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group-restricted regulator of TGF-b signalling
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Transforming growth factor (TGF)-b induces various cel-

lular responses principally through Smad-dependent tran-

scriptional regulation. Activated Smad complexes

cooperate with transcription factors in regulating a

group of target genes. The target genes controlled by the

same Smad-cofactor complexes are denoted a synex-

pression group. We found that an Id-like helix-loop-helix

protein, human homologue of Maid (HHM), is a synex-

pression group-restricted regulator of TGF-b signalling.

HHM suppressed TGF-b-induced growth inhibition and

cell migration but not epithelial–mesenchymal transition.

In addition, HHM inhibited TGF-b-induced expression of

plasminogen activator inhibitor-type 1 (PAI-1), PDGF-B,

and p21WAF, but not Snail. We identified a basic-helix-loop-

helix protein, Olig1, as one of the Smad-binding transcrip-

tion factors affected by HHM. Olig1 interacted with

Smad2/3 in response to TGF-b stimulation, and was in-

volved in transcriptional activation of PAI-1 and PDGF-B.

HHM, but not Id proteins, inhibited TGF-b signalling-

dependent association of Olig1 with Smad2/3 through

physical interaction with Olig1. HHM thus appears to

regulate a subset of TGF-b target genes including the

Olig1-Smad synexpression group. HHM is the first exam-

ple of a cellular response-selective regulator of TGF-b
signalling with clearly determined mechanisms.
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Introduction

The growth factors are a group of proteins that mediate

intercellular communication through regulation of cell

growth and differentiation, and thus have important

functions in maintaining homoeostasis of multicellular

organisms. Aberrant activation of growth factor signalling

results in various diseases, including malignant tumour.

Control of growth factor signalling has thus been considered

one of the most attractive targets in the treatment of malig-

nant tumours (Cohen, 2002).

However, transforming growth factor (TGF)-b should be

considered separately from other growth factors for the

following reasons (Blobe et al, 2000). TGF-b suppresses the

proliferation of epithelial cells and certain carcinoma cells,

but promotes proliferation of fibroblasts and glioma cells.

TGF-b also promotes apoptosis of most types of cells, but

induces cell survival under certain conditions (Ehata et al,

2007). In addition, TGF-b promotes epithelial–mesenchymal

transition (EMT), cell migration, and extracellular matrix

production. Therefore, whether comprehensive suppression

of TGF-b signalling promotes or suppresses progression of

malignant tumours depends on various factors, including

tumour origin, pathological type, and microenvironment.

Transforming growth factor-b binds to types I and II

serine/threonine kinase receptors and transduces intracellu-

lar signals through Smad proteins (Miyazawa et al, 2002;

Derynck and Zhang, 2003; Shi and Massagué, 2003). Upon

phosphorylation by type I receptors, receptor-regulated

Smads (R-Smads; Smad2 and 3) form heteromeric complexes

with common-partner Smad (Co-Smad; Smad4) and translo-

cate into the nucleus. In the nucleus, the activated Smad

complexes cooperate with other transcription factors to elicit

specific transcriptional regulation, as the affinity of the

activated Smad complex for the Smad-binding element

(SBE) is insufficient to support association with endogenous

promoters of target genes except those with multiple SBE

clusters. TGF-b-induced gene responses are thus classified by

groups of genes that are jointly controlled by a given Smad–

cofactor combination (Shi and Massagué, 2003). A group of

genes that are simultaneously regulated by a common Smad–

cofactor complex is denoted a ‘synexpression group’. Such

gene responses orchestrate the successful maintenance of

homoeostasis, and aberrant regulation of such responses

may lead to various diseases.

Human homologue of Maid (HHM) was originally identi-

fied as a protein structurally related to mouse maternal Id-like

molecule (Maid) (Hwang et al, 1997; Terai et al, 2000). HHM

is also termed GCIP (Grap2 cyclin D interacting protein),

CCNDBP1 (cyclin D-type binding protein 1), and DIP1 (D-type

cyclin interacting protein) (Xia et al, 2000; Yao et al, 2000).

As HHM has a helix-loop-helix (HLH) domain, but lacks a

basic DNA-binding domain, it is structurally similar to Id

proteins. HHM appears to exert opposite effects on cell cycle

progression depending on cellular context (Sonnenberg-

Riethmacher et al, 2007), and the pathophysiological func-

tions of HHM have not been fully determined.
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In this study, we found that HHM disrupts the physical

interaction of specific transcription factors with R-Smads to

inhibit TGF-b signalling in a synexpression group-restricted

manner. We also identified a novel TGF-b effector, oligoden-

drocyte transcription factor 1 (Olig1) (Zhou et al, 2000), as

one of the Smad-binding transcription factors affected by

HHM. In contrast to Id proteins, which interact with ubiqui-

tously expressed basic-helix-loop-helix (bHLH) transcription

factors, HHM interacts with the tissue-specific bHLH tran-

scription factor Olig1 and regulates Smad-dependent tran-

scription. Our findings raise the possibility of control of

TGF-b signalling in a cellular response-specific manner through

targeting of synexpression groups and add a novel dimension

to understanding of the regulation of growth factor signalling.

Results

HHM attenuates TGF-b signalling through suppression

of Smad-dependent transcriptional activity

We first examined whether HHM affects TGF-b signalling by

luciferase reporter assay. Exogenous HHM inhibited the

transactivation of p3TP-Lux induced by TGF-b ligand or by

constitutively active TGF-b type I receptor (ALK5-TD)

(Figure 1A), whereas knockdown of endogenous HHM en-

hanced signalling (Figure 1B). These findings indicate that

HHM is a negative regulator of TGF-b signalling.

We next examined the effects of HHM on other luciferase

reporter constructs (Figure 1C). Although HHM inhibited

transactivation of p800-Luc, it failed to affect the transactiva-

tion of (CAGA)12-MLP-Luc. These findings suggest that HHM

inhibits Smad signalling at the transcriptional level.

