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ABSTRACT
Background. Gastric cancer (GC) is one of the most common carcinomas of the
digestive tract, and the prognosis for these patients may be poor. There is evidence
that some long non-coding RNAs(lncRNAs) can predict the prognosis of patients with
GC. However, few lncRNA signatures have been used to predict prognosis. Herein, we
aimed to construct a risk scoremodel based on the expression of five lncRNAs to predict
the prognosis of patients with GC and provide new potential therapeutic targets.
Methods. We performed differentially expressed and survival analyses to identify
differentially expressed survival-ralated lncRNAs by usingGCpatient expression profile
data from The Cancer Genome Atlas (TCGA) database. We then established a formula
including five lncRNAs to predict the prognosis of patients with GC. In addition, to
verify the prognostic value of this risk score model, two independent Gene Expression
Omnibus (GEO) datasets, GSE62254 (N = 300) and GSE15459 (N = 200), were
employed as validation groups.
Results. Based on the characteristics of five lncRNAs, patients with GC were divided
into high or low risk subgroups. The prognostic value of the risk score model with
five lncRNAs was confirmed in both TCGA and the two independent GEO datasets.
Furthermore, stratification analysis results showed that this model had an independent
prognostic value in patients with stage II–IV GC. We constructed a nomogram model
combining clinical factors and the five lncRNAs to increase the accuracy of prognostic
prediction. Enrichment analysis based on the Kyoto Encyclopedia of Genes and
Genomes (KEGG) suggested that the five lncRNAs are associated with multiple cancer
occurrence and progression-related pathways.
Conclusion. The risk score model including five lncRNAs can predict the prognosis
of patients with GC, especially those with stage II-IV, and may provide potential
therapeutic targets in future.

Subjects Bioinformatics, Gastroenterology and Hepatology, Oncology, Surgery and Surgical
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INTRODUCTION
Gastric cancer (GC) is one of the most common carcinomas of the gastrointestinal (GI)
tract and is particularly prevalent in Asian countries. It is estimated that approximately
679,100 individuals were diagnosed with GC in 2015 in China and approximately 498,000
of them died that same year (Saka et al., 2011; Chen et al., 2016). The standard therapies
for GC are surgery and chemotherapy. However, most patients with advanced GC show
recurrence of the malignancy and metastasis after treatment, resulting in poor prognosis.
Despite considerable research in therapies for GC, the prospects of survival of patients
with GC remain bleak (Saka et al., 2011). The identification of patients with GC with poor
prognosis and the administration of effective treatment as early as possible are key to
improving survival. The investigation of potential therapeutic and prognostic biomarkers
for GC is of considerable importance.

Long non-coding RNAs (lncRNAs) are RNAs with lengths of ≥200 nucleotides with
no or limited protein-coding potential. There is considerable evidence that lncRNAs play
crucial roles in the initiation and developments of cancers. For example, lncRNA-ATB
disorders contribute to cancer cell proliferation, migration, invasion, and drug-resistance as
well as induce epithelial-mesenchymal transition by competitively binding to microRNAs
(Li et al., 2017; Balas & Johnson, 2018). Some researchers have suggested that lncRNAs
serve as new prognostic biomarkers in various cancers, including CCAT2 (Yu et al.,
2017), HOXB-AS3 (Huang et al., 2017), and ASLNC07322 (Li et al., 2019) in colon cancer.
Many lncRNAs closely related to the prognosis of patients with GC have been identified,
including MEG3 (Wei & Wang, 2017), SNHG7 (Wang et al., 2017), and DANCR (Mao et
al., 2017). Risk score models have also been constructed to predict the prognosis of human
cancers. The differences in prognosis in non–small-cell lung cancer can be identified by its
eight-lncRNA signature (Miao et al., 2019). However, the identification of lncRNAs related
to the prognosis of patients with GC is still in its early stages and additional research is
warranted.

In this study, we analyzed the data of 450 patients with GC from The Cancer Genome
Atlas (TCGA) database to identify differentially expressed lncRNAs for the prognostic
prediction. We used two independent Gene Expression Omnibus (GEO) (Barrett et al.,
2013) datasets to validate the selected-lncRNAs. In addition, we analyzed the accuracy
of the prediction of five lncRNAs in different clinical subgroups using lncRNA data in
combination with the clinical characteristics of the patients. Furthermore, we constructed
a nomogrammodel by combining clinical factors and five lncRNAs to increase the accuracy
of prognostic prediction. Finally, we performed pathway enrichment analysis to determine
the potential functions of these lncRNAs in GC.

MATERIALS & METHODS
Preparation of GC datasets
We acquired a training dataset of GC samples from TCGA at UCSC Xena (https:
//xenabrowser.net/) before February 1st, 2019 comprising 450 samples and 14147 lncRNAs
(case: normal = 414:36). We used these 450 samples to perform differential expression
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analysis. After excluding six caseswithmissing overall survival (OS) prognostic information,
408 cases were included for further univariate Cox proportional hazard regression analysis
and subsequent analysis in the training group. Themicroarray data for the validation group
and survival data of the patients are publicly available at GEO with accession numbers
GSE62254 (N = 300; 1397 lncRNAs) and GSE15459 (N = 200; 1397 lncRNAs).

