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Simple Summary: The poultry industry is one of the top agribusinesses in Nepal. However, despite the
government’s restriction on the use of antibiotics as growth promotors in animals, the overuse and
misuse of antibiotics can be seen all over the country. Such inappropriate use of antibiotics has led
to the rise of antibiotic resistance among treatment options for both human and animal pathogens.
Several findings suggest the failure of colistin, a polymyxin E antibiotic (once regarded as the last
resort drug), in the treatment of human bacterial infections is due to the emergence and spread of
the plasmid-mediated colistin resistance gene (mcr-1) among Gram-negative bacterial pathogens.
The emergence and rapid transfer of resistant strains in poultry farms are associated with unwanted
loss of livestock, economic burden and spread of drug-resistance to other animals, humans and the
environment, as well. In this study, we characterized the mcr-1 gene from infected chicken livers,
where prevalence was found to be alarmingly high. This study identifies the result of regulatory
failures. Therefore, this report provides valuable reference to the policy makers so that a more effective
policy can be formulated and implemented to curb the spread of drug-resistant pathogens.

Abstract: Background: Plasmid-mediated resistance to the colistin in poultry is considered as an
emerging problem worldwide. While poultry constitutes the major industry in Nepal, there is a
paucity of evidence on colistin resistance in Escherichia coli isolates causing natural infections in
poultry. This study aimed to explore the prevalence of plasmid-mediated colistin resistance gene,
mcr-1 in E. coli isolated from liver samples of dead poultry suspected of E. coli infections. Methods:
A total of two hundred and seventy liver samples (227 broilers and 43 layers) from dead poultry
suspected of colibacillosis were collected from post-mortem in the Central Veterinary Laboratory
(CVL), Kathmandu, between 1 February and 31 July 2019. The specimens were processed to isolate
and identify E. coli; an antimicrobial susceptibility test (AST) using disk diffusion method was
performed with 12 different antibiotics: Amikacin (30 µg), ampicillin (10 µg), ciprofloxacin (5 µg),
chloramphenicol (30 µg), cefoxitin (30 µg), ceftazidime (30 µg), ceftriaxone (30 µg), cotrimoxazole
(25 µg), gentamicin (10 µg), imipenem (10 µg), levofloxacin (5 µg) and tetracycline (30 µg).
Colistin resistance was determined by agar dilution method and colistin-resistant strains were
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further screened for plasmid-mediated mcr-1 gene, using conventional polymerase chain reaction
(PCR). Results: Out of 270 liver samples, 53.3% (144/270) showed growth of E. coli. The highest
number (54%; 109/202) of E. coli isolates was obtained in the liver samples from poultry birds (of both
types) aged less than forty days. In AST, 95.1% (137/144) and 82.6% (119/144) of E. coli isolates were
resistant against tetracycline and ciprofloxacin, respectively, while 13.2% (19/144) and 25.7% (37/144)
isolates were resistant to cefoxitin and imipenem, respectively. In the same assay, 76.4% (110/144)
E. coli isolates were multi-drug resistant (MDR). The phenotypic prevalence of colistin resistance was
28.5% (41/144). In the PCR assay, 43.9% (18/41) of colistin-resistant isolates were screened positive
for plasmid-mediated mcr-1. Conclusion: The high prevalence of mcr-1 in colistin-resistant E. coli
isolates in our study is a cause of concern for the probable coming emergence of colistin resistance in
human pathogens, due to horizontal transfer of resistant genes from poultry to human isolates.

Keywords: Escherichia coli; colistin resistance; MDR; mcr-1

1. Introduction

Escherichia coli is a member of Enterobacteriaceae family of Gram-negative bacteria and a normal
inhabitant of the intestinal tract of humans and animals, although gut commensals can also cause a
variety of infections as opportunistic pathogens under favourable conditions [1]. Infections caused
by pathogenic E. coli (APEC) in poultry are known as colibacillosis and are responsible for sacculitis,
pericarditis, peritonitis, salpingitis, synovitis, osteomyelitis, cellulitis, coligranuloma and yolk sac
infections in chicken [2]. Most APEC are pathogenic to avian species and pose a low risk to human
health. However, some previous studies based on molecular characterization have confirmed the
genetic similarity between E. coli strains (not specifically APEC) isolated from poultry and those
isolated from human infections [3].

