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Abstract
With the massive use of computers, the growth and explosion of data has greatly promoted the development of artificial
intelligence (AI). The rise of deep learning (DL) algorithms, such as convolutional neural networks (CNN), has provided radiation
oncologists with many promising tools that can simplify the complex radiotherapy process in the clinical work of radiation
oncology, improve the accuracy and objectivity of diagnosis, and reduce the workload, thus enabling clinicians to spend more time
on advanced decision-making tasks. As the development of DL gets closer to clinical practice, radiation oncologists will need to be
more familiar with its principles to properly evaluate and use this powerful tool. In this paper, we explain the development and
basic concepts of AI and discuss its application in radiation oncology based on different task categories of DL algorithms. This
work clarifies the possibility of further development of DL in radiation oncology.
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Introduction

With the massive use of computers, the growth and explosion

of data has greatly promoted the development of artificial intel-

ligence (AI). In recent years, AI has been used widely in the

medical field to analyze data in pathology, radiology, cardiol-

ogy, oncology, genomics, and pharmacology to better provide

information for diseases prediction,1-4 screening,5 diagnosis,6,7

treatment,8 prognosis, health management, and drug develop-

ment.9 The various applied research currently underway may

lead to the increased use of AI by clinicians, in particular,

radiation oncologists.10 The current clinical practice is both

time-consuming and extremely subjective, and the rise of deep

learning (DL) algorithms, such as convolutional neural net-

works (CNN), can simplify the complex radiotherapy work

process in the clinical work of radiation oncology, including

image fusion, delineation of clinical target volume (CTV), and

organ-at-risk (OAR), automatic planning (AP), dose distribu-

tion prediction, and outcome prediction.11 The application of

DL not only improves the accuracy and objectivity of diagnosis

but also reduces the workload, thus enabling clinicians to spend

more time on advanced decision-making tasks. As the

development of DL gets closer to clinical practice, radiation

oncologists will need to be familiar with its principles to prop-

erly evaluate and use this powerful tool. We explain the devel-

opment and basic concepts of AI and discuss its application in

radiation oncology based on different task categories of DL

algorithms. This work clarifies the possibility of further devel-

opment of DL in radiation oncology.

Basic Concepts

Artificial intelligence (AI): AI is a broad general term used to

encompass various subdomains that are used specifically to
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create algorithms to perform tasks that mimic human

intelligence.12

Machine learning (ML): ML belongs to a subfield of AI

and is the primary method used to realize AI. ML can provide

algorithms, which can build mathematical models based on the

collected data. These mathematical models map the input data

to the desired output. These input elements can be any

sequence of images, numbers, and classification data.13 ML

algorithms are divided into supervised learning, unsupervised

learning, reinforcement learning, integrated learning, and DL.