Normalization of GEO data
Because the two GEO datasets (GSE62254 and GSE15459) had different expression profiles,
we performed quantile normalization on the original data and downloaded it as a probe-
level CEL file. Affymetrix U133 Plus 2.0 was used as the probe matching platform. Data
were downloaded from the Affymetrix website (http://www.affymetrix.com), and a total
of 2986 lncRNA-specific probes were included.

Construction of an lncRNA-based risk score model from the training
group
The lncRNAs that were differentially expressed between GC and normal gastric tissue in
TCGA dataset were identified using the ‘‘limma’’ R package of the R statistical computing
environment (log2|fold change| >1 and adjusted P < 0.05), and the adjusted P value was
used to reduce false positives (Deng, Xu &Wang, 2019; Zeng et al., 2019). The candidate
lncRNAs were analyzed using univariate Cox proportional hazard regression analysis
(P < 0.05). The cutoff values of lncRNA expression were determined as the median of
all expression values in Cox survival analysis. In total, we identified 278 lncRNAs with
statistically significant differences. After identifying the lncRNAs common to both TCGA
and GEO (GSE62254) datasets, we performed multivariate Cox proportional hazards
analysis to identify independent prognostic lncRNAs. Finally, we constructed an lncRNA-
based risk score model from a linear combination of the expression levels of these lncRNAs,
multiplied by the regression coefficients obtained from the multivariate Cox proportional
hazards regression analysis.

Validation of the lncRNA-based model for prognostic prediction
We calculated the risk scores of each patient and used the corresponding median score
as the cutoff value to classify them into two groups: high risk and low risk subgroups.
We used Kaplan–Meier analysis to compare the survival of the two groups and time-
dependent receiver operating characteristic (ROC) curves to assess our lncRNA-based risk
model. We used two GEO datasets to validate the model for prognostic prediction. Cox
proportional hazards regression analysis was used to estimate the hazard ratio (HR) of the
model with 95% confidence intervals to further evaluate the predictive value of the model
for each clinical subgroup. Clinical subgroups were determined based on sex, tumor–
node–metastases (TNM) stage, histologic grade, race, and age. Finally, we constructed a
nomogram combining the model with clinical factors using the ‘‘rms’’ package. We also
calculated the concordance index (C-index) and plotted a calibration curve to determine
its predictive accuracy and discriminatory capacity.
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Potential functions of the five lncRNAs
To determine the potential functions of the five lncRNAs, which appeared to be
discriminatory, we performed linear regression analysis of the relationship between
the lncRNAs and the protein-coding genes in TCGA dataset. The screening criteria for
the protein-coding genes were a positive association with at least one lncRNA (Pearson
coefficient > 0.4). After identifying the candidate genes, we screened out aberrantly
activated signaling pathways using the Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis via web-based Gene Set Analysis Toolkit (http://www.webgestalt.org/),
a popular software tool for functional enrichment analysis related to KEGG pathways (Yang
et al., 2019;Wang et al., 2013).

Statistical analysis
We used the R software (version 3.6.1) for statistical analyses. Differentially expressed
analysis was performed using the ‘‘limma’’ R package. Univariate and multivariate Cox
proportional hazards regression analyses were performed to identify prognosis-related
lncRNAs. The ‘‘survival’’ and ‘‘survminer’’ packages were used for Cox proportional
hazards regression analyses, Kaplan–Meier survival analysis and calculation of C-index.
A time-dependent ROC curve to assess the specificity and sensitivity of the risk score
model was constructed using the ‘‘survivalROC’’ package. A nomogram combining the
risk score model with the clinical factors was constructed using the ‘‘rms’’ package. The
Review Manager software (version 5.3) was used to construct a forest plot. Chi-square
tests were used to compare the recurrence and mortality rates between the high and low
risk subgroups. A P-value of <0.05 was considered statistically significant, and all tests
were two sided. Pearson’s linear regression analysis was used to determine the relationship
between lncRNAs and protein-coding genes.

