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To examine the therapeutic effect of Src inhibitor on the VEGF mediating vascular hyperpermeability and
bone destruction within steroid-associated osteonecrotic lesions in rabbits. Rabbits with high risk for
progress to destructive repair in steroid-associated osteonecrosis were selected according to our published
protocol. The selected rabbits were systemically administrated with either Anti-VEGF antibody
(Anti-VEGF Group) or Src inhibitor (Src-Inhibition Group) or VEGF (VEGF-Supplement Group) or a
combination of VEGF and Src inhibitor (Supplement & Inhibition Group) or control vehicle (Control
Group) for 4 weeks. At 0, 2 and 4 weeks after administration, in vivo dynamic MRI, micro-CT
based-angiography, histomorphometry and immunoblotting were employed to evaluate the vascular and
skeletal events in different groups. The incidence of the destructive repair in the Anti-VEGF Group,
Src-Inhibition Group and Supplement & Inhibition Group was all significantly lower than that in the
Control Group. The angiogenesis was promoted in VEGF-Supplement Group, Src-Inhibition Group and
Supplement & Inhibition Group, while the hyperpermeability was inhibited in Anti-VEGF Group,
Src-Inhibition Group and Supplement & Inhibition Group. The trabecular structure was improved in
Src-Inhibition Group and Supplement & Inhibition Group. Src inhibitor could reduce permeability without
disturbing vascularization and prevent destructive repair in steroid-associated osteonecrosis.

P
ulsed steroids are frequently prescribed for infectious diseases (e.g. Severe Acute Respiratory Syndrome,
SARS) for life-saving and rheumatoid diseases (e.g. Systemic Lupus Erythematosus, SLE) for disease-
modifying, respectively1,2. Inevitably, steroid-associated osteonecrosis commonly occurs3. Subchondral

collapse is an advanced stage of osteonecrosis that is challenging to our orthopedic surgeons as surgical prognosis
of total joint replacement for treatment of collapsed joint is poor4.
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The subchondral collapse is directly attributed to the dominant
destructive repair, whereas no subchondral collapse is found in
osteonecrotic patients undergoing reparative osteogenesis without
destructive repair. The clinical bioimaging data have demonstrated
that the histopathological features of the destructive repair in steroid-
associated osteonecrosis can be characterized as continuous marrow
edema (vascular event) closely coupled with persistent bone resorp-
tion (skeletal event)5,6. Our previous work has already established a
steroid-associated ON rabbit model with dominant destructive
repair, and we observed high VEGF expression in the rabbits with
dominant destructive repair7.

VEGF, first described as ‘‘vascular permeability factor’’, contri-
butes to tissue edema, as it is expressed within hours following
ischemic injury in mouse model8. Direct evidence was that intravas-
cular injection of VEGF into healthy mice induced endothelial gaps
and subsequent vascular permeability9. Also, the VEGF family plays
a paramount role in promoting angiogenesis or vasculogenesis,
which may be induced by local hypoxic conditions to promote sur-
vival, migration, and proliferation of endothelial cells (including
EPCs)10. So, VEGF may not only be associated with positive revas-
cularization of damaged tissue but also may contribute to edema. On
the other hand, in a rat femoral head model of vessel deprivation–
induced osteonecrosis, high VEGF expression accounted for the
striking bone resorption-related remodeling of necrotic debris early
during repair, with subsequent substitution by newly formed
bone11,12. It is known that continuously high VEGF exposure, how-
ever, serves as a chemoattractant for osteoclasts to induce osteoclas-
togenesis for bone resorption in vitro through a matrix
metalloproteinase 9-dependent mechanism, which is similar to sig-
naling pathways involving RANKL13,14.