Consistent with this fact, HHM did not affect phosphorylation

(data not shown) as well as nuclear accumulation of Smad2

and 3 induced by TGF-b (Supplementary Figure S1), and it

failed to interact with Smad2 or 3 (data not shown). Notably,

these three reporter constructs, p3TP-Lux, p800-Luc, and

(CAGA)12-MLP-Luc, are all derived from the promoter region

of the human plasminogen activator inhibitor-type 1 (PAI-1)

gene. p800-Luc contains the �800/þ 75 region of the PAI-1

promoter (Keeton et al, 1991) and p3TP-Lux contains the

�740/�636 region of the PAI-1 promoter together with three

repeats of the TPA-responsive element derived from the

human collagenase gene (Wrana et al, 1992). Activation of

these reporter constructs appears to be driven by cooperation

between Smad proteins and other transcription factor(s). In

contrast, (CAGA)12-MLP-Luc contains only 12 tandem repeats

of the Smad binding ‘CAGA’ boxes, and activation of it is

exclusively driven by the activated Smad complex (Dennler

et al, 1998). These findings suggest that HHM does not affect

the function of Smad proteins, but instead those of other

component(s) of the transcriptional complex, leading to the

inhibition of TGF-b signalling.

HHM inhibits TGF-b signalling in a cell response-specific

manner

We next examined the effects of HHM on various TGF-b-

induced cell responses in NMuMG mouse mammary epithe-

lial cells, using adenoviruses carrying HHM cDNA (Ad-

HHM), Smad7 cDNA (Ad-Smad7), and LacZ cDNA (Ad-

LacZ). Ad-Smad7 and Ad-LacZ were used as positive and

negative controls, respectively. First, we examined the sensi-

tivity to TGF-b-induced growth inhibition. HHM-infected cells

exhibited resistance to TGF-b-induced growth inhibition

(Figure 2A) as well as to downregulation of c-myc expression

(Figure 2F). Second, we examined the effect of HHM on TGF-

b-induced stimulation of cell migration. In a chamber assay,

TGF-b-induced cell migration was clearly suppressed by HHM

(Figure 2B). Similarly, in a wound healing assay, HHM-

infected cells exhibited delay in the closure of the scratched

area (Figure 2C). However, we found that TGF-b induced

EMT in HHM-infected cells as in LacZ-infected cells but not in

Smad7-infected cells, as assessed by actin reorganization

(Figure 2D) and epithelial or mesenchymal marker expres-

sion (Figure 2E) (Zavadil and Böttinger, 2005). Similarly,

HHM attenuated TGF-b-induced growth inhibition in human

keratinocyte cell line, HaCaT, and inhibited TGF-b-induced

cell migration in human lung adenocarcinoma cell line, A549,

whereas it did not affect TGF-b-induced EMT in A549 cells

(Supplementary Figure S2). HHM thus inhibits TGF-b signal-

ling in a cell response-specific manner, involving antagonism

of the TGF-b-induced growth inhibition and migration, but

not TGF-b-induced EMT.

We also confirmed that HHM inhibited expression of

only a subset of TGF-b target genes in NMuMG cells. The

Figure 1 HHM attenuates TGF-b signalling through suppression of
Smad-dependent transcriptional activity. (A) Effects of HHM on the
transactivation of p3TP-Luc induced by TGF-b ligand (1 ng/ml) or
constitutively active TbR-I (ALK5-TD) in NIH3T3 cells. Error bars
represent s.d. Smad7 was used as a positive control. (B) Effects of
HHM knockdown by shRNA on the transactivation of p3TP-Luc
induced by constitutively active TbR-I (ALK5-TD) in HeLa cells (top
panel). Error bars represent s.d. Expression of HHM protein was
determined by anti-HHM antibody (middle panel). The lower panel
shows expression level of tubulin protein as a loading control. (C)
Effects of HHM on the transcriptional activity of p800-Luc in
NMuMG cells (upper panel) and (CAGA)12-MLP-Luc in NIH3T3
cells (lower panel) induced by ALK5-TD. Error bars represent s.d.
Smad7 was used as a positive control.
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representative data are listed in Figure 2F and Supplementary

Figure S3. TGF-b target genes whose induction was sup-

pressed by HHM included PAI-1, p21WAF, p15INK4b, and c-myc,

but not Snail or E-cadherin.

Identification of Olig1 as a binding partner of HHM

The above findings suggest that HHM inhibits the transcrip-

tion of a subset of TGF-b-induced genes and thus affects TGF-

b signalling in a cell response-specific manner. The targets of

HHM appear to be transcription factors that cooperate with

the activated Smad complex.

To elucidate the mechanism underlying these specific

inhibitory effects of HHM, we explored transcription factors

that cooperate with Smads and that are affected by HHM. We

performed glutathione S-transferase (GST) pull-down using

NMuMG cell nuclear extract. The proteins that bound to GST-

HHM, but not to GST, were identified by mass spectrometry

analysis (Hellman, 2000), and one of the proteins was a

tissue-specific bHLH transcription factor, Olig1 (Zhou et al,

2000). We confirmed the interaction between endogenous

HHM and endogenous Olig1 by co-immunoprecipitation

assay in NMuMG cells (Figure 3A).

Figure 2 HHM inhibits TGF-b signalling in a cell response-specific manner. (A) HHM attenuated TGF-b-induced growth inhibition. NMuMG cells
infected with Ad-LacZ, Ad-Smad7, or Ad-HHM were seeded and treated with or without TGF-b (1 ng/ml). Cell numbers were counted 6 days
after stimulation. Error bars represent s.d. (B) HHM inhibited TGF-b-induced cell migration in chamber assay. Error bars represent s.d. (C)
HHM inhibited TGF-b-promoted wound closure in wound healing assay. The result was quantified as shown in the graph on the right side.
Migration of wound edges was measured at three random points on the photograph. (D) HHM failed to affect TGF-b-induced actin
reorganization. Cells were stimulated with TGF-b (1 ng/ml) for 24 h, and TRITC-phalloidin staining was then performed. (E) Effects of
HHM on the expressions of E-cadherin and fibronectin. Cells were infected with Ad-LacZ, Ad-Smad7, or Ad-HHM, and cultured with or without
TGF-b for 24 h. Proteins were extracted for immunoblotting. The bottom panel shows protein expression of Smad7 and HHM determined by
anti-Flag antibody. (F) Effects of overexpression of HHM on the expressions of target genes of TGF-b, PAI-1, p21WAF, p15INK4b, c-myc, Snail, and
E-cadherin. NMuMG cells were infected with Ad-LacZ or Ad-HHM, and then stimulated with 1 ng/ml TGF-b for 1 h (except for E-cadherin;
24 h). Expression of each gene was determined by quantitative real-time PCR analyses. Values were normalized to the amount of GAPDH
mRNA. Error bars represent s.d.
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Olig1 is a transcription factor that cooperates with

