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Abstract: Tea (Camellia sinensis, Theaceae) is one of the most widely consumed beverages in the world.
The three major types of tea, green tea, oolong tea, and black tea, differ in terms of the manufacture
and chemical composition. Catechins, theaflavins, and thearubigins have been identified as the major
components in tea. Other minor oligomers have also been found in tea. Different kinds of ring
fission and formation elucidate the major transformed pathways of tea catechins to their dimers and
polymers. The present review summarizes the data concerning the enzymatic oxidation of catechins,
their dimers, and thearubigins in tea.
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1. Introduction

Tea is one of the most widely consumed beverages in the world and is second only to
water in popularity. The origin of tea has been traced back to the southern part of Yunnan
Province in the southwest of China. More than 300 different kinds of tea are produced
by different manufacturing processes. They are divided generally into three types: green
tea (non-fermented), oolong tea (semi-fermented), and black tea (fermented). About 78%
of the tea production worldwide is black tea, and green tea constitutes about 20% of tea
production, consumed mainly in China and Japan. Oolong tea is partially fermented and
constitutes about 2% of tea production. Catechins are the most abundant polyphenols
in green tea. Black tea is manufactured by breaking the fresh leaves of Camellia sinensis.
The main pigments in black tea are theaflavins and thearubigins, which are formed by
the oxidation and polymerization of catechins during fermentation in the manufacturing
process of tea. The chemistry information of theaflavins and their derivates has been
elucidated perfectly. Although thearubigins account for up to 60% of the dry weight
of black tea extract, the chemistry of thearubigins is still unclear. Thearubigins with
simple structures have been elucidated. In the present review, we will discuss the current
knowledge on the chemistry of catechins, their oxidation production derivates, and the
major transformation pathways of them in tea.

2. Major Components in Tea
2.1. The Major Polyphenol Compounds in Green Tea

Tea polyphenols, known as catechins, usually account for 30–42% of the dry weight
of the solids in brewed green tea [1,2]. Catechins (flavan-3-ols) are the predominant form
of flavonols in tea [1]. They are characterized by di-or tri-hydroxyl group substitution of
the B ring and the meta-5,7-dihydroxy substitution of the A ring. The structures of the
four major catechins, (−)-epigallocatechin gallate (EGCG), (−)-epigallocatechin (EGC),
(−)-epicatechin gallate (ECG), and (−)-epicatechin (EC) are shown in Figure 1. EGCG
is the major catechin in tea and accounts for 50–80% of the total catechins in tea [3]. In
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Figure 1, the racemic modifications of the four major cathechins as gallocatechin gallate
(GCG), gallocatechin (GC), catechin gallate (CG), and catechin (C) are present in smaller
quantities in tea [4]. Epicatechin digallate, epigallocatechin digallates, 3-methyl-EC, and 3-
methyl-EGC have been identified in smaller quantities in tea [5]. Besides, 3”-methyl-EGCG,
4”-methyl-EGCG, and 4′,4”-di-methyl-EGCG have been identified in different tea species
and at various seasons, ages of leaves, locations, and fermentation levels [6]. The flavonols
such as kaempferol, quercitin, myricitin, and their glycosides have only been identified as
significant components in tea. Flavones and their glycosides such as apigenin, the only
flavone identified in tea, have also been detected in tea but represent a very small fraction
of the tea polyphenols [7]. Gallic acid and its quinic acid ester, cinnamic acid derivatives
of quinic acid, the coumaryl and caffeoyl-quinic acids, and chlorogenic acid have been
identified in tea [4]. The major flavonols and flavones have been identified from green
teas and fermented teas using liquid chromatography with diode array and electrospray
ionization mass spectrometric detection (LC–DAD–ESI/MS), shown in Figure 2 [8].
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2.2. Benzotroplone Derivates in Tea