All broad-spectrum antibiotics were effective against the infections caused by E. coli until the
emergence of resistant strains capable of producing resistance enzymes such as beta-lactamases
(carbapenemases), i.e., esterases, phophotransferases [4,5]. With the emergence of colistin resistance,
a last resort drug to treat life threatening infections (both in humans and animals), concerns about
potential transfer of resistance to food chain and to human beings are higher [6]. The burgeoning
of antimicrobial resistance (AMR) has compelled the veterinarians to prescribe the drugs which
otherwise are not considered as standard regimen of therapy. One such instance is colistin, a polymyxin
E antibiotic which is being widely used as a last resort drug for the treatment of carbapenemase,
producing multi-drug-resistant Gram-negative bacterial infections, irrespective of neurotoxicity and
nephrotoxicity [7–9].

The frequently isolated variant of plasmid-encoded mobile colistin-resistant gene (mcr), mcr-1,
was first reported in E. coli isolates from livestock and human specimens in China [10]. After an
initial report in 2016, mcr-1 strains have been reported worldwide among several species of
Enterobacteriaceae [11]. Natural and phenotypic mechanisms were attributed to colistin-resistant
strains, the former occurring via mutations of bacterial genomes while the latter was the result of
adaptive mechanism [12,13]. The mechanism of horizontal transfer of mcr-1 was a paradigm shift due
to its rapid movement between animals and humans, and vice versa, via mobile genetic elements.
Poultry is considered as the major reservoir and good habitat of mcr-1-producing organisms that have
been isolated from different stages of production and supply chain [1].

While the use of antimicrobials in humans and animals are in comparable proportion, the chance
of mutations in animals is higher due to larger animal biomass [14]. Antibiotics in the poultry industry
are typically used for growth promotion, prophylactic and therapeutic purposes [15,16], and are
administered in inappropriate doses throughout their lifespan [17,18]. Such unsafe drug residues
tend to accumulate in various concentrations in edible poultry parts [19]. Continuous exposure to
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accumulated antibiotics may accelerate the process of antimicrobial resistance by the microbes in the
host [20]. The antimicrobial-resistant bacteria originating in poultry populations are transmitted to
humans through the environment, food products and direct contact [21], yet the current approaches to
tackling AMR suffer from inadequate multi-sectoral and cross-disciplinary efforts embedded in the
“one health approach”.

Since poultry remains one of the staple industries in developing countries like Nepal, outbreaks
of different sorts of diseases are associated with significant economic burdens [22,23]. In recent years,
sudden outbreaks of various avian diseases (mostly collibacillosis) have risen [24]. Treatment regimens
against these infections are constantly challenged by unabated AMR. Moreover, most of the diagnoses
in Nepal are based on the clinical symptoms and conventional approaches that lack molecular detection
and characterization of the causative agent of the disease [22]. These practices have overlooked the
precise diagnosis and implementation of the best treatment regimen, which is ultimately worsening
the plight of AMR among pathogens [24]. In addition, several other factors such as poultry-rearing
conditions, extensive use of drugs and horizontal transfer of resistant genes such as mcr-1 could be
associated with a high burden of colistin resistance among poultries in Nepal. Hence, this study aimed
to determine the prevalence of the plasmid-mediated mcr-1 gene among E. coli isolated from infected
liver samples of poultry.