RESULTS
Identification of five prognostic lncRNAs
The datasets are publicly available and recruitment has already happened. We performed
differentially expressed analysis (log2|fold change|>1 and adjustedP < 0.05) and univariate
Cox proportional hazard regression analysis (P < 0.05) to identify survival-related
lncRNAs. A total of 278 lncRNAs were analyzed further. To validate the predictive accuracy,
we compared the lncRNAs selected from TCGA database with the GEO validation group.
We found that 37 lncRNAs were common between the 278 lncRNAs and the validation
dataset (GSE62254) (Table S1). Multivariate Cox proportional hazards regression analyses
identified five lncRNAs as independent prognostic factors ofGC: LINC00205, TRHDE-AS1,
OVAAL, LINC00106, andMIR100HG (Table 1). Figs. 1A–1B shows the expression profiles
of the five lncRNAs in patients with GC as volcano and heat maps, and Figs. 1C–1D shows
the survival curves based on the OS and disease-free survival (DFS) of the 408 patients.
Owing to the lack of clinical data in GSE15459, Table 2 shows the clinical features of
patients with GC in the training group and GSE62254.
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Table 1 Five lncRNAs significantly associated with prognosis of GC patients in the training group.Derived from the multivariable Cox propor-
tional hazards regression analysis in the training group.

LncRNA name Ensemble ID Chr. Coordinate Coefficient Hazard ratio P value

LINC00205 ENSG00000223768.1 21 45288052–45297354 0.249092 1.373451497 0.047216345
TRHDE-AS1 ENSG00000236333.3 12 72253507–72273509 0.182045 1.846654514 0.000109193
OVAAL ENSG00000236719.2 1 180558974–180566518 0.271169 1.880897277 0.0000744
LINC00106 ENSG00000236871.6 X&Y 1397025–1399412 −0.207942 0.624972486 0.003469142
MIR100HG ENSG00000255248.6 11 122028329-122422871 0.502539 1.396343319 0.036829012
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Figure 1 The expression information of five lncRNAs, overall survival and disease free survival in gas-
tric cancer patients in the TCGA dataset. (A) Volcano plot with blue dots indicating five lncRNAs expres-
sion levels which is significantly different between tumor and normal tissue based on the criteria of an ab-
solute log2 fold change (FC) >1 and adjusted P < 0.05. (B) Heatmap of the five-lncRNA expression pro-
file of the 414 patients in the TCGA dataset. Among five lncRNAs, MIR100HG and TRHDE-AS1 have a
similar expression in 414 patients in the TCGA dataset, otherwise the other three lncRNAs do as well. (C–
D) The survival curves based on the OS and DFS of the 408 patients in TCGA dataset.

Full-size DOI: 10.7717/peerj.10556/fig-1

Construction of an lncRNA-based risk model from the training group
According to the schematic workflow of this study (Table 3), using the coefficients of
the five lncRNAs identified by multivariate Cox hazard analysis, we created a risk-score
formula as follows: risk score = (0.249092× expression level of LINC00205) + (0.182045×
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Table 2 The clinical features of GC patients in training group and GSE62254.

Training group Validation group-1 (GSE62254)

Variables n= 408 % n= 300 %

Gender
Male 263 64.46 199 66.33
Female 145 35.54 101 33.67

Age
Old (≥50 years old) 377 92.40 262 87.33
Young (<50 years old) 31 7.60 38 12.67

TNM stage
Stage I 55 13.48 30 10.00
Stage II 120 29.41 96 32.00
Stage III 167 40.93 95 31.67
Stage IV 41 10.05 79 26.33
Not Available 25 6.13 0

T stage
T1 20 4.90 2 0.67
T2 87 21.32 186 62.00
T3 178 43.63 91 30.33
T4 114 27.94 21 7.00
TX 9 2.21 0

N stage
N0 120 29.41 38 12.67
N1 110 26.96 131 43.67
N2 77 18.87 80 26.67
N3 82 20.10 51 17.00
NX 17 4.17 0
Not Available 2 0.49 0

M stage
M0 362 88.73 273 91.00
M1 27 6.62 27 9.00
MX 19 4.66 0

Survival status
Alive 251 61.52 148 49.33
Dead 157 38.48 152 50.67

expression level of TRHDE-AS1) + (0.271169 × expression level of OVAAL) + (−0.20794
× expression level of LINC00106) + (0.502539 × expression level of MIR100HG).
Among the five lncRNAs, LINC00106, which had a negative coefficient, was considered
as a protective factor. The remaining four lncRNAs with positive coefficients, namely
LINC00205, TRHDE-AS1, OVAAL, and MIR100HG, were risk factors. The risk scores of
each patient in the training group were calculated (Table S2), ranging from −2.086959745
to 2.270305234. The patients in the training group were divided into two subgroups: high
risk (n= 204) and low risk (n= 204) subgroups, with the median score (−0.001085) as
the cutoff value. We performed Kaplan–Meier survival analysis to assess the effect of the
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Table 3 The schematic workflow of the present study.
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lncRNA-based risk model on the OS and DFS of patients with GC in the training group
(Figs. 2A–2B). Our results indicated that the high-risk group had a significantly poorer
prognosis than the low risk group for both OS and DFS (P = 1×10−6 and 6 ×10−6,
respectively). Figsures 2C–2F shows the scatter plots of the recurrence and mortality rates
of patients with GC. The recurrence andmortality rates were significantly higher in the high
risk group than in the low risk group (P < 0.001). To accurately evaluate the prognostic
value of the five-lncRNA signature, we performed time-dependent ROC analysis using the
1–4 years cutoff value of OS and the 1–2 years cutoff of DFS as the ROC ending points
(Figs. 2G–2H and Figs. S1A–S1D). The area under the ROC curve (AUC) was 0.734 for the
4-year cutoff value of OS and 0.692 for the 2-year cutoff value of DFS, respectively, and
had the highest predictive value among those years, indicating that our model can be used
for survival prediction in patients with GC (Figs. 2G–2H).