Smad2/3 and is antagonized by HHM in the induction

of PAI-1

We next knocked down endogenous Olig1 by small interfer-

ing RNAs (siRNAs; Figure 3B) and examined TGF-b-induced

gene expression (Figure 3C) in NMuMG cells. The induction

of PAI-1 expression by TGF-b was partially suppressed,

whereas basal PAI-1 expression was not altered. In contrast,

Snail induction was not significantly affected. We also ex-

amined expression of other target genes of TGF-b and found

that Smad7 and procollagen 1 were affected by siRNA for

Olig1, whereas p21WAF, p15INK4b, c-myc, and E-cadherin were

not affected (Supplementary Figure S4). p21WAF, p15INK4b, and

c-myc appear to be regulated by other transcription factors

that interact with HHM. To assess the effects of Olig1 and

HHM on whole TGF-b target genes, we performed oligonu-

cleotide microarray analysis. Among 318 TGF-b target genes,

49 genes were affected by HHM. Among these 49 genes, 30

genes were affected by Olig1, whereas 19 genes were not

affected (Supplementary Table S1).

As Olig1 was shown to be involved in the induction of

PAI-1 by TGF-b, we examined whether Olig1 functions

synergistically with Smad2/3. As shown in Figure 3D, Olig1

modestly enhanced the transactivation of p800-Luc, but

striking enhancement by Olig1 was observed when Smad3

was co-transfected. Similar results were obtained for Smad2

(data not shown). Moreover, co-transfection of HHM can-

celled the synergistic effects between Olig1 and Smad3.

Similar results were obtained when we used p3TP-Luc or

Smad7-Luc instead of p800-Luc (data not shown).

We further investigated the effects of HHM on the syner-

gistic action of Smads and Olig1 in endogenous gene expres-

sion. Olig1 enhanced PAI-1 expression synergistically with

TGF-b signalling, and their synergistic effect was more salient

when HHM was knocked down (Figure 3E and F). On the

other hand, TGF-b-induced Snail expression was not signifi-

cantly affected by Olig1 and HHM.

These findings indicate that Olig1 upregulates expression

of target genes including PAI-1 in concert with R-Smads, and

that HHM attenuates their synergistic effects and conse-

quently downregulates expression of a subset of target genes.

Olig1 interacts with Smad2/3 in a signalling-dependent

manner

We also examined interactions between Olig1 and Smad

proteins. Olig1 interacted with Smad2 and Smad3 in a signal-

ling-dependent manner, whereas it failed to interact with

Smad4, 6, and 7 (Figure 4A). We confirmed that endogenous

Olig1 is associated with endogenous Smad2/3 in glioma cell

line, U373MG, in response to TGF-b stimulation (Figure 4B

and C). In addition, stronger binding of endogenous Olig1 to

endogenous Smad2/3 was observed when HHM was knocked

down (Figure 4C). Olig1 interacts with Smad3 through the

MH2 domain (Supplementary Figure S5A), whereas Smad3

interacts with Olig1 through the bHLH and the C-terminal

regions (Supplementary Figure S5B).

HHM inhibits interaction of Olig1 with the activated

Smad complexes bound to DNA

We next examined effects of HHM on the interaction between

Olig1 and the activated Smad complexes bound to DNA

(Figure 4D) using a DNA-affinity precipitation method

(Nishihara et al, 1999). In the absence of TGF-b signalling,

Smad4 was precipitated mainly by 3�CAGA probe, with

weak precipitation of Smad2 also observed. In the presence

of TGF-b signalling, Smad2 was efficiently precipitated

through complex formation with Smad4 (Figure 4D, lanes 1

and 2). Olig1 was precipitated in Smad- and TGF-b-signalling-

dependent manners (Figure 4D, lanes 3, 4, 9, and 10), indicating

Figure 3 Olig1 upregulates expression of PAI-1, but not Snail, in
concert with Smad2/3, and their synergistic effects are antagonized
by HHM. (A) Physical interaction of endogenous HHM with en-
dogenous Olig1 in NMuMG cells. Cell lysates were subjected to
immunoprecipitation with anti-Olig1 antibody, anti-HHM antibody
as a positive control, or normal mouse IgG as a negative control,
followed by immunoblotting with anti-HHM. (B) Knockdown of
Olig1 in NMuMG cells. NMuMG cells were transfected with control
or Olig1 siRNA duplex, and the expression of Olig1 protein was
determined by immunoblotting. Expression of endogenous a-tubu-
lin is also shown as a loading control. NC, negative control siRNA.
(C) Effects of Olig1 knockdown on the expression of target genes of
TGF-b, PAI-1, and Snail. NMuMG cells were transfected with control
or Olig1 siRNA and then stimulated with 1 ng/ml TGF-b for 1 h.
Expressions of PAI-1 (upper panel) and Snail (lower panel) were
examined by quantitative real-time PCR analyses. Values were
normalized to the amount of GAPDH mRNA. Error bars represent
s.d. (D) Cooperation of Smad3 with Olig1 in transactivation of p800-
Luc. Cells were co-transfected with the p800-Luc reporter construct
and various combinations of indicated cDNAs, and luciferase
activities in cell lysates were determined. Error bars represent s.d.
(E) Knockdown of HHM in A549 cells. A549 cells were transfected
with control or HHM siRNA duplex, and expression of HHM protein
was determined by immunoblotting. Expression of endogenous
a-tubulin is also shown as a loading control. (F) A549 cells were
transfected with control or HHM siRNA duplex. Twenty-four hours
after transfection, cells were infected with Ad-LacZ or Ad-HHM and
cultured for another 24 h. Cells were then treated with or without
TGF-b (1 ng/ml) for 1 h before harvest, and then expression of PAI-1
and Snail was examined by quantitative real-time PCR analyses.
Error bars represent s.d.
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that the precipitated Olig1 was associated with the activated

Smad complexes.

