
Citation: Cui, Y.; Eccles, K.M.; Kwok,

R.K.; Joubert, B.R.; Messier, K.P.;

Balshaw, D.M. Integrating Multiscale

Geospatial Environmental Data into

Large Population Health Studies:

Challenges and Opportunities. Toxics

2022, 10, 403. https://doi.org/

10.3390/toxics10070403

Academic Editor: Dirk W.

Lachenmeier

Received: 28 May 2022

Accepted: 14 July 2022

Published: 20 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

toxics

Commentary

Integrating Multiscale Geospatial Environmental Data into
Large Population Health Studies: Challenges and Opportunities
Yuxia Cui 1, Kristin M. Eccles 2 , Richard K. Kwok 3 , Bonnie R. Joubert 1 , Kyle P. Messier 2

and David M. Balshaw 1,*

1 Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS),
National Institutes of Health (NIH), Durham, NC 27709, USA; yuxia.cui@nih.gov (Y.C.);
bonnie.joubert@nih.gov (B.R.J.)

2 Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS),
National Institutes of Health (NIH), Durham, NC 27709, USA; kristin.eccles@nih.gov (K.M.E.);
kyle.messier@nih.gov (K.P.M.)

3 Office of the Director, National Institute of Environmental Health Sciences (NIEHS),
National Institutes of Health (NIH), Durham, NC 27709, USA; richard.kwok@nih.gov

* Correspondence: balshaw@nih.gov

Abstract: Quantifying the exposome is key to understanding how the environment impacts human
health and disease. However, accurately, and cost-effectively quantifying exposure in large popu-
lation health studies remains a major challenge. Geospatial technologies offer one mechanism to
integrate high-dimensional environmental data into epidemiology studies, but can present several
challenges. In June 2021, the National Institute of Environmental Health Sciences (NIEHS) held
a workshop bringing together experts in exposure science, geospatial technologies, data science
and population health to address the need for integrating multiscale geospatial environmental data
into large population health studies. The primary objectives of the workshop were to highlight
recent applications of geospatial technologies to examine the relationships between environmental
exposures and health outcomes; identify research gaps and discuss future directions for exposure
modeling, data integration and data analysis strategies; and facilitate communications and collab-
orations across geospatial and population health experts. This commentary provides a high-level
overview of the scientific topics covered by the workshop and themes that emerged as areas for
future work, including reducing measurement errors and uncertainty in exposure estimates, and
improving data accessibility, data interoperability, and computational approaches for more effective
multiscale and multi-source data integration, along with potential solutions.
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1. Introduction

The exposome, which is defined as the totality of an individual’s environmental ex-
posure from conception onwards [1], has been increasingly adopted by the biomedical
research community since Chris Wild’s initial commentary in 2005 [2,3]. Since that time,
several large international research initiatives have been launched which have holistically
collected and utilized genetic, environmental, lifestyle, and social and societal factors to
better understand human health and disease [4–7]. In the United States, large and ge-
ographically distributed cohorts such as the All of Us Research Program [8], a diverse
prospective cohort that will ultimately consist of one million participants across the U.S.,
and the Environmental Influences on Child Health Outcomes (ECHO) Program [9], which
brings together separate cohorts to pool their data, provide unique opportunities to un-
derstand the health impacts of diverse environmental exposures. The ability to quantify
an individual’s exposome and incorporate those measurements into the understanding of
health and disease is key to precision health and personalized intervention and prevention.
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However, comprehensively assessing an individual’s exposome in large population studies
remains a major challenge due to the broad range of environmental exposures and the
variation through space and time.