Validation of the lncRNA-based risk score model for prognostic
prediction in independent groups
To assess the prognostic significance of this novel lncRNA-based risk model including the
five-lncRNA signature in patients with GC, we used the other two independent validation
datasets from the GEO database. We calculated the risk score using the formula mentioned
above (Table S2). The patients with GC in GSE62254 (validation group-1; N = 300) and
GSE15459 (validation group-2; N = 200) datasets were divided into high risk and low risk
groups according to the median risk score. Owing to the lack of DFS data in GSE15459, we
only calculated the OS of the patients. The high risk group had a poorer OS than the low
risk group (log-rank P = 0.01) (Figs. 3A–3B). Figures 3C–3D shows the scatter plots for
the death events. The mortality rates were significantly higher in the high risk group than
in the low risk group (P < 0.001). The AUC for the two validation groups in the 4-year
cutoff OS was 0.622 and 0.610 for validation group 1 and 2, respectively (Figs. 3E–3F).
Figures S2A–S2F shows the ROC curve for the 1–3 year cutoff OS for the validation groups
1 and 2. Furthermore, we verified the performance of our risk score model for DFS of
the GSE62254 dataset (Figs. S3A–Fig. S3D). Our results further confirmed the value and
robustness of this risk score model for prognostic prediction in patients with GC.

The lncRNA-based risk model has a favorable prognostic prediction
in patients with stage II, III, and IV
To further investigate the performance of our lncRNA-based risk model, we performed
stratified Kaplan–Meier survival analysis of OS in the training group based on the AJCC
TNM stages I, II, III, or IV (Figs. 4A–4D). The five-lncRNA signature showed good
predictive value for OS of stages II (P = 0.008), III (P = 0.02), and IV (P = 0.01), but not
I (P = 0.3).

To estimate the HR of each subgroup of patients as defined by sex, TNM stage, histologic
grade, race and age(≥ or < 50 years) (Table 4), we used our model to divide the patients
into two risk groups on the basis of themedian cutoff value. Forest plots are shown in Fig. 5.
Table S3 shows the HR of each subgroup of patients in GSE62252. The risk score model
had a relatively good prognostic value in the clinical subgroups of sex, histologic grade
and age. To improve the prognostic value of this model, we combined the clinical factors

Wu et al. (2021), PeerJ, DOI 10.7717/peerj.10556 8/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.10556#supp-1
http://dx.doi.org/10.7717/peerj.10556#supp-1
http://dx.doi.org/10.7717/peerj.10556#supp-5
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62254
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15459
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15459
http://dx.doi.org/10.7717/peerj.10556#supp-2
http://dx.doi.org/10.7717/peerj.10556#supp-2
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62254
http://dx.doi.org/10.7717/peerj.10556#supp-3
http://dx.doi.org/10.7717/peerj.10556#supp-3
http://dx.doi.org/10.7717/peerj.10556#supp-6
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62252
http://dx.doi.org/10.7717/peerj.10556


0 14 28 42 56 70 84 98 112 126 140
O

ve
ra

ll 
Su

rv
iv

al
(%

)
0.

0
0.

2
0.

4
0.

6
0.

8

high risk score

low risk score

D
is

ea
se

-fr
ee

  S
ur

vi
va

l(%
)

Time(Months)
0 14 28 42 56 70 84 98 112 126 140

0.
0

0.
2

0.
4

0.
6

0.
8

1.
01.
0

high risk score

low risk score

A

D

B

C
Time(Months)

HR(95%CI)=2.20(1.59-3.06)
        Logrank P value<0.001

HR(95%CI)=1.93(1.45-2.58)
        Logrank P value<0.001

Training group Training group

71.08%

Low risk

Number of patients

O
ve

ra
ll 

su
rv

iv
al

 ti
m

e
   

   
   

(m
on

th
s)

F

G H Time-dependent ROC for DFS

E

Time-dependent ROC for OS

Tu
re

 p
os

iti
ve

 ra
te

Tu
re

 p
os

iti
ve

 ra
te

False positive rate False positive rate

Alive
Dead

High risk

High risk

High risk

High risk

Low risk

Low risk

Low risk

Distribution of Recurrence

0% 50% 100%
Distribution of death

No Recurrence
Recurrence

0
20 40 60 80 1000

20

40

60

80

100

0

20

40

60

80

100

AUC=0.734

20 40 60 80 1000

AUC=0.692

0 100 200 300 400

0
20

40
60

80
10

0
12

0

71.08%

51.96% 48.04%

28.92%

0 50 100 150 200 250

0
20

40
60

80
10

0
12

0

0% 50% 100%

89.6%

73.27% 26.73%

***

***

Number of patients

D
is

ea
se

-fr
ee

 s
ur

vi
va

l t
im

e
   

   
   