When HHM was co-transfected with Olig1, Smad2, and

Smad4, co-precipitation of Olig1 was abrogated depending on

the amount of HHM (Figure 4D, lanes 5–8). These findings

suggest that HHM interferes with the interaction between

Olig1 and the activated Smad complex and, as a consequence,

HHM exhibits inhibitory effects on transcription induced by

Olig1–Smad complex.

For further investigation, the association of Olig1–Smad

complex with the promoter regions of TGF-b target genes was

examined by chromatin immunoprecipitation (ChIP) assay

(Figure 4E). Anti-Smad2/3 antibody or anti-Olig1 antibody

immunoprecipitated the DNA fragments of the PAI-1 and

Smad7 promoters (containing SBEs and E-boxes) in response

to TGF-b. The recruitment of Smad2/3 and Olig1 to these

promoters was attenuated in the HHM-overexpressed cells.

The weaker attenuation of the recruitment of Smad2/3 sug-

gests that Olig1–Smad complex does not bind to all of the

Smad-binding elements in the PAI-1 or Smad7 promoters. We

also examined the recruitment of Smad2/3 to the leukaemia

inhibitory factor (LIF) promoter. LIF expression is induced by

TGF-b in U373MG cells (Bruna et al, 2007), and this induction

was not affected by Olig1 or HHM (Supplementary Figure

S6). TGF-b-induced recruitment of endogenous Smad2/3 to

the LIF promoter was not attenuated in the HHM-overex-

pressed U373MG cells (Figure 4E). The binding of Olig1 to the

LIF promoter was around the background level (data not

shown).

These results indicate that Olig1 and R-Smads interact with

each other on chromosomes and yield synergistic upregula-

tion of TGF-b-target gene expression when Olig1-binding

sequence(s) and Smad-binding sequence(s) reside in close

vicinity.

Figure 4 Olig1 is associated with Smad2/3, and their cooperative action on chromosome is abrogated by HHM. (A) TGF-b signalling-
dependent association of Olig1 with Smad2 and Smad3. Physical interactions of Flag–Smads with 6Myc–Olig1 were examined by
immunoprecipitation with anti-Flag antibody followed by immunoblotting with anti-Myc antibody in transfected HEK293T cells. TGF-b
signalling was induced by ALK5-TD. (B) Physical interaction of endogenous Olig1 with endogenous Smad2 and Smad3 in U373MG cells.
U373MG cells were treated with or without TGF-b (2.5 ng/ml) for 3 h before harvest. Cell lysates were subjected to immunoprecipitation with
anti-Smad2/3 antibody, or normal mouse IgG as a negative control, followed by immunoblotting with anti-Olig1 antibody. (C) Stronger binding
between endogenous Olig1 and Smad2/3 when HHM was knocked down. U373MG cells were transfected with control or HHM siRNA duplex
and treated with or without TGF-b (2.5 ng/ml) for 3 h before harvest. Cell lysates were subjected to immunoprecipitation with anti-Olig1
antibody, or normal mouse IgG as a negative control, followed by immunoblotting with anti-Smad2/3 antibody. Smad3 is dominantly detected
by this antibody in U373MG cells. (D) Interaction of Olig1 with the activated Smad complex bound to DNA is abrogated by HHM. HEK293T
cells were transfected as indicated. Cell lysates were subjected to DNA-affinity precipitation assay using biotinylated 3�CAGA as a probe.
(E) Association of Olig1–Smad complex with the PAI-1 and Smad7 promoter regions is abrogated by HHM. ChIP analysis was performed using
U373MG cells infected with Ad-LacZ or Ad-HHM. Cells were treated with TGF-b (2.5 ng/ml) for 1 h and harvested. Eluted DNAs were subjected
to quantitative real-time PCR analysis. Values were normalized to the amount of the first intron of hypoxanthine phosphoribosyltransferase 1.
Error bars represent s.d. Primer sequences are listed on the Supplementary Table S2.
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The HLH region of HHM has unique effects in inhibiting

interaction of Olig1 with Smad3

As HHM has an HLH region that lacks an adjacent basic

domain, its function may be similar to those of Id family

proteins. Id proteins interact with bHLH transcription factors

through their HLH region and interfere with dimerization of

bHLH transcription factors (Norton, 2000). Similarly, HHM

and Olig1 interact with each other through their HLH region

(Supplementary Figure S5C and D). We also found that the

HLH region of HHM is required for inhibition because only

the constructs containing the HLH region effectively inhibited

the transactivation of p800-Luc (Supplementary Figure S5E).

Id2 was reported previously to interact with Olig1

(Samanta and Kessler, 2004). We therefore examined co-

precipitation of Olig1 and Smads in the presence of Id2

(Figure 4D, lanes 11 and 12). Although Id2 was expressed

at the same level as HHM, Id2 did not inhibit the interaction

between Olig1 and Smads. These findings suggest that the

HLH region of HHM has unique effects in disruption of the

interaction of Olig1 with Smad3.

Olig1 enhances TGF-b-induced proliferation of glioma

cells through upregulation of PDGF-B, whereas HHM

exhibits the opposite effect

We further attempted to demonstrate the effects of HHM on

the TGF-b-induced cellular responses mediated by the Olig1–

Smad complex. Olig1 has been suggested recently to have an

important function in glioma growth (Ligon et al, 2007). In

addition, TGF-b has been reported to be one of the key

cytokines in glioma cell proliferation through direct induction

of PDGF-B expression (Figure 5A; Bruna et al, 2007). These

reports prompted us to examine the functions of Olig1 and

HHM in TGF-b-induced glioma growth.