The National Institute of Environmental Health Sciences (NIEHS) has been at the
forefront of accelerating scientific and technological advancements to characterize the expo-
some. Focused efforts that address the exposome and personalized exposure assessments
began even before Chris Wild’s initial 2005 commentary and continued with the estab-
lishment of the Exposure Biology Program within the Genes, Environment, and Health
Initiative [10]. The launch of the Human Health Exposure Analysis Resource (HHEAR;
previously, the Children’s Health Exposure Analysis Resource, or CHEAR) has provided
centralized, scalable and harmonizable environmental exposure data by analyzing environ-
mental chemicals and metabolites in biospecimens and environmental samples collected in
population studies [11,12]. The exposome, however, encompasses not only exposures that
can be measured in biological samples but also broad chemical and non-chemical factors
that can be measured outside of the laboratory, such as air pollution, psychosocial stress,
social determinants of health, and the built environment. Therefore, a comprehensive
understanding of the exposome requires the integration of approaches and methodologies
from a variety of fields, including analytical chemistry, biology, statistics, and geographic
information systems (GIS). Recent advances in geospatial technologies and environmental
sensing, such as remote sensing, GIS, global positioning system (GPS) technologies, and
community and personal monitoring, provide important opportunities for the integration
of location-based environmental measurements at much higher spatiotemporal resolu-
tion and precision than single technology alone can provide, and this can be leveraged
to understand the impact that the environment has on disease etiology, prevention, and
intervention [13–15].

To promote the application of geospatial technologies in population health studies and
address current challenges, the NIEHS hosted a workshop titled “Integrating Multiscale
Geospatial Environmental Data into Large Population Health Studies” in June 2021 [16].
The workshop brought together scientists from a wide range of disciplines, including
exposure science, geospatial technologies, population science, genomics and genetics,
and data science to discuss how to improve exposome characterization by leveraging
multiscale geospatial environmental data (across time, space, and exposure types) in large-
scale population studies. The workshop consisted of state-of-science presentations on
geospatial technologies, exposure modeling, data science, and data integration, followed
by panel discussions on challenges and research gaps. This commentary will provide a
brief overview of the scientific discussions at the workshop and summarize potential future
directions to advance the science.

2. Opportunities for Applying Geospatial Technologies to Advance Health Research

The workshop started with presentations centered on how geospatial technologies
are used to characterize environmental exposures, including air and water contamination
and social and neighborhood factors. Specifically, in regard to geospatial technologies
to improve air pollution measurements, there have been various novel approaches and
data sources to provide spatially and temporally resolved measurements that can be
used to obtain exposure estimates. These approaches include satellite remote sensing,
mobile monitoring, dense deployments of stationary low-cost sensors, and wearable tech-
nologies. Due to their complementary nature, when used in a combined fashion, these
technologies provide a better understanding of temporal and spatial variation, thus reduc-
ing exposure measurement error and increasing the statistical power to detect relevant
exposure–health associations.

2.1. Satellite Remote Sensing

Earth-observing satellites that generate raster-based remotely sensed data have be-
come a powerful large-scale and low-cost tool for assessing population-level exposures to
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air pollutants (e.g., particulate matter (PM), ozone, NO2, and CH2O) and other environ-
mental variables such as green space, walkability, light at night, harmful algal blooms, and
noise. For decades, satellite products have been used in conjunction with ground-based
monitoring, chemical transport models, and geostatistical methods to improve the spatial
and temporal resolution and coverage of air pollution estimates, especially in regions where
regulatory monitoring networks are sparse [17,18]. Exciting new National Aeronautics
and Space Administration (NASA) missions, including Tropospheric Emissions: Monitor-
ing of Pollution (TEMPO) and Multi-Angle Imager for Aerosols (MAIA), will continue
to provide high-quality data on air pollutants [19,20]. These large-scale satellite-based
methods (e.g., 250 m to 1 km resolution) are useful for population-level exposure estimates.
Historically, these large-scale satellite-based datasets have been hard to use, and it is critical
to make them more accessible and user-friendly to increase the utility to a wider audience.
To address this challenge, resources such as the NASA Applied Remote Sensing Train-
ing Program (ARSET) are now available, which offers webinars and online courses with
hands-on guided computer exercises on how to access and use NASA satellite datasets and
analysis tools [21]. Applications of satellite air pollutant estimates were demonstrated using
the NIEHS Sisters Study, where increased PM2.5 and NO2 exposure was associated with
high blood pressure [22]. Outdoor light at night exposure, derived from satellite images,
has been linked to increased breast cancer and thyroid cancer in the NIH AARP Diet and
Health Study cohorts [23,24]. Increasing “greenness” was associated with a decrease in
all-cause mortality in the Nurses’ Health Study [25].