   
 (m

on
th

s)

Figure 2 The prognostic value of lncRNA-based risk model in training group. (A–B) Kaplan–Meier
analysis of patients’ OS and DFS in the high risk (n= 204) and (continued on next page. . . )

Full-size DOI: 10.7717/peerj.10556/fig-2
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Figure 2 (. . .continued)
low risk (n = 204) subgroups of the training group. (C) The scatter plot of lncRNA-based risk model
distribution for patient survival status. (D) The percentage of patient survival status in the high risk and
low risk subgroups of the training group. (E) The lncRNA-based risk model distribution for patient re-
currence. (F) The percentage of patient recurrence in the high risk and low risk subgroups of the training
group. (G–H) The time-dependent ROC analysis of the risk score for prediction the 4-year cutoff OS and
2-year cutoff DFS of the training group. The area under the curve was calculated for ROC curve. *** P <

0.001.

with the risk score model to construct a nomogram model for prognostic prediction. The
nomogram model and calibration curve are shown in Figs. 6A–6B. To evaluate the effect
of the nomogram model, we calculated its C-index. The C-index for predicting the 4-year
OS of patients with GC was 0.69668, indicating that this model is a valuable indicator for
prognostic prediction.

Potential functions of the five lncRNAs
To investigate the functions of the five lncRNAs in patients with GC, we calculated Pearson
correlations between the five-lncRNA signature and 19,605 protein-coding genes in TCGA
dataset. A total of 3069 genes (Table S4) were positively correlated with at least one lncRNA
(Pearson’s coefficient > 0.4) (Fig. 7A). We further selected these genes for KEGG pathway
enrichment analysis. By ranking based on –logP value (Q value), we selected the top 10
pathways for construction of a bubble plot (Fig. 7B) (Zeng et al., 2019; Deng, Xu &Wang,
2019). For biological processes, the co-expressed genes were mainly enriched in pathways
involved in cancer, such as the focal adhesion pathway, cGMP−PKG signaling pathway and
calcium signaling pathway. This finding indicates that the five lncRNAs may be involved
in the regulation of tumor initiation and progression.

DISCUSSION
In this study,we identified a potential signature involving five lncRNAs that are differentially
expressed in tumor and normal tissues, and might be valuable for prognostic prediction in
GC. The prognostic performance of this lncRNA-based risk score model was verified using
both TCGA and GEO datasets. Stratified analysis suggested that the risk score model is
valuable for prognostic prediction in patients with stage II-IVGC. To enhance the predictive
accuracy of the model, we combined clinical parameters with the five-lncRNA signature
to construct a nomogram model and confirmed its performance using a calibration curve
and C index.

GC is a common malignancy of the GI tract (Siegel, Miller & Jemal, 2019). Despite
continuous improvements in treatment, the 5-year survival rate of patients with advanced
GC is only approximately 20% (Min et al., 2019; Misawa et al., 2019). Therefore, early
diagnosis, early identification of high-risk patients and implementation of effective
treatmentmeasures as early as possible are necessary to improve survival. It is also important
to develop novel prognostic indicators of GC.Over the past few decades, research has shown
that protein-coding genes(Ghoorun et al., 2019; Luo et al., 2019) and microRNAs (Li et al.,
2020; Zhou, Wu & Bi, 2019), play vital roles in the occurrence and development of various

Wu et al. (2021), PeerJ, DOI 10.7717/peerj.10556 10/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.10556#supp-7
http://dx.doi.org/10.7717/peerj.10556


Time(Months) Time(Months)

high risk score

low risk score

HR(95%CI)=1.70(1.13-2.57)
        Logrank P value=0.01

Validation group-2(GSE 15459)

O
ve

ra
ll 

Su
rv

iv
al

(%
)

O
ve

ra
ll 

Su
rv

iv
al

(%
)

high risk score

low risk score

HR(95%CI)=1.50(1.09-2.07)
        Logrank P value=0.01

Validation group-1(GSE 62254)
A

C

E F

D

B

O
ve

ra
ll 

su
rv

iv
al

 ti
m

e
   

   
   

(m
on

th
s)

O
ve

ra
ll 

su
rv

iv
al

 ti
m

e
   

   
   

(m
on

th
s)