Proto-oncogene tyrosine-protein kinase Src (encoded by the c-src
gene) is a non-receptor tyrosine kinase localized to the cellular mem-
brane, involved in the regulation of a range of cellular processes,
including proliferation, adhesion, motility and survival15. For
example, Src, as a downstream molecule of VEGF signaling, partici-
pates in mediating VEGF-induced vascular permeability in myocar-
dial infarction mouse model9. Generally, Src family kinases (SFKs)
representing a family of 9 similar proteins include Src, Blk, Fgr, Fyn,
Hck, Lck, Lyn, Yes and Yrk15. The reviewed evidence just demon-
strated selective requirement for Src kinases during VEGF-induced
angiogenesis and vascular permeability. Briefly, mice lacking indi-
vidual Src family kinases (e.g. Src) showed normal VEGF-induced
angiogenesis, while mice deficient in Src showed no VEGF-induced
vascular permeability. This suggests that VEGF-mediated angiogen-
esis requires SFK activity in general, whereas vascular permeability
mediated by VEGF specifically depended on Src16. On the other
hand, Src-deficient osteoclasts display decreased migration and fail
to form a polarized ruffled membrane during bone resorption17.
Furthermore, targeted disruption of Src in mice causes a defect in
osteoclast-mediated bone resorption, leading to osteopetrosis18.
Normal osteoclast function can be rescued by bone-specific express-
ion of Src in Src knockout mice19. Similar results have been found in
vitro20,21. Suppression of Src also interferes with ion transport, which
is required to solubilize bone mineral during bone resorption by
osteoclasts22.

Our previous study showed that both VEGF and phosphorylated
Src expression levels were elevated in ON rabbit model with destruct-
ive repair23. On the other hand, our unpublished clinical data demon-
strated that the VEGF level in serum and the phosphorylated Src
expression in bone specimen from patients with osteonecrosis (hip
joint replacement due to femoral head avascular necrosis) were
remarkably higher than those from patients without osteonecrosis
(hip joint replacement due to fracture) (Supplement 1).

Based on the previous research, we put forward our hypothesis
that Src inhibitor blocking aberrant VEGF-Src signaling could
inhibit both vascular event (continuous marrow edema) and skeletal

event (persistent bone resorption) of destructive repair but preserve
VEGF-induced neovascularization in steroid-associated osteonecro-
sis. Our previously established steroid-associated ON rabbit model
with dominant destructive repair was employed to test the hypo-
thesis using our published bioimaging modalities and evaluation
protocols, including perfusion MRI, microCT-based angiography
and trabecular micro-architecture, light microscopy for bone histo-
morphometry, and immunoblotting of bone marrow tissue7,24–27.

Results
Incidence of the Destructive Repair in Osteonecrotic Lesions. At 2
weeks after administration (4 weeks post-induction), the incidence of
the destructive repair in the Anti-VEGF Group (1/8), Src-Inhibition
Group (2/8) and Supplement & Inhibition Group (2/8) was all lower
than that in the Control Group (5/8), whereas it was higher in the
VEGF-Supplement Group (7/8) when compared to the Control
Group. However, due to the sample size limitation, the difference
was not statistically significant. At 4 weeks after administration (6
weeks post-induction), 10 of those 15 rabbits in Control group had
dominant destructive repair, whereas 1 of 15, 2 of 15, 15 of 15 and 3 of
15 rabbits had dominant destructive repair in Anti-VEGF Group,
Src-Inhibition Group, VEGF-Supplement Group and Supplement &
Inhibition Group, respectively. The incidence of the destructive
repair in the Anti-VEGF Group, Src-Inhibition Group and
Supplement & Inhibition Group was all significantly lower than
that in the Control Group, whereas it was significantly higher in
the VEGF-Supplement Group (15/15) when compared to the
Control Group. There are even 1 and 3 rabbits showed dominant
reparative osteogenesis in the Src-Inhibition Group and Supplement
& Inhibition Group respectively. The repair pattern in the rest of the
rabbits can not be clearly identified. (Figure 1)

Measurement of Trabecular Structure in Osteonecrotic Lesions.
For trabecular structure of osteonecrotic lesions by micro-CT
measurement, there is no difference in quantities of either small-
sized (0.036 , 0.2 mm) or large-sized (0.2 , 0.4 mm) trabecular
bone between Anti-VEGF Group and Baseline Group. Compared to
that at Baseline, less large-sized and more small-sized trabecular
bones were found in Control Group and VEGF-Supplement
Group, whereas more large-sized and less small-sized trabecular
bone were found in Src-Inhibition Group and Supplement &
Inhibition Group. Apparently, the size distribution of the
trabeculae shifted toward thinning in the Control Group when
compared to the baseline, and it further shifted toward thinning in
the VEGF-Supplement Group when compared to the Control
Group, whereas it hardly shifted in the Anti-VEGF Group or
shifted toward moderately thickening in Src-Inhibition Group and
Supplement & Inhibition Group when compared to the baseline.
(Figure 2)

