the accuracy at 100% for all experimented number of genes.

doi:10.1371/journal.pone.0120364.t008
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and Random Forest [43] respectively. The performances of these competing approaches are
obtained from [6, 39].

The proposed FSAM outperforms the competing methods in most of the case studies (see
Table 8). FSAM dominates all other methods in 9 out of 11 datasets based on the maximum
column. Averaging out across different number of genes, FSAM yields larger LOOCV accuracy
than other classifiers in 7 out of 11 cases. Experiments with two datasets “Breast Cancer 2” and
“Gastric Tumor” show inferior performance of FSAM compared to MIDClass and SVM re-
spectively. However, in these two case studies, FSAM actually obtains relatively great perfor-
mance. For example, in the “Breast Cancer 2” dataset, its average accuracy is at 81% that is the
second best among 8 competing methods. In the “Gastric Tumor” dataset, FSAM’s accuracy is
at 94%, which is relatively close to the maximum 97% of the SVM classifier.

Remarkably, the accuracy of FSAM in the “Lung Cancer 1” dataset is at 100% for all experi-
mented number of genes [3; 6; 10; 15; 20; 30]. In the “Melanoma” and “Lung Cancer 2” data-
sets, FSAM also achieves the maximum 100% LOOCV accuracy at 6 and 15 genes respectively.

From experimental results, we see that the average accuracy of the proposed method is obvi-
ously competent. FSAM’s performance is even more robust when it uses the optimal number
of genes. The proposed approach however does not find the optimal number of genes for
FSAM. This is beyond the scope of the current paper and would be addressed in a future study
as mentioned in the next section.

Concluding Remarks and Future Work
The purpose of this paper is twofold. Initially, we propose a novel method for gene selection by
advancing the traditional AHP to adopt quantitative criteria that include statistics of t-test, en-
tropy, ROC, Wilcoxon, and SNR. AHP is able to select salient expression genes through out-
comes of individual ranking methods and thus it assembles the advantages of all single ones.
Among the investigated gene selection methods, the AHP criterion exhibits supremacy com-
pared to t-test, entropy, ROC, Wilcoxon and SNR methods. It is understandable as our pro-
posed AHP is capable of deriving subsets of most informative genes as an elite collection of
those raised by individual methods.

Secondly, the paper presents a new approach to cancer microarray data classification using
a fuzzy system called FSAM. Via the great capability of handling noisy data with fuzzy infer-
ence, FSAM demonstrates a proficient classification technique for cancer classification through
gene expression data. The traditional learning of FSAM combined with GA boost the perfor-
mance of FSAM in classification. Large rule-based systems require great computational ex-
pense with a large amount of learning data. This is the reason why fuzzy systems have not
attracted sufficient attention of researchers for solving effectively cancer gene expression low-
sample data problems. In this paper, the application of GA to optimize the number of rules in
FSAM enables the FSAM learning process to be more efficient. It also diminishes the computa-
tional cost and thus enhances the classification accuracy of FSAM.

Classification performance in this study is measured not only by the LOOCV accuracy but
also by the AUC, sensitivity and specificity. The LOOCV strategy makes the experimental sta-
tistics and comparisons more meaningful as the classifiers are deployed a number of times as
many as the number of data samples.

As gene selection method is important in determining the accuracy of microarray data clas-
sification, further research would concentrate on initiating different gene selection approaches
by extending AHP to accommodate other ranking methods rather than just t-test, entropy,
ROC, Wilcoxon and SNR. Although the performance of FSAM is successfully testified using a
wide range number of genes in this study, finding the optimal number of genes for FSAM is
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also an interesting research that could be addressed in the future. In addition, as this study lim-
its in experiments with binary classification, a next step to modify FSAM for multi-class prob-
lems would be worth another investigation.

Supporting Information
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