2. Methods

2.1. Sample Collection, Bacterial Isolation and Identification

This study was carried out from 1 February to 31 July 2019. A total of 270 liver samples (227 from
broiler and 43 from layers), each obtained from individual dead birds that had died with suspected
colibacillosis, were obtained from the postmortem department of the Central Veterinary Laboratory
(CVL), Kathmandu. The liver samples processed in this study were from Kathmandu, Lalitpur,
Bhaktapur, Dhading, Kavre, Nuwakot and other districts near Kathmandu. More than 70% of samples
were from poultry aged less than 40 days. Liver samples were collected from boilers and layers from
both small and large flock size (greater than 1500 birds). Demographic information such as geographical
district, poultry age, production type and flock size were also recorded during the collection of samples.
The samples were collected aseptically and analysed in the Bacteriology Laboratory of CVL as soon as
possible after collection. The inoculum obtained was cultured on MacConkey agar (MA) and Eosin
Methylene Blue (EMB) agar. After inoculation, the media was incubated for at least 24 h at 37 ◦C.
Colonies showing typical characteristics and morphology of E. coli were transferred to nutrient agar
and incubated at 37 ◦C for 24 h. E. coli was confirmed by conventional biochemical tests such as indole
methyl red, Voges Prausker, citrate utilization test, urease test, oxidative-fermentative test, triple sugar
iron test and typical greenish metallic sheen on EMB agar [25,26].

2.2. Antimicrobial Susceptibility Testing

All E. coli isolates were subjected for antimicrobial susceptibility testing (AST) using the modified
Kirby-Bauer disk diffusion method as recommended by the Clinical and Laboratory Standards Institute
(CLSI-2017) guidelines using Mueller Hinton Agar (MHA) [27]. The twelve antibiotics used in this
study were amikacin (30 µg), ampicillin (10 µg), ciprofloxacin (5 µg), chloramphenicol (30 µg), cefoxitin
(30 µg), ceftazidime (30 µg), ceftriaxone (30 µg), cotrimoxazole (25 µg), gentamicin (10 µg), imipenem
(10 µg), levofloxacin (5 µg) and tetracycline (30 µg) (Hi-media Laboratories Pvt. Limited, Bombay,
India). After inoculation and incubation, the bacterial growth was examined, the zone of inhibition
(ZOI) was measured and the results were interpreted as sensitive, resistant and intermediate by
comparing with a standard chart as described by CLSI guidelines. All intermediates were also included
in the resistant group. Those isolates which were non-susceptible to at least one antibiotic from three
or more different classes were reported as multi-drug resistant (MDR) [28].
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2.3. Determination of Minimum Inhibitory Concentration (MIC) of Colistin

Minimum Inhibitory Concentration (MIC) of colistin was determined by the agar dilution method
following CLSI-2017. Different concentrations of colistin ranging from 4 to 32 mg/L were prepared
in the agar medium. The inoculums were applied rapidly to the agar surface and the plates were
incubated at 37 ◦C for up to 18 h. The MIC end point was determined as the lowest concentration
of antibiotics that completely inhibits the visible growth [29]. According to the CLSI guidelines,
isolates with a MIC of ≤4 µg/mL were considered colistin susceptible while MIC of >4 µg/mL were
considered colistin resistant.

2.4. Quality Control

Each batch of media and reagents was subjected to sterility and performance testing. In AST,
the control strains of E. coli ATCC 25922 were used as quality control.

2.5. Extraction of Plasmid DNA and PCR Amplification of Colistin Resistance Gene (mcr-1)

Plasmid DNA was extracted from E. coli isolates by alkaline lysis method [30], and the presence of
plasmids was confirmed on 0.8% agarose gel electrophoresis at 120 V for 1 h with ethidium bromide (EtBr)
with a concentration of 0.1 µg/mL. A set of primer pairs CLR5-F (5′-CGGTCAGTCCGTTTGTTC-3′) and
CLR5-R (5′-CTTGGTCGGTCTGTAGGG-3′) were used for the amplification of mcr-1. The amplification
was performed in a thermocycler, Prime GeNeiTM (Bangalore, India). The PCR reaction mixture for
the mcr-1 amplification was carried out in a final volume of 25 µL (21 µl of 1× Qiagen Master Mix, 3 µL
of template plasmid DNA, 0.5 µL forward and 0.5 µL reverse primer of mcr-1, as mentioned above).
Amplification was performed following standard methods. The PCR amplification cycle was run,
initial denaturation at 95 ◦C for 15 min, 30 cycles with denaturation at 94 ◦C for 1 min, annealing at
57 ◦C for 1.5 min and extension at 72 ◦C for 1 min, and final extension of 10 min at 72 ◦C. The amplified
products were fractionated by electrophoresis through 1.2% Agarose gel visualized by staining with
EtBr. The presence of the mcr-1 was confirmed by comparing with a positive control and 100 bp DNA
Ladder, Thermo Fisher Scientific in the gel run [31,32].