We first confirmed interaction of endogenous Olig1 with

endogenous HHM (Figure 5B). Their interaction was not

dependent on TGF-b signalling. We then examined the effect

of Olig1 on proliferation of malignant glioma cell line

U373MG in response to TGF-b. Expression of Olig1 resulted

in enhancement of TGF-b-induced proliferation of U373MG

cells, which was antagonized by STI571 (Gleevec), an inhi-

bitor of PDGF receptor kinase (Figure 5C). Olig1 also en-

hanced TGF-b-induced upregulation of PDGF-B expression

(Figure 5D). These findings suggest that the effect of Olig1

was mediated through induction of PDGF-B. In contrast,

TGF-b-induced proliferation of U373MG cells as well as

induction of PDGF-B were suppressed by HHM (Figure 5C

and D). HHM thus exhibited effects opposite to those of Olig1

on TGF-b-induced proliferation of U373MG cells.

Next, we knocked down the expression of endogenous

Olig1 or HHM in U373MG cells by microRNA introduced by

lentivirus vector (Figure 6A). The cell proliferation induced

by TGF-b was partially abrogated in the cells that expressed

microRNA targeting Olig1 (Figure 6B). In contrast, TGF-b
more potently induced proliferation of the cells expressing

microRNA targeting HHM, and this induction was completely

blocked by STI571, as in the cells expressing negative-control

microRNA. Furthermore, induction of PDGF-B by TGF-b was

suppressed in the U373MG cells in which the Olig1

microRNA was expressed, whereas TGF-b more potently

upregulated PDGF-B expression in the cells expressing the

HHM microRNA (Figure 6C).

These findings suggest that Olig1 is involved in TGF-b-

induced PDGF-B expression, which promotes proliferation of

the glioma cell line U373MG, whereas HHM exhibits effects

counteracting those of Olig1.

Olig1 associates with the PDGF-B promoter region

in response to TGF-b, and HHM facilitates their

dissociation

Smad3 was shown previously to associate with the PDGF-B

promoter region in U373MG cells in response to TGF-b
(Bruna et al, 2007). To examine the recruitment of Olig1 to

the PDGF-B promoter in vivo, we performed ChIP assay in

U373MG cells. Anti-Smad2/3 antibody or anti-Olig1 antibody

immunoprecipitated the DNA fragment (approximately �336

to �36 from the transcription initiation site, containing SBE

and E-boxes) of the PDGF-B promoter in response to TGF-b

Figure 5 HHM antagonizes the TGF-b-induced proliferation of glio-
ma cells accelerated by Olig1. (A) Model of promotion of the growth
of glioma by TGF-b through induction of PDGF-B exerting an effect
through an autocrine mechanism (Bruna et al, 2007). (B) Physical
interaction of endogenous Olig1 and HHM in U373MG cells.
U373MG cells were treated with or without TGF-b (1 ng/ml) for
3 h before harvest. Cell lysates were subjected to immunoprecipita-
tion with anti-Olig1 antibody, anti-HHM antibody as a positive
control, or normal mouse IgG as a negative control, followed by
immunoblotting with anti-HHM. (C) Olig1 promotes TGF-b-induced
proliferation of glioma cells, whereas HHM suppresses it. U373MG
cells were infected with Ad-LacZ, Ad-Olig1, or Ad-HHM and seeded.
After 24 h, the cells were treated with TGF-b (1 ng/ml) and/or
STI571 (5mM), and cell number was counted 72 h after treatment.
Results were expressed as the change from control (untreated cells).
Error bars represent s.e. (D) TGF-b-induced expression of PDGF-B in
Ad-Olig1- or Ad-HHM-infected cells. Expression of PDGF-B was
examined by quantitative real-time PCR analyses after infected
U373MG cells were treated with TGF-b (1 ng/ml) for 3 h. Values
were normalized to the amount of GAPDH mRNA. Error bars
represent s.d.
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(Figure 6D). When Olig1 was knocked down, the co-precipitation

of the DNA fragment was substantially reduced. These find-

ings suggest that Olig1 associates with the PDGF-B promoter

synergistically with the Smad complex, and thus upregulates

PDGF-B expression. We also found that TGF-b-dependent

interaction of the PDGF-B promoter with Smad2/3 and

Olig1 was enhanced in U373MG cells with HHM microRNA.

HHM thus facilitated the dissociation of Olig1 and Smad2/3

from the PDGF-B promoter, resulting in the suppression of

TGF-b-induced PDGF-B induction.

HHM negatively regulates in vivo growth of glioma,

whereas Olig1 is required for this growth

To examine the functions of endogenous Olig1 and HHM in in

vivo growth of glioma, we subcutaneously implanted

U373MG cells into nude mice. Knockdown of Olig1 in

U373MG cells greatly attenuated the in vivo growth of

U373MG cells compared with control cells, whereas knock-

down of HHM caused more rapid growth of these cells

(Figures 6E). These in vivo growth data are thus consistent

with those for in vitro proliferation.

Figure 6 Effects of endogenous Olig1 and HHM on the growth of U373MG glioma cells in vitro and in vivo. (A) Knockdown of Olig1 and HHM
using microRNA. U373MG cells were infected with lentivirus-encoding control microRNA, Olig1 microRNA, or HHM microRNA. Expression of
Olig1 and HHM proteins were determined by immunoblot. Expression of a-tubulin was determined as a loading control. NC, negative-control
microRNA. (B) In vitro proliferation assay of U373MG glioma cells in which Olig1 or HHM was knocked down. Results were expressed as the
change from control (untreated cells). Error bars represent s.e. (C) TGF-b-induced expression of PDGF-B in U373MG glioma cells in which Olig1
or HHM was knocked down. mRNAs were prepared from cells treated with TGF-b (1 ng/ml) for 3 h. Expression of PDGF-B, Olig1, or HHM was
determined by quantitative real-time PCR analyses. Values were normalized to the amount of GAPDH mRNA. Error bars represent s.d.
(D) Association of Olig1 and Smad2/3 with the PDGF-B promoter region. ChIP analysis was performed using U373MG cells infected with
lentivirus-encoding control microRNA, Olig1 microRNA, or HHM microRNA. Cells were treated with TGF-b (2.5 ng/ml) for 1 h and harvested.
Eluted DNAs were subjected to quantitative real-time PCR analysis. Values were normalized to the amount of the first intron of hypoxanthine
phosphoribosyltransferase 1. Error bars represent s.d. Primer sequences are listed on the Supplementary Table S2. (E) In vivo growth of
U373MG cells in which Olig1 or HHM was knocked down by infection with lentivirus-encoding control microRNA, Olig1 microRNA, or HHM
microRNA. Values are plotted as the mean tumour volume±s.e. of nine tumours per condition. Panels on the right side show the results of
histological examination of the samples. Tumour tissues dissected at 3 weeks after transplantation appeared encapsulated and exhibited no
significant variation histologically. Tissue sections were stained with haematoxylin–eosin or Azan. Scale bars: 60mm.
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In summary, Olig1 is required for glioma proliferation,

which was negatively regulated by HHM through modulation

of TGF-b signalling.