Among them, the input data of supervised learning contains

tutor signals, which use probability function, algebraic function

or artificial neural network as basis function model, adopt itera-

tive calculation method, and learn result as function. Unsuper-

vised learning is that there is no tutor signal in the input data,

and the clustering method is adopted, and the learning result is

the category. Typical unsupervised learning includes discovery

learning, clustering, and competitive learning. Reinforcement

learning is a learning method that takes environmental inertia

(reward/punishment signals) as input and is guided by statistics

and dynamic programming techniques. Ensemble learning is to

combine multiple weakly-supervised models here in order to

obtain a better and more comprehensive strong-supervised

model. The underlying idea of ensemble learning is that even

if a certain weak classifier gets a wrong prediction, other weak

classifiers may correct its mistakes. In practice, to represent

input to output mapping, different functional representations

can be used, such as decision trees,14 support vector machines

(SVM),15 naive Bayes classification,16 and deep neural net-

work (DNN).17 In most cases, ML methods can achieve at least

as good results as traditional statistical methods. When the

basic input–output relationship is not linear and the data set

is large enough and contains predictors that capture the non-

linear relationship, the performance of the ML method will be

better than the linear statistical model.18 The SVMs, decision

trees, and naive Bayes classification all use supervised learning

algorithms to build models, and DNNs use DL algorithms to

build models. Ideally, ML can use computers to predict clinical

outcomes, identify disease patterns, detect disease characteris-

tics, and optimize treatment strategies, thereby transforming

the acquired knowledge into clinical evidence.13

Deep learning (DL): DL (also known as DNN) was intro-

duced at an event at the end of 2012, when the DL method

based on CNN won the world’s most famous computer vision

competition ImageNet classification.19 DL is a computational

model that allows for multiple processing layers (input layer,

hidden layer, and output layer) to discover complex structures

in large data sets using a back propagation algorithm to instruct

the machine how to change its internal parameters.20 In the past

10 years, as a result of the massive use of computers and the

growth and explosion of data, DNN has surpassed others in

computer vision applications, such as processing and under-

standing text,21 voice,22 and images.23 DNN includes CNN,

recurrent neural network (RNN), and fully convolutional

neural network (FCN). CNN is a type of feedforward neural

network that contains convolutional calculations and has a deep

structure that can classify input information according to its

hierarchical structure and that usually is used for images and

other data with grid-like structures. To overcome the difficulty

of a network whose width increases linearly caused by convo-

lution, some scholars have introduced downsampling to reduce

the width. They have proved that downsampling a CNN can

approximate the ridge function well, which illustrates the

advantages of these structured networks in approximation or

modeling.24 In recent years, CNN has introduced break-

throughs in image, video, voice, and audio processing.

DL task categories in radiation oncology can be divided

according to the main purpose of the algorithm, as follows:

image fusion, image segmentation, AP, plan evaluation, and

prognosis and outcome prediction. The evaluation criteria

include receiver operating characteristic curve, area under the

receiver operating characteristic curve (AUC), dose volume

histogram, dose difference graph, F1 score, accuracy, specifi-

city, sensitivity, precision, dice similarity coefficient, average

accuracy, and Jaccard index.25

Material and Methods

Here we provide a systematic review of the publications using

CNN technology for medical image analysis, available in the

National Library of Medicine database (PubMed). The search

equation was the following: (convolutional OR deep learning)

AND (radiotherapy) AND (image fusion OR image segmenta-

tion OR auto-planning and dose distribution prediction OR

prediction of efficacy and side effects), filtered for “Human

studies” and “Title/Abstract” as search fields.

The selected articles were screened according to a standard

grid containing the following items: aim of the study; methods:

network architecture, dataset, training, validation, test, compar-

ison method; results: accuracy, sensibility and specificity and

conclusion.

Implementation Area

Image fusion: Medical image fusion technology can fuse med-

ical images from multiple forms, thereby making the medical

diagnosis and treatment process more reliable and accurate.26

Image registration is an important part of image fusion, for

which the process is to find the spatial mapping relationship

between one image pixel and another image pixel. This process

is not absolute. Its core purpose is to identify the conversion

relationship between different images. These images can be

taken at different times (multitime registration), different sen-

sors in different places (multimode registration). The relation-

ship between these images can be rigid (translation and

rotation), affine, homography, or complex large deformation

models. For image-guided radiotherapy, radiosurgery, and

interventional radiotherapy, image registration is one of the

key technologies of auxiliary medical care. In recent years,

DL, especially CNN, has achieved good results in medical

image processing, and medical registration research has devel-

oped rapidly.27 The 2 main types of existing medical image
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registration methods are gray-scale-based methods and feature-

based methods. The primary steps of image registration include

geometric size change, combined image change, image simi-

larity measurement, iterative optimization, and interpolation

process.28 In the traditional registration method, the cost func-

tion is iteratively optimized from scratch so that the images can

be registered, which severely limits the registration speed.

Compared with traditional medical image registration methods,

the greatest contribution of DL in medical image registration is

to resolve the problem of slow medical image processing.27

Eppenhof and Pluim29 studied a CNN-based deformable regis-

tration algorithm and compared it with traditional algorithms.