Vascular Function Index. Time-course changes in dynamic MRI–
derived vasculature function index are shown in Figure 3. For the
vascularization index (peak enhancement percentage, PEP), a
significantly different pattern of PEP change over time in VEGF-
Supplement Group, Supplement & Inhibition Group and Anti-
VEGF Group compared to Control Group was evidenced by the
Two-way repeat measures ANOVA (P , 0.05 for interaction
between ‘Time’ and ‘Group’). The PEP in the VEGF-Supplement
Group and Supplement & Inhibition Group increased continuously
and significantly from baseline at 2 weeks and 4 weeks post-
administration (25% for VEGF-Supplement Group, 30% for
Supplement & Inhibition Group at week 2 and 32% for VEGF-
Supplement Group, 35% for Supplement & Inhibition Group at
week 4, P , 0.05 for all); while it decreased continuously from
Baseline in Anti-VEGF Group at 2 weeks and 4 weeks post-
administration (220% at week 2 and 228% at week 4, P , 0.05
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for both).It remained almost constant in the Control Group and
increased gradually without significance in Src-Inhibition Group.

For the permeability index (‘permeability surface area product per
unit volume of tissue’, PSr), a significantly different pattern of PSr
change over time in VEGF-Supplement Group, Src-Inhibition
Group, Supplement & Inhibition Group and Ant-VEGF Group com-
pared to Control Group was evidenced by the General Linear Model
(GLM) (P , 0.05 for interaction between ‘Time’ and ‘Group’). The
PSr in the Src-Inhibition Group, Supplement & Inhibition Group
and Ant-VEGF Group decreased continuously and significantly
from baseline at 2 weeks and 4 weeks post-administration (229%
for Src-Inhibition Group, 221% Supplement & Inhibition Group
and 230% for Ant-VEGF Group at week 2 and 239% for Src-
Inhibition Group, 228% Supplement & Inhibition Group and
236% for Ant-VEGF Group P , 0.05 for all); while it increased
continuously from Baseline in VEGF-Supplement Group at 2 weeks
and 4 weeks post-administration (19% at week 2 and 23% at week 4, P
, 0.05 for both).It remained almost constant in the Control Group
(Figure 3).

Micro-CT based Angiography of Intraosseous Vascularture.
Figure 4 presents representative 3-D angiograms and histograms
depicting the size of angiographic structures. The Control Group
showed large-sized (400 , 600 mm) vessel-like structures (VLS)

surrounded by both fewer small-sized (36 , 200 mm) VLS and
many medium-sized (200 , 400 mm) disseminated leakage
particle–like structures (DLPLS); The Anti-VEGF Group showed
only dilated and large-sized VLS, but neither small-sized VLS nor
medium-sized DLPLS; The Src-Inhibition Group showed some
dilated and large-sized VLS surrounded by more small-sized VLS
but no medium-sized DLPLS compared to Control Group; In the
VEGF-Supplement Group, although there are more small-sized VLS,
but there are also more medium-sized DLPLS compared to the
control; In the Supplement & Inhibition Group, there are more
small-sized VLS with nearly no medium-sized DLPLS compared to
Control Group (Figure 4A).

In the histogram, the Control Group showed neither a continuous
increase in small-sized VLS nor a continuous decrease in DLPLS
when compared with the baseline. A continuous decrease in med-
ium-sized DLPLS after administration in the Anti-VEGF Group, Src-
Inhibition Group and Supplement & Inhibition Group was found
with similar changing pattern. A continuous slight increase in small-
sized VLS after administration was found in the Src-Inhibition
Group, and a continuous significant increase in small-sized VLS after
administration was found in both the VEGF-Supplement Group and
Supplement & Inhibition Group, whereas a continuous decrease in
small-sized VLS was only found in the Anti-VEGF Group
(Figure 4B).