Black tea is manufactured by plucking, withering, maceration (rolling), fermentation,
and drying of the fresh leaves of Camellia sinensis. By withering, the leaves take on a
form facilitating the maceration process, which results in disrupting the cell structure of
the leaves. Then, the fermentation process begins. In this process, catechins (about 75%)
contained in the tea leaves undergo enzymatic transformation consisting in oxidation and
polymerization to yield a complex mixture of secondary polyphenols including theaflavins
and thearubigins [9–12], theasinensins [13,14], theacitrins [15–17], and oolongtheanins [18]
that contribute to the characteristic color and flavor of black tea. The resulting black tea
composition depends on the technological process of its production. For the fermentation
process, it is important to control the fermentation time and the oxidation environment
such as temperature, humidity, and oxygen [19]. The concentrations of theaflavins and
thearubigins increase as fermentation time increases, reaching optimum levels and then
degrading if the fermentation time is prolonged. It is also necessary to control the environ-
ment for oxidation. During the fermentation of the ruptured tea leaves, in most cases, the
process is performed at a temperature of 24–29 ◦C for 2–4 h or 55–110 min, under a high
relative humidity of 95–98% with an adequate amount of oxygen.

There are two major enzymes involved in the fermentation process in making black
tea [20]. One is polyphenol oxidase (PPO), which plays a key role in the oxidation of
flavanols to theaflavins and thearubigins. The main effect of PPO is to oxidize catechins
to theaflavins. Many studies have been carried out to study PPO-catalyzed formation
of catechin oxidation products [21]. Peroxidase (POD) can also catalyze the oxidation of
o-diphenols to their quinones in the presence of peroxide, such as hydrogen peroxide
(H2O2), which are formed by the effect of PPO on certain flavanols. In fresh tea leaves,
some POD activity is more than five times higher than that of PPO and has been found to
increase during the manufacturing process of black tea [22]. At the beginning step of black
tea processing, PPO is inhibited by heating, whereas POD remains active to a certain extent.
Model oxidation systems have been used to compare the oxidation products obtained
catalyzed with tea PPO and with horseradish POD [23]. However, the contribution of
POD to the formation of black tea pigment in tea fermentation is still not entirely clear.
Sang et al. have already studied the contribution of POD to the formation of theaflavins
and thearubigins in an unnatural system [18,24].