Their results showed that the registration speed of DL networks

is hundreds of times that of traditional registration methods,

with an average of 0.58 + 0.07s. Among the existing research

results, the main DL methods used are CNN and FCN frame-

works. A study by Cao et al30 used CNN for brain magnetic

resonance imaging (MRI) image registration. The results

showed that the Dice similarity coefficient (DSC) was

improved in the registration of gray matter, white matter, and

cerebrospinal fluid. The rate of improvement was 2.6%.

Fan et al31 studied 7different brain MRI deformable registra-

tion algorithms. The results showed that the DL network that

did not require any iterative optimization also required the least

time for registration, and the registration accuracy was based

on DL. There are also improvements. Research by Jiang et al32

showed that 4-dimensional computed tomography (CT)

deformed image registration of the lung based on CNN had the

smallest error compared with various traditional methods, and

the registration time was 1.4s. Hasenstab et al33 evaluated the

performance of a CNN algorithm for liver registration in 314

patients, and compared it with manual image registration. The

results showed that compared with manual registration, the

liver overlap and image correlation for automatic registration

were higher. In conclusion, DL has made medical image reg-

istration more rapid and accurate, which is keeping with the

needs of clinical practice.

Image segmentation: The delineation of CTV and OAR of

tumor patients is a critical and time-consuming part of the

radiotherapy process. Usually, it is manually delineated by the

radiotherapist. The delineation results often are inconsistent

because the experience of the delineator may vary. The emer-

gence of DL has made the automatic segmentation of the tumor

and OAR possible. The DSC is usually used as an indicator to

evaluate the reliability of the test software output in this field.

The closer the DSC result to 1, the higher the degree of overlap

between the 2 delineations. If DSC is equal to 1, the 2 delinea-

tions completely overlap.

At present, several scholars have applied AI to OAR and

CTV for head and neck tumors, lung cancer, breast cancer,

prostate cancer, rectal cancer, and cervical cancer.34-51

Zeineldin et al evaluated the performance of different CNN

models in 125 cases of glioma. Compared with manual render-

ing, the DSC of several CNN models was 81% to 84%.

Zeineldin et al believed that different CNN models could be

applied to magnetic resonance images and that segmentation of

brain tumors was feasible.34 Deng et al developed a novel brain

tumor segmentation method, which integrated the full convo-

lutional neural network (FCNN) and dense micro-block differ-

ence feature (DMDF) into a unified framework to segment

brain tumors in the MRIs of 100 patients. The average DSC

index was as high as 90.98%, and the segmentation time was

less than 1s. Compared with the traditional MRI brain tumor

segmentation method, the experimental results showed that the

segmentation accuracy and stability were greatly improved.35

Ye et al used an automated method based on CNN for segmen-

tation of nasopharyngeal carcinoma on dual-sequence mag-

netic resonance imaging. Through automatic contour training

of 44 patients with nasopharyngeal carcinoma, the test results

obtained in 7patients had an average DSC of 0.87.36 Another

prospective study used DCNN to train and automatically seg-

ment the gross tumor volume (GTV) of 22 patients with head

and neck cancer on co-registered positron emission tomogra-

phy (PET-CT) images. Oncologists and radiologists have

manually determined the gold standard of GTV by consensus.