Figure 1 | Osteonecrosis Lesion Differentiation and Classification at 2 weeks and 4 weeks Post-administration. (A). Appositional bone formation

(dashed arrows) with osteoblasts (OB) around the necrotic bone (ON), defined as ‘reparative osteogenesis’. (B). Eroded bone surface (solid arrows) with

osteoclasts (OC) around the necrotic bone (ON) during fibrous tissue creep (dashed arrow), defined as ‘destructive repair’. (C & D). The incidence of the

destructive repair in the Anti-VEGF Group, Src-Inhibition Group and Supplement & Inhibition Group was all lower than that in the Control Group,

whereas it was higher in the VEGF-Supplement Group when compared to the Control Group at 2 weeks and 4 weeks Post-administration. N 5 8 for 2

Weeks Post-administration, N 5 15 for 4 Week Post-administration, Fisher’s exact probability test, *P , 0.05 vs Control.
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Histomorphometry of Marrow Circulation. Figure 5 presents
histomorphometry of marrow circulation at 0, 2 4 weeks post
administration, including micro-vessel density (MVD), edema area
(EA), and leakage particle size distribution. EA in the Anti-VEGF
Group, Src-Inhibition Group and Supplement & Inhibition Group
decreased continuously and significantly with similar changing
pattern from the baseline after administration, whereas it was
almost remained in the Control Group and even increased
continuously and significantly in the VEGF-Supplement Group
(Figure 5B). MVD in the Anti-VEGF Group decreased continuously
and significantly from the baseline after administration, whereas it was
almost maintained in the Control Group, increased slightly and
continuously in the Src-Inhibition Group, and even increased
continuously and significantly in the VEGF-Supplement Group and
Supplement & Inhibition Group (Figure 5C). In comparison with the
Control Group, leakage particles were less found in the Anti-VEGF
Group, Src-Inhibition Group and Supplement & Inhibition Group,
whereas there were a lot of leakage particles in the VEGF-Supplement
Group (Figure 5D).

Expression of phosphorylated Src and total Src in Bone Marrow.
Phosphorylated Src protein expression in the Anti-VEGF Group,
Src-Inhibition Group and Supplement & Inhibition Group was
decreased continuously and significantly from the baseline with
similar changing pattern after administration, whereas it did not
change in the Control Group or further significantly increased in
the VEGF-Supplement Group. On the other hand, the total Src
expression level remained stable from baseline to 4 weeks post
administration, and did not show difference among groups
(Figure 6).

Discussion
This study specifically investigated the effect of Src inhibitor on the
VEGF mediating vascular hyperpermeability and bone destruction

within steroid-associated osteonecrotic lesions in rabbits with low-
level marrow stem-cell-pool (MSCP) after initial osteonecrotic lesion
formation. Results from the dynamic MRI perfusion function index,
Micro-CT-based angiography, and histomorphometry of marrow
circulation consistently demonstrated that anti-VEGF reduced both
neovascularization and permeability, whereas a Src inhibitor did not
reduce neovascularization but did reduce permeability. In addition,
immunoblotting for phosphorylated Src also demonstrated signifi-
cantly decreased Src phospho-Y418 levels in the Src-Inhibition,
Anti-VEGF and Supplement & Inhibition Groups at each post-
administration time point. Taken together, these results suggest that
uncontrolled VEGF-Src signaling underlies the observed continuous
increase in vascular permeability during inadequate repair of steroid-
associated osteonecrosis, which is consistent with a recent consensus
that normal vascular turnover requires precise spatiotemporal
control of VEGF expression28. Accordingly, it encourages use of a
selective blockade strategy of Src signaling for both maintaining
VEGF-mediated angiogenesis and abolishing VEGF-mediated per-
meability to facilitate repair.