High risk Low risk High risk Low risk

Tu
re

 p
os

iti
ve

 ra
te

Tu
re

 p
os

iti
ve

 ra
te

False positive rate False positive rate

Time-dependent ROC for group-1 Time-dependent ROC for group-2

200
Number of patientsNumber of patients

0 50 100 150
0

50
10

0
15

0

Alive
Dead

0 20 40 60 80 100
0

20

40

60

80

100

0 20 40 60 80 100
0

20

40

60

80

100

AUC=0.610AUC=0.622

0 50 100 150 200 250 300

0
20

40
60

80
10

0

0 12 24 36 48 60 72 84 96 108 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 20 40 60 80 100 120 140 160 180 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3 The prognostic value of lncRNA-based risk model in two independent GEO validation
groups. (A–B) Kaplan–Meier analysis of predicting OS of GC patients based on the high risk and low
risk subgroups in two independent validation groups (GSE62254 and GSE15459). (C–D) The scatter plot
of five-lncRNA-based risk score distribution for patient survival status in two independent validation
groups.(E–F) The time-dependent ROC analysis of the risk score for prediction the 4-year cutoff OS of the
two independent validation groups. The area under the curve was calculated for ROC curve.
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Figure 4 The prognostic value of lncRNA-based risk model in subgroups according to the TNM stage.
(A–D) Kaplan–Meier analysis of the OS of GC patients with stage I, II, III and IV, respectively.
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cancers, and can also be used to predict patient prognosis. Several nomogram models
involving clinical factors have been constructed to predict the prognosis of patients with
GC. For example, Yu (Yu & Zhang, 2019) used tumor size and tumor site, as independent
prognostic factors, to construct OS nomograms for predicting outcomes in patients with
GC, and the C-index of this model indicated that it could predict prognosis. Recently, more
lncRNAs related to GC prognosis have been discovered; however, prognostic prediction
models involving lncRNAs still lack consensus. We present a nomogram including clinical
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Forest plot  for clinic subgroup

Figure 5 Forest plot to evaluate prognostic value of lncRNA-based risk model in subgroups divided by
clinical factors.

Full-size DOI: 10.7717/peerj.10556/fig-5

factors and the five-lncRNA signature that might be of value for prognostic prediction in
GC.

It is necessary to explore novel biomarkers to improve the diagnostic accuracy and
prognosis of GC because of limitations of TNM staging and some related scoring
systems. Many lncRNAs have been identified, of which only few have been functionally
annotated. However, evidence indicates that lncRNAs, acting either as oncogenes or
tumor suppressors, participate in the tumorigenesis and development of various cancers
by regulating chromatin remodeling, transcription and post-transcriptional modification
(Bartonicek, Maag & Dinger, 2016; Iyer et al., 2015), and therefore might be valuable for
cancer diagnosis and prognosis. Some studies have found that GC-related lncRNAs are
involved in biological behaviors including the proliferation, migration, invasion, and
autophagy of GC cells, thereby affecting the initiation and prognosis of GC (Mao et al.,
2017; Wei & Wang, 2017). For example, the lncRNA MEG3 inhibits the proliferation,

Wu et al. (2021), PeerJ, DOI 10.7717/peerj.10556 13/24

https://peerj.com
https://doi.org/10.7717/peerj.10556/fig-5
http://dx.doi.org/10.7717/peerj.10556


Points
0 10 20 30 40 50 60 70 80 90 100

risk.score
−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

histoloic.rade
1 3

2

gender
0

1

pathologic.stage
1 3

2 4

age
30 35 40 45 50 55 60 65 70 75 80 85 90

Total Points
0 20 40 60 80 100 120 140 160 180

2−year survival
0.95 0.9 0.85 0.8 0.75 0.7 0.6 0.5

4−year survival
0.9 0.85 0.8 0.75 0.7 0.6 0.5

6−year survival
0.9 0.85 0.8 0.75 0.7 0.6 0.5

Nomogram model

Nomogram calibration curve

A

B

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predicted  Probability  4-Year  OS

A
ct

ua
l  

4-
Y

ea
r  

O
S

0.2 0.4 0.6 0.8

Figure 6 The prognostic value of a nomogrammodel combining five-lncRNA signature with the clini-
cal factors. (A) A nomogram model combining five-lncRNA signature with the clinical factors for predict-
ing the 4-year OS of GC patients. (B) The nomogram calibration curve to evaluate the prediction of 4-year
OS of GC patients. The C index of this model was also calculated.
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metastasis, and prognosis of GC cells by upregulating the expression p53—a key tumor
suppressor (Wei & Wang, 2017). We identified five lncRNAs—LINC00205, TRHDE-AS1,
OVAAL, LINC00106, and MIR100HG—as predictors of GC prognosis, and developed a
risk-score model. Kaplan–Meier analysis suggested that our lncRNA-based risk model is
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Table 4 The association between five-lncRNA signature and OS of GC patients in training group.