The automatic segmentation time is less than 1 min, and the

average DSC is 0.785.37 Tong et al used DNN to segment

9 OARs (brain stem, optic chiasm, mandible, optic nerve, par-

otid gland, and submandibular gland) in 22 head and neck

cases. The average DSC ranged from 0.58 to 0.93. The median

time of all OARs was 9.5s.38 Zhu et al tested the results of

automatic segmentation of 9 OARs (brain stem, cross, mand-

ible, left optic nerve, right optic nerve, left parotid gland, right

parotid gland, left submandibular gland, and right submandib-

ular gland) in CT images of 261 patients with nasopharyngeal

carcinoma based on a DL framework. Tong’s model used a

single network to segment the OAR and to conduct end-to-

end training, called AnatomyNet. Zhu et al found that com-

pared with the traditional U-Net model, AnatomyNet improved

the DSC by 2% to 3%, and 6 out of 9 anatomical structures

were better than those under U-Net.39 Subsequently, Dai et al

proposed a DCNN that used a 3-dimensional U-Net DCNN

combined with 2 loss functions of dice loss and generalized

dice loss to automatically segment 19 OARs (left and right

eyeballs, left and right optic nerves, left and right lenses, left

and right inner ears, left and right temporomandibular joints,

left and right parotid glands, left and right submandibular

glands, brainstem, spinal cord, thyroid, laryngo-esophagus-

tracheal (LET), and oral cavity) in patients with nasopharyn-

geal carcinoma. A total of 496 patients were enrolled in the

group, and 376 cases were randomly selected for use in training

set, 60 cases were included in the validation set, and 60 cases

were included in the test set. Overall, the average DSC of the

19 high-risk organs was 0.91, and the Jaccard distance was

0.15. Compared with Zhu’s method, the 3-dimensional (3D)

U-Net DCNN combined with Dice Loss function could be

better applied to the automatic segmentation of head and neck

OARs. The 3D U-Net DCNN with the segmentation time

within 20S also achieved ideal automatic segmentation results

for small-volume OAR.40 Shapey et al studied the performance

of two-and-half-dimensional CNN to automatically segment

schwannomas after training in the MRIs of 243 patients with

Huang et al 3



schwannomas. Compared with manual segmentation, the DSC

based on T1-weighted segmentation was 93.43%. The DSC for

segmentation based on T2 weighting was 93.68%.41 A prospec-

tive study included 126 patients with intracranial meningioma.

The target volume contour manually drawn on MRI T1/T2

weights by 2 experienced doctors was compared with the

results of a trained DNN. In these patients, a comparison

between the DL model and manual segmentation showed that

the average DSC of the tumor volume of the enhanced contrast

agent was 0.91 + 0.08, and the average DSC of the total lesion

volume was 0.82 + 0.12.42 Another study used 2-dimensional

CNN to train on 300 patients’ head CT images and automati-

cally segment the ventricles. The results showed that compared

with manual rendering, the DSCs of the left, right, and third

ventricles were 0.92, 0.92, and 0.79, respectively.43 Currently,

many reports are available on the automatic segmentation of

DL for head and neck cancer. Peng used CNN for automatic

segmentation of OARs in the chest and abdomen. The research

developed and trained a CNN based on U-Net, which included

60 chest CT scan patients and 43 abdominal CT scan patients.

Peng et al performed 5 organ segmentations on chest CTs and

8 organ segmentations on abdominal CTs. Compared with

manual drawing, the median DSC was 0.97 (right lung),

0.96 (left lung), 0.92 (heart), 0.86 (spinal cord), 0.76 (esopha-

gus), and 0.96 (spleen), 0.96 (liver), 0.95 (Left kidney),

0.90 (stomach), 0.87 (gallbladder), 0.80 (pancreas), 0.75 (eso-

phagus), and 0.61 (duodenum). The automatic segmentation

time for each patient did not exceed 5S. The researcher

believed that this work shows that the patient’s multiorgan

CT image segmentation could be performed with clinically

acceptable accuracy and efficiency.44 Wang et al developed a

patient-specific adaptive convolutional neural network

(A-NET) to segment lung tumors in 9 patients’ chest MRIs.

The patients in the group had a chest MRI every week during

radiotherapy. Wang et al took the previously scanned images as

the training set and used the latest images for verification.