The histopathological results from lesion classification in this
study showed that anti-VEGF inhibited destructive repair after
osteonecrotic lesion formation, as evidenced by both significantly
reduced incidence of destructive repair and the no significantly
shifted size distribution curve of trabecular thickness in Anti-
VEGF Group compared to the Baseline. In contrast, VEGF promoted
destructive repair as evidenced by 100% incidence of destructive
repair and moderately left shifted size distribution curve of trabecular
thickness in VEGF-Supplement Group compared to the Control.
VEGF is a chemoattractant for osteoclasts to induce osteoclastogen-
esis in vitro and in vivo through a matrix metalloprotease 9–depend-
ent mechanism, which is similar to signaling pathways involving
receptor activator of NF-kappaB ligand (RANKL)13,29–31. These data
suggest a potential link between uncontrolled VEGF signaling and
destructive repair of steroid-associated osteonecrotic lesions for test-

Figure 2 | Shift of the trabecular structural profile during osteonecrotic lesion repair in different groups. (A). Size distribution of trabecular bone of

osteonecrotic lesion at 4-weeks post-administration in different groups. (B). Representative 3-D structure of trabecular bone of osteonecrotic lesion

at 4-weeks post-administration in different groups. N 5 7
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ing a therapeutic strategy by blocking uncontrolled VEGF signaling,
which not only challenges the traditionally held opinion that
enhanced VEGF signaling might augment bone repair, but also raises
an emerging concept that uncontrolled VEGF signaling could induce
destructive repair when MSCP is at a continuously low level.

On the other hand, the study showed that a Src inhibitor moderately
promoted reparative osteogenesis after osteonecrotic lesion formation,
as evidenced by both the moderately increased incidence of reparative
osteogenesis and moderately right shifted size distribution curve of
trabecular thickness in the Src-Inhibition and Supplement &

Figure 3 | Time course changes in dynamic magnetic resonance imaging (MRI)-derived vascular function indices in different groups. (A). The PEP

(vascularization index) in the VEGF-Supplement Group and Supplement & Inhibition Group Increased continuously and significantly from baseline at 2

weeks and 4 weeks post-administration; while it decreased continuously from Baseline in Anti-VEGF Group at 2 weeks and 4 weeks post-administration.

(B). The Psr (Permeability index) in the Src-Inhibition Group, Supplement & Inhibition Group and Ant-VEGF Group decreased continuously and

significantly from baseline at 2 weeks and 4 weeks post-administration; while it increased continuously from Baseline in VEGF-Supplement Group at 2

weeks and 4 weeks post-administration. N 5 15, Two-way repeat measure ANOVA, *P , 0.05 vs Control at corresponding time point.

Figure 4 | Angiographic analyses of the size and thickness of the vessel structures in the bilateral proximal femora of rabbits. (A). Representative 3-D

angiogram at 4 weeks post-administration in different groups. (B) Size distribution of angiographic structure 4 weeks post-administration in

different groups. N 5 8
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Inhibition Groups as compared with the Control. This could be
explained by the significantly reduced vascular permeability caused by
the Src inhibitor to avoid diverting blood away from the lesion center
towards its periphery and accordingly facilitating delivery of oxygen and
nutrients to local lesions for tissue reconstructional repair32. These

results also suggest a potential causal relationship between continuous
hyperpermeability and inactive reparative osteogenesis for testing a
therapeutic strategy via blockade of uncontrolled Src signaling.

This time, we used a Src inhibitor PP1 to modulate the phosphory-
lated Src expression level, and further examined the vascular and

Figure 5 | Histomorphometric analyses of the bone marrow circulation. (A). Analysis procedure of edema area (region I in the left image and indicated

by green color in the right enlarged image), micro vessel density (region II in the left image and indicated by arrows in the right enlarged image) and

size distribution of leakage particles (region III in the left image and indicated by arrow in the right enlarged image) in different groups using Image J

software. (B). Time-course change in edema area post-administration in different groups. (C). Time-course change in micro vessel density post-

administration in different groups. (D). Comparison of size distribution of leakage particles in different groups. N 5 8, One-way ANOVA with Student-

Newman-Keuls post hoc test, *P , 0.05 vs Control at corresponding time point.