Theaflavins are orange or orange-red in color and possess a benzotropolone skele-
ton that is formed from the co-oxidation of selected pairs of catechins, one with a vic-
trihydroxyphenyl moiety, and the other with an ortho-dihydroxyphenyl structure [18]. The
primary step of catechin oxidation is believed to be the overall conversion of the ortho-
dihydroxy (‘catechin’) and ortho-trihydroxy (‘gallocatechin’)-phenyl ‘B’ rings to give the
corresponding highly reactive orthoquinones. The formation of theaflavins is between the
corresponding two quinonoid species. Then, the formation of the benztropolone group re-
quires the loss of one carbon atom as carbon dioxide. The formation pathway of theaflavins
is shown in Figure 3. The oxidative coupling of two catechins is dependent on structural
and redox potential factors. In many studies concerning the enzymatic oxidation of tea
catechins, oxidative coupling reactions of catechin B-rings have been demonstrated [13,25].
The redox potential of the galloyl group is higher than that of B rings and its reactivity with
o-quinones is comparatively low. A total of 60–80% of the total tea catechins possess galloyl
esters located at the C-3 hydroxy group and oxidation of galloyl groups may be important
to the formation of black tea pigment [26]; only limited examples of oxidative coupling of
galloyl groups have been reported [17,27–29]. Besides, enzymes preferentially oxidize the
catechol B-rings, and the resulting quinone subsequently oxidizes the pyrogallol rings for
the redox potential of which is lower than that of the catechol rings [30–33].
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The four major theaflavins are theaflavin, theaflavin 3-gallate, theaflavin 3′-gallate,
and theaflavin 3,3′-digallate, which are formed by coupling between EC and EGC, EC and
EGCG, EGC and EGC, and EGC and EGCG, respectively. Stereoisomers of theaflavins and
their closely related benzotropolone compounds such as neo-theaflavins, iso-theaflavins,
theaflavate, theaflavic acids, and methylated theaflavins, etc., have also been identified
from black tea [31–34]. They are shown in Figure 4. Under the catalysis of PPO and
POD, neotheaflavin was formed using a monitored reaction between C and EGC. In the
neotheaflavin family, neotheaflavin 3-gallate was isolated from black tea and structurally
characterized using NMR and MS [35,36]. Neotheaflavin 3-gallate was formed by coupling
between C and EGCG [37]. Isotheaflavin is formed hypothetically to couple between EC
and GC. The total concentration of isotheaflavin in black tea is too small and it has not
been detected. Isotheaflavin 3′-gallate has been characterized in extracts from black tea
and its structure was determined using NMR spectroscopy. The proposed formation of
isotheaflavin 3′-gallate is by coupling between EC and GCG [38]. Theaflavates have been
found in some black tea extracts and enzymatically formed. Theaflavate A gets a novel
benzotropolone skeleton formed between the B-ring of one ECG molecule and the galloyl
ester group of another [39]. Theaflavate B is between the B-ring of an EC molecule and the
galloyl ester group of ECG [40]. Neotheaflavate B was formed between the B-ring of one
C molecule and the galloyl ester group of ECG using horseradish POD in the presence of
H2O2 [35]. The reactions of EC and ECG with gallic acid in a model tea fermentation system
were studied. The primary oxidation products formed from the oxidation of EC and ECG
with gallic acid in short reaction periods were epitheaflavic acid and 3-galloyl epitheaflavic
acid. Theaflavic acid has been found in some black tea extracts and enzymatically formed
by the reaction of C and gallic acid along with purpurogallin carbolic acid [41]. In the
model tea fermentation system, epitheaflavic acid and epitheaflavic acid 3-gallate were
formed by the reactions of EC and ECG with gallic acid [42]. Epitheaflavic acid was
rapidly transformed to thearubigins in the presence of EC, which shows the possible
mechanism of the thearubigin formation [42]. These theaflavin derivates are usually minor
components or hardly detectable in black tea compared with the four major theaflavins.
Due to their limited availability, the biological properties of these theaflavin derivates have
been barely evaluated.
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Sang et al. (2004) already synthesized eighteen benzotropolone derivatives, which
include all the major theaflavins, theaflavates, and theaflavic acids reported in black tea as
well as several new benzotropolone derivatives by the reaction of selected pairs of catechins
using horseradish POD in the presence of H2O2 [18]. They also found theaflavins can
further react with tea catechins to form di- or tri-benzotropolone-type compounds. The
galloyl ester group of theaflavins is as reactive as the B-ring (vic-trihydroxy) of EGCG or
EGC and can be oxidized to form di- or tri-benzotropolone skeletons, strongly implying
that this mechanism is an important pathway to extend the molecular size of thearubigins.
The galloyl ester group of theaflavin 3-gallate can further react with EC to form the new
theaflavin type tea catechin trimer, theadibenzotropolone A, which was characterized
from black tea extract by LC/ESI–MS/MS [21,43]. Theaflavin 3-gallate can react with EC
to form theadibenzotropolone B, the isomer of theadibenzotropolone A. Neotheaflavin
3-gallate could react with C to form theadibenzotropolone C (Figure 5). However, theaflavin
3-gallate could not react with C to form the isomer of theadibenzotropolone. Interestingly,
theaflavin 3,3′-digallate are not expected to react with EC or C to form the two isomers of



Molecules 2022, 27, 942 6 of 15

theadibenzotropolone. However, theatribenzotropolone A was obtained by the reaction
between theaflavin 3,3′-digallate and EC. The existence of these compounds in black tea
was characterized by tandem mass spectrometry (MS/MS) through collision-induced
dissociation (CID) [44]. Theaflavate C is a trimer of ECG and possesses two benzotropolone
moieties formed between the B-ring of one ECG molecule and the galloyl ester group of
another [40].
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2.3. Theanaphthoquinone in Tea

Theanaphthoquinone in Figure 6 gets a 1, 2-naphthoquinone moiety oxidatively
derived from the benzotropolone unit of theaflavin. Theanaphthoquinone was generated
by the treatment of a mixture of EC and EGC with fresh tea leaf or banana fruit homogenate.
It is proposed that theanaphthoquinone is biosynthesized from theaflavin with the aid of
PPO [45].
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2.4. Theaflagallinas in Tea