Compared with manual segmentation, the DSC obtained was

0.81 + 0.10.45 Another prospective study proposed a new

multimodal segmentation method based on 3D FCN that simul-

taneously considered PET and CT information for lung tumor

segmentation. This method was validated on a dataset of

84 lung cancer patients. Compared with the profile drawn by

abundant radiation oncologists, the average DSC was 0.85,

which achieved significant performance gains compared with

CNN-based methods and traditional methods that used only

PET or CT.46 Zabihollahy et al studied a similar ensemble

learning model based on U-Net to identify and describe the

3D U-Net of kidney tumors, using contrast-enhanced CT

images of 315 patients as training and test sets. Compared with

the gold standard, using 3D U-Net to describe the average DSC

of kidney tumors was 85.95% + 1.46%.47 The research of

Chen et al developed a new cervical cancer segmentation

method (called PIC-S-CNN). Chen et al compared this method

with 6 different segmentation methods and obtained the best

segmentation effect, with an average DSC of 0.84. Chen et al

believed that the combination of DL and anatomical prior

information could improve the accuracy of cervical tumor seg-

mentation. Scholars who have studied models based on CNN to

automatically segment pancreatic tumors,48 liver tumors,49 col-

orectal tumors,50 and prostate tumors51 have achieved good

segmentation results. These findings have shown that DL can

save a significant amount of clinician time to delineate CTV

and OARS. Most of these delineation results have met the

requirements of clinical treatment and achieved better results

than those manually delineated by physicians. Not only does

this method have high repeatability, but it also can reduce the

interobserver variability (IOV) among physicians.

AP and dose distribution prediction: The ability to auto-

matically generate plans and predict a priori acceptable dose

distribution is one of the most important aspects of AI-related

radiotherapy plan implementation. Liu et al designed a DNN

(called deep MTP) to generate pseudo-CT for AP based on the

MRIs of brain tumor patients. Comparing the generated auto-

matic plan with the clinical treatment plan dose parameters, the

results provided by the automatic plan–generated dose distri-

bution were not significantly different.52 Fan et al trained the

DNN framework in 195 patients with head and neck cancer to

predict the dose distribution of head and neck patients receiv-

ing radiotherapy. They used 25 cases for verification and

50 cases as tests. The results showed that, except for the brain-

stem and lens, all clinically relevant dosimetry parameters were

not detected to be statistically different from the actual clinical

plan.53 The combination of CNN and the Monte Carlo (MC)

method can be used to predict the dose of brachytherapy. In

another study, 47 prostate cancer patients were used as a train-

ing set, 14 prostate cancer patients and 10 cervical cancer

patients were used as a test set, and the results could be used

for clinical needs. The accuracy of the algorithm was close to

that of using only the MC method, and the calculation time was

significantly reduced.54 Kajikawa et al compared CNN with

traditional DL methods to predict the dose distribution of

intensity-modulated conformal radiotherapy plans for prostate

cancer patients. Kajikawa et al used an adaptive moment esti-

mation algorithm to optimize the 3D U-net, and the results

showed that the CNN model could predict a better or compa-

rable dose distribution than that produced by DL.55 Similar

experience in predicting dose distribution for prostate cancer

was validated in a plan for 80 prostate cancer patients.56

Although the current clinically available ML-based automatic

plan effectively saved time, the generated plan still had to be

corrected manually. In the future, DL-based AP commercial

software is expected to generate plans that can directly meet the

needs of clinical treatment.

Other applications (for the prediction of efficacy and

side effects): The vast majority of DL predictions of the out-

come of radiotherapy use DL to predict the toxicity after radio-

therapy. Xerostomia usually occurs in patients who are

receiving radiation therapy to the head and neck. Men et al

developed a model to predict xerostomia after radiotherapy

based on a 3D residual convolutional neural network and

included 784 patients with head and neck squamous cell carci-

noma of RTOG 0522 test. Using CT planning images, 3D dose
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distribution, and contours of the parotid and submandibular

glands as inputs, good prediction results were obtained.57 In

patients with non-small-cell lung cancer (NSCLC), CNN has

been used to predict tumor recurrence after stereotactic radio-

therapy. This model was established based on the CT images

reviewed after radiotherapy. In the analysis of 1605 character-

istics of 46 patients, 5 predicted local recurrence, 3 of which

were lobar recurrence, and 7 predicted overall survival.58 Liang

et al constructed a 3D CNN model to predict the occurrence of

radiation pneumonia after thoracic radiotherapy, and compared

it with 3 prediction models based on multiple logistic regres-

sion. The 4 prediction models were all validated in 70 patients

with NSCLC who received volume-modulated radiotherapy.