Figure 6 | Expression of phosphorylated Src and total Src in bone marrow in different groups. (A). Representative electrophoresis bands for bone

marrow phosphorylated Src and total Src expression at baseline and in each treatment group at 2 and 4 weeks post-intravenous injection. (B). Time-

course changes in bone marrow phosphorylated Src expression and total Src expression in each group. N 5 8, One-way ANOVA with Student-Newman-

Keuls post hoc test, *P , 0.05 vs Control at corresponding time point.
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skeletal impact of the intervention. PP1 (4-amino-5-(4-methylphe-
nyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine) is a cell-permeable pyr-
azolopyrimidine compound that inhibits Src activity with IC50 of
170 nM33. Dr. Weis et al. used it to block Src Y418 phosphorylation
by intravenous injection in mice9. Dr.Zan et al. injected PP1 in to a
focal cerebral ischemia rat model, and demonstrated that PP1 effec-
tively decreased Src Y418 phosphorylation level and reduced the
vascular permeability in the rat brain34. In the present study, PP1
was intravenously administrated at a dose of 0.3 mg/kg according to
dose conversion principle among different animals35,36, which corre-
sponded to the effective dose for anti-permeability in previous two
studies. The efficacy of systemic administration of PP1 was also
verified in this study, as evidenced by significantly decreased phos-
phorylated Src expression in Src-Inhibition Group and Supplement
& Inhibition Group.

Putting together, we demonstrated Supplement & Inhibition
Group showed sound repair outcome, as demonstrated by lower
destructive repair incidence, thicker trabecular structure profile, bet-
ter neovascularization, and lower permeability compared to Control
Group. It suggested that supplement of VEGF while inhibiting Src
could be a new therapeutic strategy for steroid-associated osteone-
crotic patients with high risk of subchondral collapse.

Methods
Experimental Design. Male 28-week-old New-Zealand white rabbits with body
weight of 4 , 5 kg were housed at the Animal house in Institute for Advancing
Translational Medicine in Bone & Joint Diseases in Hong Kong Baptist University
and received a standard laboratory diet and water ad libitum. All experimental
protocols were approved by the Animal Experiment Ethics Committee of Institute for
Advancing Translational Medicine in Bone & Joint Diseases in Hong Kong Baptist
University (Ref No.TMBJ/12/NR). The methods were carried out in accordance with
the approved guidelines and the surgical operation was offcially approved by Hong
Kong government (Ref No. (12–30) in DH/HA&P/8/2/6 Pt.2). Based on our
established protocol for inducing steroid-associated osteonecrosis development7,24–26,
all the rabbits were intravenously injected once with 10 mg/kg body weight of
lipopolysaccharide (Escherichia coli 0111:B4, Sigma-Aldrich, USA) on day 0. After
24 hours, three injections of 20 mg/kg body weight of methylprednisolone
(Pharmacia & Upjohn, USA) were given intramuscularly at a 24-hour interval. At 0
(pre-induction/baseline) and 1 week after induction, bone marrow aspiration from
iliac crest was conducted to determine size of marrow stem cell pool (SI-MSCP) in
hematopoietic and mesenchymal compartment according to our published protocol7.
At 2 weeks after induction, 121 rabbits with a decrease of at least 70% in SI-MSCP of
both mesenchymal and hematopoietic compartment were identified as high riskers
for progress to destructive repair within osteonecrotic lesions according to the
published findings7. The selected rabbits were systemically administrated by
intravenous injection with either Anti-VEGF antibody (recombinant humanized
monoclonal anti-VEGF at 33 mg/kg/two weeks, Anti-VEGF Group, n 5 23) or
VEGF (recombinant human VEGF at 0.05 mg/kg/two weeks, VEGF-Supplement
Group, n 5 23) or Src inhibitor (PP1, selective inhibitor of Src activity with IC50 of
170 nM, 0.3 mg/kg/two weeks), Src-Inhibition Group, n 5 23) or a combination of
VEGF and Src inhibitor (recombinant human VEGF at 0.05 mg/kg/two weeks and
Src inhibitor PP1 at 0.3 mg/kg/two weeks, Supplement & Inhibition Group, n 5 23)
and control vehicle (Saline, Control Group, n 5 23) for 4 weeks. Six rabbits were
sacrificed as baseline before administration. The sample size in each group was
calculated according to our published paper7. At 0, 2 and 4 weeks after administration,
in vivo dynamic MRI was performed on proximal femora for vascularization index
and permeability index, respectively. After finishing dynamic MRI scan, euthanasia
was also executed at 2 (n 5 8) and 4 (n 5 15) weeks after administration in each
group. Bilateral proximal femora were dissected after sacrifice for the following
evaluation on intraosseous vasculature, including three-dimensional angiography by
micro-CT and two-dimensional histomorphometry of marrow circulation by optical
microscopy. Repair pattern of osteonecrotic lesions was both qualitatively classified
by histopathology and quantificationally differentiated by micro-CT. Local
phosphorylated Src protein expression was quantified by immunoblotting.