Discussion

Transforming growth factor-b induces a variety of cellular

responses principally through Smad-dependent transcrip-

tional regulation. Cytoplasmic as well as nuclear proteins

have been identified as regulators of Smad signalling, most of

which regulate it in a comprehensive manner. One exception

to this is YY1, which affects the expression of PAI-1, but not of

p21WAF, p15INK4b, or c-myc (Kurisaki et al, 2003). Although

YY1 interacts with the MH1 domain of Smad4 to interfere

with the Smad4–DNA interaction, the mechanism underlying

the selective suppression has not been fully elucidated. In this

study, we report that an Id-like protein, HHM, is a synexpres-

sion group-restricted regulator of Smad signalling, which

exerts an effect through abrogation of physical interaction

between Smad2/3 and certain bHLH transcription factors,

including Olig1. HHM is the first example of a cell response-

specific regulator of Smad signalling with clearly determined

mechanisms.

Dual functions of Maid in vivo

Maid was first identified as a maternally transcribed gene

product that has a structural feature of dominant-negative

HLH proteins (Hwang et al, 1997). Mouse Maid is

actively transcribed in eggs and zygotes, but it is also widely

expressed in adults. HMM is a human homologue of

mouse Maid (Terai et al, 2000). Subsequently, it was shown

to interact with a leukocyte-specific adaptor protein

Grap2 and cyclin D, and it is also termed GCIP,

CCNDBP1, and DIP1 (Xia et al, 2000; Yao et al, 2000).

However, the physiological functions of HHM have not

been clearly determined.

Maid exerts opposite effects on cell proliferation and

tumorigenesis, depending on cellular context. In Maid-defi-

cient mice, cell proliferation after partial hepatectomy was

suppressed compared with that in wild-type mice

(Sonnenberg-Riethmacher et al, 2007). In addition, HHM

expression is elevated in early stages of hepatocarcinogenesis

(Takami et al, 2005). These findings suggest positive regula-

tory functions of Maid in cell proliferation. In contrast, Maid-

deficient mice more frequently develop liver tumours

(Sonnenberg-Riethmacher et al, 2007), and hepatic overex-

pression of HHM in transgenic mice decreases susceptibility

to chemical hepatocarcinogenesis (Ma et al, 2006). These

findings suggest a tumour suppressor function of Maid

in the liver.

In this study, we observed that HHM positively regulates

the proliferation of cells whose growth is inhibited by TGF-b
(NMuMG and HaCaT cells), whereas it negatively regulates

the proliferation of cells whose growth is promoted by TGF-b
(U373MG cells). Although HHM was reported previously to

promote (Takami et al, 2005) or inhibit cell cycle progression

(Xia et al, 2000; Ma et al, 2007), the Smad-signalling-

mediated mechanism in cell proliferation appears to be

dominant, at least in these cell lines.

HHM has a mode of action distinct from that

of prototypical HLH proteins Ids

Human homologue of Maid shares a structural feature with Id

proteins in having an HLH domain but lacking a basic

domain responsible for the interaction with DNA. It has

therefore been expected that Maid functions in a manner

analogous to Id proteins (Hwang et al, 1997). However, we

found that Maid inhibits bHLH proteins in a manner distinct

from that of Id proteins.

Basic-helix-loop-helix transcription factors are classified

into two groups, that is, those ubiquitously expressed (class

I), including E12/47, and those expressed in a tissue-specific

manner (class II), including Olig1 (Massari and Murre, 2000).

They are thought to function in dimeric forms because DNA-

binding activities in their monomeric form are not strong

enough and, in general, heterodimeric forms are favoured. Id

proteins are known to inhibit heterodimerization of bHLH

proteins through predominant binding to class I bHLH pro-

teins (Norton, 2000). We also observed that Olig1 hetero-

dimerizes with E12/47 (Supplementary Figure S7A), and Id2

interferes with this heterodimerization principally through

binding to E12/47 (Supplementary Figure S7B), although Id2

can directly interact with Olig1 (Samanta and Kessler, 2004).

Thus, the inhibitory effects of Id proteins should be compre-

hensive, as Id proteins target common components of hetero-

dimers of bHLH transcription factors.

In contrast, when HHM inhibits the formation of the

complex composed of class II bHLH transcription factor and

Smad2/3, HHM principally targets class II bHLH proteins,

yielding more specific inhibitory effects. Id2 failed to disrupt

the interaction between Olig1 and Smad2/3, probably be-

cause the affinity between Id2 and Olig1 was not sufficient to

produce dissociation of the Olig1–Smad2/3 complex. HHM

also inhibits heterodimerization between Olig1 and E12/47,

although it fails to interact with E12/47 (Supplementary

Figure S7A and B). Direct interaction with class II proteins

appears to be a preferred mechanism in HHM-mediated

inhibition of functions of the class II bHLH proteins

(Supplementary Figure S7C).

Function of the Olig1-Smad synexpression group

in TGF-b signalling

Olig1 was first identified as an oligodendrocyte lineage-spe-

cific bHLH transcription factor (Zhou et al, 2000) and subse-

quently shown to be required for maturation of

oligodendrocyte progenitors (Arnett et al, 2004; Xin et al,

2005). However, Olig1 is expressed in cells other than oligo-

dendrocytes (Supplementary Figure S8) and has been impli-

cated in malignant tumours including oligodendroglioma (Lu

et al, 2001) and non-small cell lung carcinoma (Brena et al,

2007).