Number (High
Risk score/Low
Risk score)

HR (95% CI) P value

Total 204/204 2.09 (1.80, 2.44) 0.000001
Gender

Male 129/134 2.29 (1.53, 3.44) 0.00002
Female 75/70 1.97 (1.11, 3.47) 0.01

Histologic grade
G2 47/97 2.41 (1.34, 4.33) 0.0006
G3 146/97 1.68 (1.13, 2.50) 0.02

Race
Asian 44/41 5.47 (1.87, 16.02) 0.001
Black or african american 4/8 1.78 (0.32, 9.80) 0.6
White 138/120 2.16 (1.44, 3.24) 0.0003

Age
Old (≥50 years old) 186/191 2.04 (1.46, 2.86) 0.00001
Young(<50 years old) 18/13 5.96 (1.26, 28.17) 0.008

TNM stage
Stage I 14/41 2.09 (0.63, 6.93) 0.3
Stage II 62/58 2.78 (1.34, 5.78) 0.008
Stage III 88/79 1.68 (1.06, 2.66) 0.02
Stage IV 25/16 2.04 (0.87, 4.78) 0.01

Notes.
HR, Hazard ratio; 95%CI, 95% confidence interval.

valuable for predicting GC prognosis. We used two independent GEO datasets as validation
datasets. Our results confirmed that our risk score model is stable and performs well in the
prognostic prediction of GC.

Of the five lncRNAs, LINC00205, TRHDE-AS1, OVAAL, and MIR100HG, act as risk
factors of GC, whereas LINC00106 is a protective factor. Apart from LINC00205 and
MIR100HG, the other three lncRNAs have not been reported much in the literature.
Our study identified LINC00205, TRHDE-AS1, OVAAL, and MIR100HG as potential
prognostic biomarkers of GC for the first time. Consistent with our result, it has previously
been reported that high expression of LINC00106 indicates prolonged OS of patients with
GC (Qi et al., 2020). Nevertheless, the role of this lncRNA in GC as well as its specific
mechanism need to be further investigated. Interestingly, in hepatocellular carcinoma
(HCC), comprehensive genome-wide analysis revealed that the expression of LINC00205,
a tumor suppressor, is positively associated with OS and recurrence-free survival (Cui et
al., 2017). A study showed that, as a competing endogenous RNA with lower expression
levels in tumor tissues, LINC00205 may negatively regulate HCC progression via the
miR-184/EPHX1 axis (Long et al., 2019), While another study indicated that LINC00205,
can serve as an oncogene, and can promote the proliferation, migration and invasion of
HCC cells by targeting miR-122-5p (Zhang et al., 2019a). In addition, LINC00205 can act
as a protective factor in pancreatic cancer [HR = 0.58, P (log rank) = 0.0091] (Giulietti et
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al., 2018). The reported role and therefore prognostic prediction value of LINC00205 in
various cancers shows significant discrepancies. These discrepancies might be associated
with the specificities of different cancers. The upregulation of TRHDE-AS1 inhibits the
growth of lung carcinoma through competitive combination with the miRNA-103-KLF4
axis (Zhuan et al., 2019). A study has found that OVVAL is highly expressed in colon
cancer and melanoma, and further experimental results showed that OVAAL promotes
the proliferation of cancer cells via dual mechanisms controlling RAF/MEK/ERK signaling

Wu et al. (2021), PeerJ, DOI 10.7717/peerj.10556 16/24

https://peerj.com
https://doi.org/10.7717/peerj.10556/fig-7
http://dx.doi.org/10.7717/peerj.10556


and p27-mediated cell senescence (Sang et al., 2018). The lncRNA MIR100HG has been
studied as an oncogene in acute megakaryoblastic leukemia (Emmrich et al., 2014), and
laryngeal squamous cell carcinoma (Huang, Zhang & Zhou, 2019), as well as for its role in
mediating cetuximab resistance via Wnt/ β-catenin signaling (Lu et al., 2017) in colorectal
cancer. Although the roles of these lncRNAs in cancer need to be further investigated, our
results may provide a novel approach to study GC.

To further investigate the functions of the five lncRNAs in GC, we performed pathway
enrichment analysis. These genes are enriched in cancer regulation, including the
cGMP−PKGsignaling pathway, calcium signaling pathway, and focal adhesionpathway etc.
This finding suggests that the five lncRNAsmayplay an important role in the occurrence and
development ofGC.There is evidence that lncRNAs canpromote tumorigenesis through the
cGMP−PKG signaling pathway. For example, the overexpression of SRRM2-AS accelerates
angiogenesis in nasopharyngeal carcinoma via the cGMP−PKG signaling pathway (Chen
et al., 2019). The calcium signaling pathway has been reported to be mainly involved in
metabolic diseases and heart diseases over the past years (Berridge, 2016; Dewenter et al.,
2017). A recent research showed that the calcium signaling pathway was associated with
cancer cell survival, but more details on its effects remain to be studied (Reczek & Chandel,
2018). Focal adhesion sites are special sites where integrin receptors aggregated in cells
interact with extracellular matrix and intracellular actin skeleton (Burridge, 2017), and they
play a critical role in tumor invasion and migration (Shen et al., 2018). There is evidence
that knockdown of Linc01060 could promote the progression of pancreatic cancer via the
vinculin-mediated focal adhesion pathway turnover (Shi et al., 2018). However, whether
the lncRNA can mediate the progression of GC through the focal adhesion pathway is less
reported. In short, lncRNAs may participate in the genesis and development of various
tumors via the above pathways.