Pre-euthanasia Evaluation on Vascular Function. For Dynamic MRI–derived
vascular function index, rabbits were anesthetized with 2.5% sodium pentobarbital
(0.4 ml/kg) and then placed in the prone position with lower limbs flexed for MRI
scanning using a 1.5-T superconducting system (ACS-NT Intera; Philips Medical
Systems, Best, The Netherlands) with a maximum gradient strength of 30 mT/m. A
bolus of dimeglumine gadopentetate (Magnevist; Schering, Berlin, Germany)
(0.3 mmol/kg/body weight) was rapidly injected by an automatic pump linked to a
previously placed 21-gauge catheter into an auditory vein. Dynamic MRI scans were
performed in the prescribed plane with the following parameters: short T1-weighted
gradient echo sequence, TR/TE 5 4/1.4 msec, flip angle 5 15, slice thickness 5

5 mm, in-plane resolution 5 0.86 3 0.86 mm, average 5 1. The temporal resolution

was approximately 0.6 s per image acquisition. A series of dynamic images were
obtained in 600 s to cover the wash-out phase3,24,37,38. The vascularization index ‘Peak
Enhancement Percentage’ (PEP) and permeability index ‘Permeability Surface Area
Product per Unit Volume of Tissue’ (PSr) were accordingly calculated using our
established protocol24,25.

Post-euthanasia Evaluation. Under general and deep anesthesia with 2.5% sodium
pentobarbital by intravenous instilment (0.4 ml/kg), the rabbit abdominal cavity was
opened for perfusion with a confected radiopaque silicone rubber with a combination
of neutral buffered formalin (10%) and heparinized normal saline (50 U/ml) using
our established protocol24,25,39,40. Then, trabecular structure of osteonecrotic lesion in
bilateral proximal femoral samples was quantificationally differentiated by micro-
CT. After that, the completely decalcified proximal femoral samples by
ethylenediaminetetraacetic acid were subjected to Micro-CT-based angiography.
Thereafter, the decalcified proximal femur was embedded in paraffin and sectioned at
6 mm thickness along the coronal plane to classify the osteonecrotic lesion repair
process with histomorphometry of marrow circulation by OM and local
phosphorylated Src by expression by immunoblotting, respectively.

Quantificational Differentiation of Trabecular Structure in Osteonecrotic Lesion:
Proximal parts of bilateral un-decalcified femoral samples were taken for measure-
ment of trabecular structure in osteonecrotic lesion using our established pro-
tocol24,25. A histogram was generated to display the size (thickness) distribution of
trabecular bone. A color-coded scale was mapped to the surface of the 3-D image to
produce a visual representation of the size distribution of trabecular bone24,39,41.

Classification of Osteonecrotic Lesion Repair: Classification of osteonecrotic lesion
repair was blindly made by two pathologists using OM (Aixoplan with Spot RT digital
camera, Zeiss, Germany). Osteonecrotic lesion formation was identified based on
diffuse presence of empty lacunae or pyknotic nuclei of osteocytes in bone trabeculae,
accompanied by surrounding bone marrow necrosis42. Appositional bone formation
with osteoblast-like cells around the osteonecrotic lesion was classified as ‘Reparative
Osteogenesis’, whereas granulation tissue creep linked to necrotic bone resorption
was classified as ‘Destructive Repair’43. Rabbits with no dominant ‘Reparative
Osteogenesis’ or ‘Destructive Repair’ were termed ‘‘unclassified’’.

Micro-CT-based Micro-angiography for Vascular Architecture: Proximal parts of
bilateral decalcified femoral samples were taken for intraosseous 3-D Micro-CT-
based micro-angiography using our established protocol24,25. A histogram was
generated to display the size (thickness) distribution of angiographic structure. A
color-coded scale was mapped to the surface of the 3-D image to produce a visual
representation of the size distribution of angiographic structures24,39,41.