In a neurosphere implantation model of malignant glioma,

in which neural progenitor cells from p16INK4a/p19ARF-null

mouse embryos were used after manipulation to express

constitutively active EGF receptor mutant, Olig1-null back-

ground resulted in the delay of glioma formation (Ligon et al,

2007). Olig1 thus also appears to have an important function

in the progression of glioma, although the mechanism re-

mains to be determined. Here, we demonstrated that Olig1 is

involved in TGF-b-induced proliferation of glioma cells

through induction of PDGF-B.

Selective regulation of Smad signalling by HHM
H Ikushima et al

The EMBO Journal VOL 27 | NO 22 | 2008 &2008 European Molecular Biology Organization2962



The Olig1-Smad synexpression group includes PAI-1,

PDGF-B, procollagen 1, and Smad7, but not p21WAF,

p15INK4b, c-myc, Snail, E-cadherin, or LIF. According to our

findings, TGF-b-target genes can be classified as follows

(Figure 7A): genes of the Olig1-Smad synexpression group

that are suppressed by HHM (Figure 7A(i)), genes of the other

synexpression groups that are suppressed by HHM (Figure

7A(ii)), and genes that are not suppressed by HHM (Figure

7A(iii)). Figure 7B is the diagrammatic representation of this

classification with the results of DNA microarray analysis

(Supplementary Table S1). The Olig1-Smad synexpression

group appears to include target genes involved in fibrosis,

but not those mediating the anti-proliferative or EMT-indu-

cing effects of TGF-b. Further investigation is needed to

establish the pathophysiological functions of the Olig1-

Smad synexpression group. Other Smad-binding transcrip-

tion factors antagonized by HHM appear to regulate target

genes involved in the anti-proliferative effect of TGF-b.

Identification of such targets of HHM is a task for the future.

Synexpression group-specific regulators of TGF-b
signalling as molecular targets

Our present findings open the way for the control of each

synexpression group through inhibiting formation of com-

plexes composed of transcription factors and activated

Smad2/3, which enables cellular response-specific regulation

of TGF-b signalling. Recently, inhibitors of the TGF-b type I

receptor as well as neutralizing antibodies to TGF-b ligands

have been developed and used to inhibit metastasis of certain

cancers (Yingling et al, 2004). As TGF-b has important

functions in the maintenance of homoeostasis, transcription

factors that cooperate with activated Smad complexes in the

regulation of transcription of TGF-b-target genes should be

promising molecular targets with reduced side effects.

Materials and methods

Cell culture
NIH3T3, HaCaT, HEK293T, NMuMG, and U373MG cells were
obtained from the American Type Culture Collection, and A549 cells
were from Cell Resource Center for Biomedical Research, Institute
of Development, Aging and Cancer, Tohoku University. All cells
were maintained in Dulbecco’s modified Eagle’s medium (DMEM)
containing 10% fetal bovine serum, 50 U/ml penicillin, and 50 mg/
ml streptomycin. For the culture of NMuMG cells, insulin (10 mg/
ml) was supplemented. For the culture of U373MG cells, sodium
pyruvate (1 mM) and non-essential amino acids (0.1 mM) were
supplemented. HEK293FTcells were purchased from Invitrogen and
maintained according to a standard protocol.

Luciferase assay
Luciferase assay was performed as described previously (Goto et al,
2007) using TGF-b-responsive reporters, (CAGA)12-MLP-Luc
(Dennler et al, 1998), p3TP-Luc (Wrana et al, 1992), p800-Luc
(Keeton et al, 1991), and Smad7-Luc (Nagata et al, 2006). Values
were normalized to Renilla luciferase activity under the control of
thymidine kinase promoter.

RNA interference
To generate short hairpin RNA (shRNA) constructs, oligonucleo-
tides corresponding to HHM-pSUPER and NC-pSUPER (see Supple-
mentary Table S2 for sequences) were annealed, followed by
ligation into the pSUPER vector, which was digested with BglII/
HindIII. siRNAs (see Supplementary Table S2 for sequences) were
introduced into NMuMG cells using HiPerFect transfection reagent
(Qiagen) according to the manufacturer’s instructions. The final
concentration of siRNAs used was 5 nM. MicroRNA constructs
against Olig1 and HHM were cloned into the pcDNA6.2-GW/
EmGFP-mir vector (Invitrogen) after annealing the oligonucleotides
(see Supplementary Table S2 for sequences). miR-neg (negative
control) was provided by Invitrogen.

Antibodies
The antibodies used were as follows: anti-Flag M2 (Sigma-Aldrich);
anti-Myc 9E10 (Pharmingen); anti-haemagglutinin (HA) 3F10
(Roche Diagnostics); anti-a-tubulin DM1A (Sigma-Aldrich); anti-E-
cadherin 610182 (BD Transduction Laboratories); anti-fibronectin
(Calbiochem); anti-Olig1 (R&D Systems); and normal mouse IgG
(Santa Cruz Biotechnology) as a negative control for immunopre-
cipitation using anti-Olig1 antibody. Anti-HHM antibody was
prepared by immunizing rabbits with bacterially expressed
HHM (full-length).

DNA transfection, cell lysis, immunoprecipitation,
and immunoblotting
HEK293T cells were transiently transfected using FuGENE6 trans-
fection reagent and incubated for 24 h before analysis. Cells were

Figure 7 (A) Model of synexpression group-restricted inhibition of
TGF-b signalling by HHM. On activation of TGF-b signalling, Smads
form complexes with transcription factors, including Olig1 in the
nucleus, and interact with the promoter region of target genes. HHM
binds to a subset of the transcription factors including Olig1 (i) and
Y (ii), but not Z (iii) and inhibits their physical interaction with
Smads, which results in the dissociation of both the Smad complex
and the partner transcription factors from the promoter regions. Y,
unidentified Smad-binding transcription factors that interact with
HHM; Z, Smad-binding transcription factors that do not interact
with HHM. (B) Diagram representing data obtained from the
microarray analysis of gene expression profiles of NMuMG cells
transfected with negative-control siRNA, HHM siRNA, or Olig1
siRNA and treated for 1 h with TGF-b (1 ng/ml). Black square,
TGF-b-up regulated genes; green square, HHM-regulated genes;
red square, Olig1-regulated genes. Raw data are shown in
Supplementary Table S1.