2.6. Statistical Analysis

Data were entered and analysed using IBM SPSS Statistics for Windows, Version 24.0, Armonk,
NY: IBM Corp, Chicago, IL, USA. Descriptive and inferential statistics were analysed using Chi-square
(χ2) test. A p-value of <0.05 was considered as statistically significant.

2.7. Ethics Approval and Consent to Participate

This study was reviewed by Institutional Review committee, Institute of Science and Technology,
Tribhuvan University, Kirtipur, Kathmandu, Nepal. No human sample was involved in this study.
Prior to the collection of Liver samples, permission was obtained from the Post-mortem Department,
Department of Livestock Services, Central Veterinary Laboratory (CVL), Ministry of Agriculture,
Land Management and Cooperatives, Government of Nepal.

3. Results

3.1. Distribution of E. coli

Out of 270 liver samples, 53.3% (144/270) were positive for E. coli and 46.67% (126/270) showed no
growth. During the six-month study period from 1 February to 31 July 2019, the highest number of
E. coli positive samples were isolated from broilers in May (66%; 31/47), June (59.6%; 31/52) and July
(59.7%; 37/62) (Figure 1).
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Figure 1. Month-wise distribution of E. coli isolated in broiler liver samples.

Similarly, the highest number of E. coli was isolated from layers in April (75%; 3/4), followed by
the months of May and June (Figure 2).
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Figure 2. Month-wise distribution of E. coli in liver samples from layers.

The highest number of E. coli positive samples was isolated in samples collected from Kavre
District (66.7%; 8/12) followed by Dhading District (60.9%; 14/23) and Nuwakot District (58.3%; 7/12)
(Figure 3).

From a total of 270 samples, growth of E. coli was observed in 144. The highest number (54%;
109/202) was obtained in the liver samples from poultry aged less than 40 days; however, this finding
was not statistically significant. There was a significant association concerning the flock size: More than
two thirds of the samples from large poultry flocks (>1500) were positive for E. coli (74.4%; 67/90),
while less than half (42.8%; 77/180) of the samples from small poultry flocks (size < 1500) were positive.
Higher prevalence of E. coli was observed in broilers (58.60%; 133/227) compared to layers, a finding
that was also statistically significant (p < 0.05) (Table 1).
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Table 1. Growth of E. coli in the poultry liver samples according to age of dead poultry, flock size and
type of poultry.

Age (Days) E. coli No Growth Total p-Value

≤40 109(54%) 93(46%) 202(74.8)
0.72

>40 35(51.5%) 33(48.5%) 68(25.2%)

Total 144 126 270(100%)

Flock Size E. coli No Growth Total p-Value

>1500 67(74.4%) 23(25.6%) 90(33.3%)
0.0001

≤1500 77(42.8%) 103(57.2) 180(66.7%

Total 144 126 270(100%)

Type of Poultry E. coli No Growth Total p-Value

Broiler 133(58.6%) 94(41.4%) 227(84.1%)
0.0001Layer 11(25.6%) 32(74.4%) 43(15.9%)

Total 144 126 270 (100%)

3.2. Antibiotic Susceptibility Pattern

Among the 12 different antibiotics evaluated, E. coli isolates were most frequently resistant to
tetracycline 95.1% (137/144) and less resistant to cefoxitin (13.2%; 19/144). A total of 76.4% (110/144)
isolates were MDR (Table 2).
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Table 2. Antimicrobial susceptibility pattern of E. coli isolates from colibacillosis-related dead poultry
(n = 144).