Theaflagallins having a characteristic 1′,2′,3′-trihydroxy-3,4-benzotropolone unit are
produced by condensation between two pyrogallol rings which were identified in black
tea and enzymatically formed by the oxidation of catechins and pyrogallol. Theaflagallin,
epitheaflagallin, and epitheaflagallin-3-gallate are the three major theaflagallins. They can
be formed from the reaction of pyrogallol with C, EC, and EGC [46]. However, pyrogallol
itself does not occur in fresh tea leaf, so it is proposed that theaflagallins are not formed
by the oxidation of catechins and pyrogallol in tea fermentation. It was revealed that
epitheaflagallin was produced from EGC alone even in the absence of gallic acid. The
key intermediate of epitheaflagallin formation in tea is shown in Figure 7. Migration or
elimination of the C-ring occurs and flavan A is produced and isolated from black tea [26].
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2.5. Theasinensin Derivates and Oolongtheanins in Tea

Theasinensins shown in Figure 8 present mainly in oolong tea represent a new class of
dimeric gallocatechins linked by C–C bonds between the two ‘B’ rings, forming a biphenyl
grouping. Theasinensin A (EGCG dimer), B (EGCG and EGC dimer), C (EGC dimer), and
F (EGCG and ECG dimer) are the most abundant ones [47].
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Theasinensins A and D are B,B′-linked dimers of EGCG connected through R and S
biphenyl bonds, respectively. Theasinensin A has been identified as the major oxidation
product of EGCG under cell culture conditions as well [48]. Enzymatic oxidation of EGCG
with a Japanese pear homogenate produced dehydrotheasinensin A and EGCG quinone
dimer A. The possible mechanism for the formation of dehydrotheasinensin A and EGCG
quinone dimer A are shown in Figure 9. The reduction in dehydrotheasinensin A with
ascorbic acid or thiol compounds yielded theasinensin A. When the aqueous solution
of dehydrotheasinensin A was heated, theasinensin D was produced along with galloyl
oolongtheanin. On the other hand, dehydrotheasinensin A was converted to theasinensins
A and D along with galloyl oolongtheanin in phosphate buffer at pH 6.8 at room tempera-
ture [49]. Oxidation of EGC with a Japanese pear homogenate gave dehydrotheasinensin
C, proepitheaflagallina in Figure 8, and an EGC quinone dimer. The possible mechanism
for the formation of dehydrotheasinensin C and EGC quinone dimer is the same to that
of dehydrotheasinensin A and EGCG quinone dimer A. Dehydrotheasinensin C has a
hydrated cyclohexenetrione structure and its oxidation–reduction dismutation reaction
yielded theasinensins C and E, and desgalloyl oolongtheanin [26]. On hydrogenation with
dithiothreitol, dehydrotheasinensin C was converted to theasinensin C [26]. In neutral
phosphate buffer, dehydrotheasinensin C was decomposed to give theasinensin C, theasi-
nensin E, desgalloyl oolongtheanin, and dehydrotheasinensin E [13]. Proepitheaflagallina
was degraded into epitheaflagallin and epitheaflagallin by heating at 80 ◦C for 10 min in an
aqueous solution. Recently, it was found that unripe fruit homogenate of Citrus unshiu
selectively oxidizes pyrogallol-type catechins to yield only dehydrotheasinensins [50]. The
selectivity of unripe fruit homogenate of Citrus unshiu is probably related to the lower
redox potential of pyrogallol-type catechins.