Histomorphometry of Marrow Circulation: For micro-vessel density (MVD), fif-
teen successive hematoxylin and eosin–stained 6-mm-thick sections from every
decalcified sample were scanned initially at low magnification and then at high
magnification to identify vascular ‘hot-spots’44,45 using the Optical Microscope
imaging system (Zeiss). Selection of the hot-spot has been adopted as a standard
procedure for angiogenesis studies in both solid neoplasms and for hematological
oncology46. It is thought that such areas of increased concentration of micro-vessels
may represent the emergence of a neoplastic clone with a higher angiogenic poten-
tial47. For each countable micro-vessel, an outline was traced to calculate the total
count of micro-vessels per total examined optical fields in those successive sections
from bilateral decalcified femoral samples in one rabbit (Micro-vessel Density) using
image analysis software (ImageJ 1.32j, NIH, USA). For edema area (EA), the above
histological sections were scanned to identify the interstitial marrow edema zone by
OM. For each section, four randomly selected fields (up, down, left, right) were
examined. The marrow edema zone was automatically traced by thresholding using
ImageJ 1.32j24. The total area of the edema zone per total examined optical field area
in those successive sections from bilateral decalcified femoral samples (Edema Area)
in one rabbit were calculated accordingly. For size distribution of leakage particles, the
above sections were examined with OM to identify leakage particles in the region
corresponding to the scanned volume of interest during the above-mentioned Micro-
CT-based micro-angiography. An easily distinguished black radiopaque particle
(perfused angiographic substance) outside of a blood vessel was defined as a leakage
particle. For each leakage particle, the outline was manually traced to quantify its area
and perimeter using ImageJ 1.32j. Based on the stereology principle in bone histo-
morphometry48, leakage particle size was calculated as follows: Thickness 5 2000/
1.199 3 (Area/Perimeter). A histogram to display the size distribution of all the
leakage particles in those successive sections from bilateral decalcified femoral sam-
ples in one rabbit was generated using Excel 2007 (Microsoft, USA).

Local Marrow phosphorylated Src protein and total Src protein expression by
Immunoblotting: Marrow tissues were harvested and lysed in homogenization RIPA
Lysis Buffer (R2031-75, United States Biological, USA). Homogenates were pre-
centrifuged at 2,500 g for 10 min at 4uC, and the collected supernatant was centri-
fuged at 105,000 g for 0.5 h at 4uC. Protein concentration of the tissue lysate was
determined by the BCA protein assay kit (#23225, Pierce, USA). Protein (20 mg) was
heated at 95uC for 4 min in gel-loading buffer (Sigma), subjected to 10% SDS-PAGE,
and then transferred to a PVDF membrane (Bio-Rad, USA) using a TRANS-BLOT
SD Semi-dry Transfer Cell (Bio-Rad). After blocking with 5% defatted milk for 0.5 h,
the membrane was incubated with primary antibody, i.e., anti-Src phospho-Y418 at
15500 (Biosource InternationalUSA)16, anti-Src at 15500 (Biosource International,
USA) and b-actin (as an internal control) at 152000 overnight, followed by incuba-
tion with a secondary antibody (anti-goat IgG at 151000; Santa Cruz Biotechnology)
conjugated to horseradish peroxidase for 1 h. Proteins (Src-phospho-Y418) were
visualized by chemiluminescence with the ECL plus Immunoblotting Detection
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System (Pierce), and then Src-phospho-Y418 and total Src expressions were nor-
malized to the band intensity of b-actin using a molecular imager system (Bio-Rad).
Data presented are representative of at least three separate experiments.

Data analysis. For statistical analysis, data are expressed as the mean 6 SD. Data
from repeated measurements (MRI-derived vascular function index) was analyzed by
Two-way repeated measures ANOVA. Data from non-repeated measurements,
including micro vessel density, edema area, and protein expression level, were
analyzed by one-way analysis of variance with post hoc multiple comparison tests
(Student-Newman-Keuls test when equal variance was assumed, or Games-Howell
test when equal variance was not assumed). Fisher’s exact probability test was
performed to determine the difference in incidence data (reparative osteogenesis and
destructive repair) among groups. All statistical analyses were performed using SPSS
10.0 (SPSS, Chicago, IL, USA). The statistical significance level was P , 0.05.
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