Selective regulation of Smad signalling by HHM
H Ikushima et al

&2008 European Molecular Biology Organization The EMBO Journal VOL 27 | NO 22 | 2008 2963



lysed with a buffer containing 1% Nonidet P-40, 20 mM Tris–HCl
(pH 7.4), 150 mM NaCl, 1 mM PMSF, 1% aprotinin, and 5 mM
EDTA. For immunoprecipitation, cleared lysates were incubated
with anti-Flag antibody for 1 h at 4 1C, or with anti-Olig1 antibody or
mouse normal IgG overnight at 4 1C. Proteins in immunoprecipi-
tates or cleared cell lysates were subjected to SDS–PAGE and
transferred to Fluoro Trans W membrane (Pall). Immunoblotting
was performed using the indicated antibodies.

Adenoviruses
Flag-tagged full-length Olig1 and HHM cDNAs were cloned into a
pENTR vector (Invitrogen) and introduced into the adenoviral
genome through recombination between pENTR vector and the
pAd/CMV/V5-DEST vector using LR Clonase (Invitrogen).
HEK293A cells were infected with pAd/CMV/Olig1 or pAd/CMV/
HHM after its linearization with PacI. Viral particles were isolated
by three freeze–thaw cycles and amplified by reinfection to
HEK293A cells.

Cell proliferation assay
Cells were seeded in triplicate at a density of 5�104 cells per well in
12-well plates and cultured for 24 h in the growth medium for each
cell line. After treatment with TGF-b (1 or 2.5 ng/ml) and/or STI571
(5mM, Novartis) for the indicated periods, cells were trypsinized
and then counted. STI571 stock solution was prepared as described
previously (Matsuyama et al, 2003).

Quantitative real-time PCR
Quantitative real-time reverse transcription–PCR was performed as
described previously (Goto et al, 2007). All samples were run in
triplicate in each experiment. The primers used are listed in
Supplementary Table S2. Values were normalized to that for
glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

Phalloidin staining
To allow direct fluorescence of the actin cytoskeleton, cells were
fixed in 3.7% paraformaldehyde in phosphate-buffered saline
(PBS), permeabilized with 0.2% Triton X-100 in PBS for 5 min at
room temperature, and subsequently stained with 0.25 mM tetra-
methylrhodamine B isocyanate (TRITC)-conjugated phalloidin
(Sigma-Aldrich). Fluorescence was examined by confocal laser
scanning microscopy (Carl Zeiss).

Protein identification
Selected protein-containing bands were excised from silver-stained
SDS–PAGE gels and digested in-gel with trypsin (Hellman, 2000).
Proteins were identified from the obtained peptide mass spectra
using NCBInr sequence database with the aid of PROFOUND
(http://prowl.rockefeller.edu/prowl-cgi/profound.exe).

DNA-affinity precipitation
Cell lysates were prepared and DNA-affinity precipitation assay was
then performed as described previously (Nishihara et al, 1999).

GST pull-down
Equal amounts of GST, GST-Olig1, or GST-HHM mutants were
adsorbed to glutathione-Sepharose beads and incubated with
normalized amounts of lysates from HEK293T cells expressing
Flag-tagged protein. The beads were washed three times in NETN
buffer (0.1% Nonidet P-40, 50 mM Tris–HCl (pH 8.0), 150 mM

NaCl, and 1 mM EDTA). Bound proteins were analysed by
immunoblotting.

Lentivirus
To create entry clones, cDNAs encoding GFP and microRNA
constructs against Olig1 or HHM were transferred from
pcDNA6.2-GW/EmGFP-mir into pDONR221 (Invitrogen) using BP
clonase (Invitrogen). To create lentivirus constructs, they were
transferred from entry clones into lentivirus vector (CSII-EF-RfA)
using LR clonase (Invitrogen).

For the production of defective lentivirus vectors, HEK293FT
cells were transfected using Lipofectamine2000 (Invitrogen) with
three plasmids: vector construct, VSV-G- and Rev-expressing
construct (pCMV-VSV-G-RSV-Rev), and packaging construct
(pCAG-HIVgp). The culture supernatants were collected 48 h after
transfection, and viral particles were concentrated by centrifuga-
tion. For lentiviral infection, 1�105 U373MG cells per well in 6-well
plates were infected with lentivirus particles. At 48 h after infection,
infection efficiency was examined on the basis of GFP expression,
and 95–100% U373MG cells were confirmed to be positive for GFP.

Chromatin immunoprecipitation
Chromatin immunoprecipitation was performed as described
previously (Suzuki et al, 2004). Following reverse crosslinking,
DNA was treated with proteinase K and purified using a PCR
purification kit (Qiagen). DNA was eluted in 30ml of TE, and used
for PCR analysis or quantitative real-time PCR. PCR primers are
listed in the Supplementary Table S2.

In vivo proliferation assay
A total of 1�106 U373MG cells in 50 ml of serum-free DMEM and
50ml Matrigel (BD Biosciences) were injected subcutaneously into
male Balb/c nu/nu mice (5 weeks old). Tumours were measured
externally every week until week 3, and tumour volume was
approximated using the equation volume¼ (a� b2) p/6, where a
and b are the lengths of the major and minor axes, respectively. All
animal experimental protocols were performed in accordance with
the policies of the Animal Ethics Committee of University of Tokyo.

Microarray analysis
NMuMG cells were transfected with negative-control siRNA, Olig1
siRNA, or HHM siRNA and treated with or without TGF-b for 1 h.
Total RNAs were prepared with RNeasy (Qiagen) and used to
conduct oligonucleotide microarray analysis using GeneChip Mouse
Genome 430 2.0 Array (Affymetrix) according to the manufacturer’s
instructions.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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