Oolongtheanins-desgalloyl oolongtheanin, oolongtheanin, and galloyl oolongtheanin
were originally identified as the polyphenols contained in oolong tea and black tea [50].
Oolongtheanins coexist with theasinensins and they are the oxidation–reduction products
of dehydrotheasinensins and are related to the oxidation–reduction dismutation of dehy-
drotheasinensins. The structure of desgalloyl oolongtheanin was revised by Yosuke Matsuo
et al. based on the spectroscopic and computational data collected in the current study, and
a mechanism responsible for the production of oolongtheanins is also proposed [50].
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2.6. Theacitrin Derivates in Tea

Theacitrins are yellow compounds isolated from the thearubigin fractions of an Assam
black tea and their preliminary structural data have been reported [51]. Theacitrins are
found to be highly unstable but their structures have been elucidated successfully. Theac-
itrin A and B are dimers of EGCG and EGC. Theacitrin C is dimer of EGCG. Theacitrin
A, B, and C are shown in Figure 10. The separation, purification, and characterization
of theacitrin A have been characterized unequivocally by Davis et al. [51]. Oxidation of
EGCG with a Japanese pear homogenate gave theacitrin C. The B-ring of EGCG is oxidized
to its o-quinone form, and 1,4-addition then occurs to generate a C–C bond. Successive
oxidation and intramolecular 1,2-addition produces a bicyclo octane-type intermediate,
which subsequently rearranges to afford theacitrin C [52]. The possible mechanism for the
formation of theacitrin C is shown in Figure 11. Degradation of theacitrin C by heating
at 80 ◦C for 60 min in an aqueous solution gets the decomposition products detected as a
broad hump on the HPLC baseline. However, heating in an aqueous solution containing
0.1% TFA theacitrin C was degraded into theacitrinin A and 2,3,5,7-tetrahydroxychroman-
3-O-gallate. Although theacitrinin A was not isolated from black tea produced in India
and Sri Lanka at the present stage, theacitrinin B has been isolated from black tea whose
1H and 13C NMR spectra were closely related to those of theacitrinin A, except for the
appearance of signals attributable to one set of flavan A-and C-rings and one galloyl group.
Besides, the proposed mechanism of theacitrinin B production from theacitrin A has been
put forward [53,54].

2.7. Dimers of Theaflavin Derivates in Tea

Bistheaflavins A and B in Figure 12 are two theaflavin oxidation products. Treatment
of a mixture of EC and EGC with banana fruit homogenate yielded bistheaflavin A together
with theaflavin and theanaphthoquinone. Bistheaflavin A was formed by oxidative C–C
coupling of two theaflavin molecules. In contrast, theaflavin in phosphate buffer (pH 7.3)
was gradually oxidized to give bistheaflavin B and theanaphthoquinone. Bistheaflavin B
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possesses a bicyclooctane skeleton probably formed by intermolecular cyclization between
dehydrotheaflavin and dihydrotheanaphthoquinone [51].

Enzymatic oxidation of ECG yielded bistheaflavate A in Figure 12, along with theaflavate
A, a known dimer of ECG generated by coupling of the B-ring with the galloyl group.
Bistheaflavate A was a tetramer produced by intermolecular coupling of two benzotropolone
moieties of theaflavate A. From its structure, it was deduced that oxidative coupling of
galloyl groups resulted in extension of the molecular size of the products in catechin
oxidation [55].
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2.8. Thearubigins in Tea

Thearubigins, red-brown or dark brown, which comprise about 20% (w/w) of ex-
tracted solids, are heterogeneous polymers of tea catechins [56]. Information of their
formation and structures is still very limited. Kuhnert (2010) showed that during black
tea manufacture, fresh tea leaf catechins are oxidized to ortho-quinones. These react with
a nucleophile, either water to form oxygenated catechins, with another catechin to form
dimeric theasinensins, theaflavins, oolongtheanins, theanaphthoquinones or theacitrins, or
higher catechin oligomers. Highly oxygenated black tea polyphenols are subject to further
oxidation to form quinone and quinone-methide type derivatives, which are in equilib-
rium with their reduced counterparts present within the black tea infusion all together
accounting for around 95% of the thearubigins constituents observed.