The results showed that CNN performed better than the tradi-

tional model, with an AUC of 0.842.59 Lee et al applied ML

and bioinformatics tools to genome-wide data to predict and

explain the late genitourinary system toxicity in prostate cancer

patients after radiotherapy.60 DL’s prediction of the efficacy

and side effects of radiotherapy was able to screen out the

possible beneficiaries of radiotherapy in clinical work and to

prepare for possible side effects.

Conclusion

Radiation oncology is a medical specialty that closely inte-

grates technology and computers. It should integrate computer

science, statistics, and clinical knowledge. In the process of

clinical radiotherapy, AI algorithms can work continuously and

efficiently. In particular, the emergence of DL algorithms can

automatically perform tedious tasks, reduce the deviation of

dose distribution, and predict adverse effects after radiother-

apy. CNN training is a key step, for which specific technical

skills are required to avoid overfitting limited data, which can

lead to problems when using the network to analyze wider data

sets. Therefore, training needs to be evaluated and monitored.

Training thus requires evaluation and monitoring. This method

is expected to become the third hand of radiation oncologists.

The open-source nature and public availability of the AI library

enable clinical researchers from various fields to research and

use AI algorithms, which can improve objectivity, reduce the

need for manual intervention, and reduce the amount of staff

work. At the same time, the repeatability of the process can be

greatly improved. Because DL algorithms are an opaque “black

box” of internal operations, applying them to clinical practice

remains challenging.11 Some systems provide partial visualiza-

tion techniques (heat maps, probability maps) to provide cer-

tain views of CNN internal functions. Understanding how these

networks “work” is a relevant and significant challenge in

medical AI.

Currently available clinically automatic registration and

automatic segmentation software based on ML algorithms

require manual correction before clinical use, and the segmen-

tation results for small organs are not ideal.61,62 The current

technology and framework have limitations, which include

model interpretability, data heterogeneity, and lack of common

benchmarks.63 Even if these AI systems show high accuracy in

a laboratory environment, it is difficult to practically verify

medical AI systems in clinical work. This difficulty is called

the last mile of implementation.64 Therefore, before clinical

implementation, in-depth research is needed to evaluate the

performance of DL algorithms.65 One way to make DL results

more acceptable in clinical practice is to enable doctors to

understand the internal workings of the equipment they use,

and the software must provide data protection, algorithm trans-

parency, and accountability to earn clinician and patient trust.66

Artificial intelligence has clearly demonstrated its efficiency in

radiotherapy tasks, but for most applications, there is still a lack

of comparative clinical studies showing that the technology has

been integrated into the clinical workflow. Nevertheless, the

robustness of the current results and the possible simple inter-

face that can be designed using trained CNNs lay the founda-

tion for direct, time-saving, reliable and practical applications.

Then, you can treat CNN as a colleague to provide expert

second opinions on difficult clinical issues. In addition, CNN

is inherently not affected by chaotic factors such as fatigue,

personal beliefs, or hierarchical issues, so inter- and intra-

individual variability will be minimized when completing spe-

cific tasks.

CNN will completely change all processes in the field of

radiotherapy, and the role of practitioners is crucial to the

development and implementation of such equipment. By

understanding deep learning, participating in the concept and

evaluation of new equipment, and by contributing one’s own

power to conceive the regulatory framework for this new type

of medical activity, the MD now has the opportunity to partic-

ipate in the scientific revolution.
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