Antibiotic Category Antibiotics

Susceptibility Pattern

Resistant Sensitive

N. % N. %

Aminoglycosides
Amikacin 103 71.5 41 28.5

Gentamicin 110 76.4 34 23.6

Penicillins Ampicillin 88 61.1 56 38.9

Cephamycins Cefoxitin 19 13.2 125 86.8

3rd generation cephalosporins Ceftriaxone 46 31.9 98 68.1

Phenicols Chloramphenicol 84 58.3 60 41.7

Fluoroquinolones Ciprofloxacin 119 82.6 25 17.4

Levofloxacin 110 76.4 34 23.6

Folate pathway inhibitors Cotrimoxazole 98 68.1 46 31.9

Carbapenems Imipenem 37 25.7 107 74.3

Tetracyclines Tetracycline 137 95.1 7 4.9

3.3. Determination of MIC and Colistin-Resistant E. coli Isolates

The MIC value of E. coli isolates ranged from 4 to 32 µg/mL. The number of isolates and MIC to
colistin is represented on Table 3.

Table 3. Colistin susceptibility pattern of E. coli at different concentrations.

Organism Number
Concentration of Colistin

Total
4 mg/L 8 mg/L 16 mg/L 32 mg/L

E. coli 144 14
(34.1%)

10
(24.4%)

8
(19.5%)

9
(22%)

41
(28.5%)

3.4. Prevalence of mcr-1 among Colistin-Resistant E. coli Isolates from Poultry Infected Livers

Forty-one colistin resistant E. coli isolates were further screened for plasmid-mediated mcr-1 using
conventional PCR. In the PCR assay, 43.9% (18/41) colistin-resistant E. coli isolates were positive for
mcr-1 (Figure 4).

Animals 2020, 10, x FOR PEER REVIEW 7 of 13 

3.2. Antibiotic Susceptibility Pattern 

Among the 12 different antibiotics evaluated, E. coli isolates were most frequently resistant to 
tetracycline 95.1% (137/144) and less resistant to cefoxitin (13.2%; 19/144). A total of 76.4% (110/144) 
isolates were MDR (Table 2). 

Table 2. Antimicrobial susceptibility pattern of E. coli isolates from colibacillosis-related dead poultry 
(n= 144). 

Antibiotic Category Antibiotics 
Susceptibility Pattern 

Resistant Sensitive 
N. % N. % 

Aminoglycosides 
Amikacin 103 71.5 41 28.5 

Gentamicin 110 76.4 34 23.6 
Penicillins  Ampicillin 88 61.1 56 38.9 

Cephamycins Cefoxitin 19 13.2 125 86.8 
3rd generation cephalosporins Ceftriaxone 46 31.9 98 68.1 

Phenicols Chloramphenicol 84 58.3 60 41.7 

Fluoroquinolones 
Ciprofloxacin 119 82.6 25 17.4 
Levofloxacin 110 76.4 34 23.6 

Folate pathway inhibitors Cotrimoxazole 98 68.1 46 31.9 
Carbapenems Imipenem 37 25.7 107 74.3 
Tetracyclines Tetracycline 137 95.1 7 4.9 

3.3. Determination of MIC and Colistin-Resistant E. coli Isolates 

The MIC value of E. coli isolates ranged from 4 to 32 µg/mL. The number of isolates and MIC to 
colistin is represented on Table 3. 

Table 3. Colistin susceptibility pattern of E. coli at different concentrations. 

Organism Number 
Concentration of Colistin  

Total 
4 mg/L 8 mg/L 16 mg/L 32 mg/L 

E. coli 144 
14 

(34.1%) 
10 

(24.4%) 
8  

(19.5%) 
9 

(22%) 
41 

(28.5%) 

3.4. Prevalence of mcr-1 among Colistin-Resistant E. coli Isolates from Poultry Infected Livers 

Forty-one colistin resistant E. coli isolates were further screened for plasmid-mediated mcr-1 
using conventional PCR. In the PCR assay, 43.9% (18/41) colistin-resistant E. coli isolates were positive 
for mcr-1 (Figure 4). 