Risk score model is a common and widely used method to predict the prognosis of
patients with multiple diseases (Lemke et al., 2017; Li et al., 2018; Yang et al., 2017; Sobotka
et al., 2018). Our risk score was determined by the expression of independent survival-
lncRNAs obtained after Cox hazard analyses and its corresponding coefficients. It was
calculated using binary lncRNA expression values according to the medians of original
lncRNA expression values. This adjustment helps to improve the clinical application of
the prognostic model in other study population (Zhang et al., 2018). In general, the higher
is the risk score, the poorer is the prognosis, which is consistent with our analysis. Our
Kaplan–Meier survival analysis showed that the patients in the high risk group had a
significantly poorer prognosis than those in the low risk group. Our risk score model
based on lncRNAs has several advantages. This model based on the expression of five
lncRNAs provides a novel noninvasive method for predicting the prognosis of patients
with GC before surgery. Compared with conventional invasive pathological examinations,
it reduces unnecessary pain for patients. Second, this five-lncRNA risk model can provide
preoperative risk predictive probability of individual mortality and recurrence in different
clinical endpoints. It is simple and convenient for clinicians and patients to understand.
Third, our model used the median of five-lncRNA-based risk score as the cutoff value to
divide patients into high risk and low risk groups. It can identify patients at high risk of
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mortality or recurrence in a timely manner and prompt clinical interventions as early as
possible to improve their prognosis.

There have been several reports on lncRNA signatures for GC. A previous study
reported a 24-lncRNA signature that can predict outcomes in patients with GC by applying
the random survival forest-variable hunting algorithm using GEO datasets (Zhu et al.,
2016). However, because of the limited amount of data in the GEO datasets, the lncRNAs
identified in this study might not represent the complete population of lncRNAs involved
in GC. In this study, we integrated 950 samples from TCGA and GEO databases to
comprehensively investigate the potentially prognostic lncRNAs. This greatly improved the
accuracy, reliability and robustness of our model. A six-lncRNA prognostic signature was
established by robust likelihood-based survival and LASSO model (Ma, Li & Ren, 2019).
Whether the six-lncRNA signature combined with other clinical features can enhance the
predictive power remains to be determined. To improve the accuracy of the five-lncRNA
prognosis model, we combined it with clinical factors to develop a nomogram model that
could predict the OS of patients with GC. Zhu et al. (2018) et al. constructed an 11-lncRNA
signature by univariate and multivariate Cox regression analyses. Although an internal
validation was validated using the bootstrap resampling method, external validation
studies are needed to further evaluate the value of this model. We not only included two
external verification datasets, but also performed survival analysis, ROC curve analysis,
and constructed a forest plot for predictive verification, indicating a favorable effectiveness
of our model.

There are some limitations of the present study. We integrated data from TCGA and
GEO databases to increase the number of the cases, thereby reducing bias from a small
sample size. Integrated analysis has been proved to be an effective approach for multiple
datasets with different platforms using R package (Zhang et al., 2019b;Nie et al., 2020; Zhao
et al., 2018; Zhao et al., 2020), thereby promoting the reliability of our conclusion (Ma et
al., 2017). However, TCGA dataset has a larger number of lncRNAs than the GEO dataset
(14147:1397) because of different sequencing technologies: TCGA uses RNA sequencing
technology, whereas GEO uses microarray chip technology. Intersection of three datasets
has inevitably omitted potential prognostic lncRNAs. Moreover, the clinical characteristics
of the patients in the three datasets are heterogeneous. This might have inevitably led to a
bias. Besides, owing to the lack of DFS and clinical data in GSE15459, we used only one
external validation group to verify the prognostic value of the five-lncRNA signature for the
DFS of patients. In addition, many important variables affecting the prognosis of patients
with GC are not provided in TCGA and GEO datasets, such as dietary habits, previous
disease, history of chemotherapy or radiation therapy, and family history of cancer. Thus,
on the one hand, it is necessary to perform a large-scale multi-center prospective clinical
study based on the same sequencing technology to decrease the bias mentioned above.
On the other hand, based on existing data, it is beneficial to develop innovative statistical
algorithms to reduce the heterogeneity of different data sources. Last, because of the limited
number of studies regarding these lncRNAs, experimental research on these lncRNAs is
highly warranted to further understand their functions in GC.
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CONCLUSIONS
We established a risk score model including five lncRNAs to predict the OS and DFS of
patients with GC, particularly in those with stage II-IV GC. Our findings also provided
evidence of developing effective prognostic biomarkers for patients with GC and potential
therapeutic targets in the future.
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