There are several classifications of thearubigins. The first one classifies thearubigins
into three groups in terms of their solubility in different solvents. Thearubigins of SI type
can be extracted into ethyl acetate, whereas SIa and SII type remain in the aqueous phase
and SIa are more soluble in diethyl ether than the aqueous phase [39]. Another classification
method is based on the chromatographic behavior of thearubigins in Hypersil ODS. Group
I runs close to the void volume of the columns; group II is resolved thearubigins; and group
III is unresolved thearubigins [57]. In recent years, with the assistance of modern advanced
instrumental analysis technology, identification and characterization of thearubigins in
black tea have progressed further. The formation of oligomeric thearubigins from cate-
chins, theaflavins, theanaphthoquinone, theasinensins, theacitrins, and oolongtheanins has
been suggested.

A previous study using chromatography and chemical degradation of isolated frac-
tions and a possible partial structure of polymeric thearubigins from black tea was eluci-
dated using chemical degradation, determining that they are heterogeneous polymers of
flavan-3-ols and flavan-3-ol gallates having bonds at C-4, C-6, C-8, C-2′, C- 5′ and C-6′ in the
flavan-3-ol units [24]. Epitheaflavic acid was rapidly transformed to thearubigins in the pres-
ence of EC, suggesting the possible mechanism of the thearubigin formation. A prolonged
experiment with tea leaf extract showed a decrease in theaflavin and theanaphthoquinone
and an increase in polymeric substances suggesting that theanaphthoquinone was further
transformed during tea fermentation and might be related to the formation of thearubi-
gin [58]. Theaflavins further react with tea catechins to form di- or tri-benzotropolone-type
compounds strongly implying that this mechanism is an important pathway to extend
the molecular size of thearubigins [21]. Using delayed pulsed ion extraction of ions gen-
erated via the matrix-assisted laser desorption ionization (MALDI) technique, on line
with a linear time-of-flight (TOF) mass spectrometer, Sang et al. found that theasinensins
and procyanidins could also react with catechins to generate benzotropolone-type poly-
mers [13]. Kuhnert et al. (2010), relying on LC/MS/MS, elucidated that thearubigins are
solely composed from low molecular weight compounds with a mass below 2100 g/mol
and revealed many thearubigin structures and valuable chemical information. In addition,
Kuhnert et al. lead to a novel hypothesis for the formation and structure of the black tea
thearubigins named oxidative cascade hypothesis [16]. Using ESI/HPLC tandem mass
spectrometry in the SII fraction of black tea thearubigins, two novel homologous series
of polyhydroxylated theasinensins and theanaphthoquinones were revealed which cor-
responded to the prolonged experiment treating a mixture of EC and EGC with tea leaf
extract. The first homologous series of compounds revealed the presence of polyhydroxy-
lated dimers of the theanaphthaquinone and theasinensin C structures. In addition, new
classes of peroxo-/epoxy- compounds in the series of theasinensin A were identified, which
indicated the presence of H2O2 and its important contribution as a nucleophile in the tea
fermentation process [58].

Since thearubigins were first introduced fifty years ago, much of the thearubigin struc-
tures and valuable chemical information have been elucidated. Up to now, the chemical
nature of thearubigins remains largely unresolved. Much more information about thearubi-
gins, including structure formation and conformation, isolation of single compounds and



Molecules 2022, 27, 942 13 of 15

their characterization, evaluation of their contribution to taste, and knowledge of biological
properties, needs to be studied further.

3. Conclusions

In summary, tea is one of the most consumed functional beverages in the world. It
contains large amounts of polyphenols including catechins, their dimers, and thearubi-
gins. Various tea polyphenols such as isotheaflavin and neotheaflavin are usually minor
components or hardly detectable in tea. The biological properties of tea polyphenol have
been scarcely evaluated. The model study of tea fermentation has been carried out to
elucidate the structure, isolation, characterization, and biological property of tea polyphe-
nols. Thearubigins isolated from a typical tea fermentation comprise very closely related
structures, which are solely composed from low molecular weight compounds with a mass
below 2100 g/mol. Thearubigins range from trimeric to tetrameric structures, and possibly
greater. The formation of oligomeric thearubigins in a model study of tea fermentation
consumes dimeric catechins which partially consist of productions of thearubigin degrada-
tion. The way to extend the molecular weight of theaflavin derivates suggests a possible
mechanism extending the molecular size of thearubigins. The existing information about
thearubigins is valuable but further study is required.
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