 

Figure 4. Amplification of plasmid-mediated mcr-1 gene from different E. coli isolates with positive 
and negative controls (Lane 1, marker (GeneRuler 100 bp DNA Ladder, Thermo Fisher Scientific), 

Figure 4. Amplification of plasmid-mediated mcr-1 gene from different E. coli isolates with positive
and negative controls (Lane 1, marker (GeneRuler 100 bp DNA Ladder, Thermo Fisher Scientific),
Lane 2–Lane 4, no amplifications; Lane 5–Lane 7, positive amplification; Lane 8, no amplification;
Lane 9, negative control; Lane 10, positive control).
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4. Discussion

This study aimed to detect plasmid-mediated colistin-resistant mcr-1 in colistin-resistant E. coli
strains isolated from poultry suspected to have died with colibacillosis.

Colibacillosis is a major cause of morbidity in poultry [33]. Out of 270 liver samples, 53.3% (144/270)
were reported to be infected with E. coli, which is similar to a study published in Nigeria reporting
43.3% prevalence of E. coli [34]. However, a study from Korea reported prevalence of 4.9% E. coli
infection in chicken [35]. Growth of E. coli in this study was lower than in a previous similar study
conducted at Chitwan, a district of Nepal [24]. This diversity may be attributed to differences in
geographic location, climate, breeding and growth conditions.

Poultry health management along with biosecurity measures are the emerging issues which can
have a major impact on transmission to humans [36]. In our study, the prevalence of E. coli isolates was
higher (range: 45.5% in Kathmandu to 66.7% in Kavre) compared to the earlier report (33.3%; 60/180)
in the four major districts of Nepal: Kathmandu, Bhaktapur, Lalitpur and Kaski [37]. This difference in
prevalence rate may have occurred due to the type of poultry and density of flocks included in the
studies. Moreover, the greater the flock size, the greater the chance of E. coli infections in poultry [38].

There was no significant difference between the growth of E. coli and the age of poultry. A slightly
higher rate of E. coli infection was observed in the poultry ≤40 days old. While there were higher
numbers of E. coli isolated in younger birds, this finding was not statistically significant and is likely
due to sampling bias. Normally, broilers aged 40–42 days (six weeks) are ready for slaughter and
marketing in our national context. A higher infection rate before 40 days might have a huge impact on
the commercial market of poultry. A higher chance of extensive use of antibiotics in infections occurring
after 40 days just before marketing could lead to consumption of meat with high-dose antibiotics.
This is a leading cause of the emergence of antibiotic-resistant strains. The highest number of E. coli
was isolated from flock sizes greater than 1500 (74.4%; 67/90), which is similar to a previous report
from Sudan [39]. A higher prevalence of E. coli in larger flocks may be due to poor environmental
hygiene and sanitation, including frequent faecal contamination of feeds, water, eggs and delay in
collection of dead birds [40].

This study reported a higher percentage of E. coli in broilers (58.6%; 133/227) than in layers (25.6%;
11/43), which is similar to previous reports from Bangladesh [41] and Sudan [39]. Similar findings
were reported from South Korea [42] and the Netherlands [43]. The difference in prevalence among
different types of poultry could be attributed to the housing conditions where broilers are reared in
semi-intensive systems while the intensive systems are used for layers [39,44]. In addition to this,
studies have reported broilers to have comparatively lower immunity than layers [45]. In addition,
due to the popularity of broiler poultry farms, there is a higher number of broiler poultry farms in
Nepal, which may have led to larger flock sizes, accelerating the spread of pathogens, the use of
antimicrobials and consequently the emergence of antimicrobial resistance.

A higher rate of colibacillosis was found during the month of May in this study. The annual
technical report of the CVL also suggests historical evidence of a higher rate of colibacillosis in the
months of April and May [46]. This could be due to the beginning of the rainy season, which could
aggravate the poor hygiene, sanitation and contamination. This study only collected data for February
to July and thus does not represent the every season of the year. While the current study was not
intended to determine the prevalence or evaluate risk factors for positive samples, the differences may
be due to a number of factors including farm size, flock characteristics, farm management, biosecurity
practices and climate. Future epidemiological studies should be conducted to explore factors associated
with this prevalence, including the potential measures for preventing infectious diseases such as
colibacillosis among poultries.

Antibiotic susceptibility profiles of E. coli in this study are consistent with previous studies
reported from Bangladesh [47], the Netherlands [48] and Nepal [49]. While tetracycline was not in
use as a treatment options against E. coli infections in poultry farms, high resistance seen towards this
drug could be attributable to the misuse of tetracycline as growth promoters [46]. The high sensitivity
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against cefoxitin could be due to its infrequent use in poultry farms. In this study, 76.4%% of isolates
were found to be MDR, which is similar to a report published in the Netherlands [50] and a recent
study in Nepal [51]. When compared with previous studies, the finding of this study indicates the
persistence (unabated rate) of antibiotic resistance over the period of time [37,51].

This may be due to excessive and inappropriate use of antibiotics for growth promotion and
prevention of diseases, which are available over the counter in Nepal [52]. This can further trigger the
mechanisms that lead to the emergence of drug-resistant strains of E. coli.

Poultry products along with their complex supply chain (farms, transportation to slaughterhouse,
the slaughter chain, processing plant, human handling, etc.) facilitate the horizontal exchange of
antimicrobial-resistant genes between animals and humans, and vice versa, via mobile genetic
elements [53,54]. Moreover, the environment, pets and wildlife are also factors that influence the
transmission of AMR between the different reservoirs [54,55].

Similar to our findings, an MIC value of colistin ranging from 4 mg/L to 32 mg/L was reported
from Brazil [56] and many other countries [57]. Elevated MIC of colistin in this study is probably due
to the continuous exposure of E. coli to colistin as a result of its extensive use in feed additives and
treatment therapies. The difference in the range of MIC values for colistin may be due to differences in
doses of colistin in different countries.

In this study, we screened for mcr-1 gene among phenotypically colistin-resistant isolates.
Eighteen of the colistin-resistant E. coli isolates were mcr-1 positive showing MICs for colistin ranging
from 4 to 32 mg/L. High 307 prevalence (43.9%; 18/41) of mcr-1 in our study is similar to other reports
from China [58] and Pakistan [59]. Our study does differ slightly from the first report on prevalence of
mcr-1 in Nepal, which showed a prevalence rate of 22.8% in colistin-resistant E. coli isolates obtained
from marketed poultry meat [37]

Strengths and Limitations

The study serves as a reference tool in epidemiological studies of mcr-1 genes isolated from
poultry in Nepal, although with some limitations. Firstly, we could not confirm colibacillosis in
infected samples due to the lack of histological and molecular investigations. In addition, performing
nucleotide sequencing to confirm APEC among E. coli isolates was beyond the scope of this study.
Secondly, the infected livers were analyzed only for bacteriological investigation, so other probable
pathogens, such as virus, fungi and parasites were not explored. Thirdly, due to the unavailability of
required materials and advanced facilities, including molecular screening of drug-resistant pathogens,
we relied on the agar-dilution method in AST, although CLSI has already abrogated this method as a
standard tool for the detection of colistin resistance. While this study was a recent one in the context of
Nepal, detection of other variants of mcr genes (mcr-1 to mcr-10) and whole genome sequencing could
be recommended for future studies.

5. Conclusions

The high prevalence of colistin-resistant E. coli among poultry isolates in this study could be due to
the extensive use of colistin in poultry feeds. Moreover, the presence of mcr-1 in E. coli poses a potential
threat of spreading colistin-resistant genes to human pathogens, contributing to the emergence of
resistance to the last resort of antimicrobials in humans. Therefore, awareness programmes, including
the implementation and regulation of strict polices on poultry management and biosecurity measures
in addition to surveillance of colistin resistance in poultry, are essential to reduce the inappropriate use
of this drug.
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