2.2. Hyperlocal Mapping

Localized methods for quantifying exposure to air pollutants or neighborhood-level
characteristics were also discussed, including mobile air monitoring in urban areas, dense
deployment of low-cost stationary sensors at a neighborhood scale, and street view images
for capturing multiple aspects of the neighborhood environment [26–30]. Technological
advancement and cost efficiency in these methods have made it more feasible to generate
a local exposure map with a much higher spatial and temporal resolution. There have
also been interesting new opportunities to utilize citizen science to increase the number of
localized monitors in a monitoring network or use crowdsourcing to expand data collection
efforts. These localized monitoring data are often paired with other larger scale data,
such as satellite images and advanced computational models, including machine learning,
neural networks, and deep learning methods, to develop a more accurate and continuous
map for a particular exposure [31,32]. Integrating the mobility and time-activity patterns
captured by smart devices with satellite-derived data on the concentration of pollutants
can better characterize individual microenvironments and obtain more accurate exposure
concentrations, which may differ based on location (e.g., near a road vs. in a park) as
well as activity (e.g., heavy breathing, such as during exercise, increases the volume of air
inhaled). More precise estimates of exposure to pollutants can improve our understanding
of their associations with other health measurements. This is a significant improvement in
exposure assessment, compared to satellite data alone, which can only provide aggregate
exposure estimates with lower spatiotemporal resolution. Localized exposure mapping
can also be utilized for estimating chemical contaminants using vector-based GIS methods.
Here, point measurements of contaminants from an environmental sample are geotagged
with GPS coordinates and represent a discrete location in space and time. Examples include
characterizing human exposure to various chemicals (e.g., arsenic, nitrates and PFAS) in
public and private drinking water sources in the United States given the location of the
well, a chemical analysis of the water sample, and information on well utilization [33,34].
Geolocated point estimates of chemical exposures can also be spatially linked to health
outcome data. For example, this approach was used to identify high rates of bladder
cancer among women who drank water with nitrates in the Women’s Health Study of
Iowa [33]. However, an important aspect of accurately quantifying exposure–outcome
relationships is to estimate the dose and duration of the exposure accurately, which can
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be challenging for longitudinal studies. Furthermore, understanding neighborhood-level
behaviors and time–activity patterns through smart technologies, such as GPS-enabled
smartphones or wearable activity trackers, may help inform more accurate personalized
estimates of exposure overtime [35].

2.3. Personal Monitoring

Personal environmental measurement captures exposure levels in the immediate prox-
imity of a person and enables more accurate exposure estimation. Personal monitoring has
become more accessible with recent advancements in wearable technologies. There is a
wide array of wearable sensors available at relatively low cost that can measure various
environmental factors including air pollution (e.g., PM, ozone, and toxic gases), UV, noise,
temperature, physical activity, and physiological parameters (heart rate, blood pressure,
ventilation, and body temperature) [36]. GPS data collected by wearable devices and smart-
phones provides another source of information on individual mobility patterns, which
can be combined with large-scale exposure data (e.g., air pollution, green space) for more
accurate exposure estimates at a personal level. Mobile phone applications (e.g., Ecological
Momentary Assessment (EMA)) have been used in health studies to provide a contex-
tual understanding of personal exposure. The Biomedical Real-Time Health Evaluation
(BREATHE) informatics platform developed by the Los Angeles PRISMS Center is a great
example of multi-sensor systems for characterizing how a person’s microenvironment
drives adverse health effects [37]. There has also been an increasing adoption of wearable
passive silicone samplers for capturing a wide range of volatile and semi-volatile chem-
icals in the personal environment, including polycyclic aromatic hydrocarbons (PAHs),
pesticides, phthalates, and more [38].

3. Challenges, Research Gaps, and Research Advancements

Speakers at the workshop presented numerous new and emerging geospatial data
sources and novel approaches for obtaining and applying location-based exposure measure-
ments in health-related studies. Significant challenges and research gaps were discussed
through presentations and panel discussions. Several crosscutting issues that need to
be addressed emerged under two broad categories: (1) how to improve the accuracy of
exposure estimates in geospatial analysis; and (2) how to enable data integration across
multiple data modalities.

3.1. Improving the Accuracy of Exposure Estimates by Reducing Measurement Errors and
Controlling Uncertainty

Measurement errors and uncertainties can arise from multiple sources in exposure
modeling such as exposure aggregation, missing covariates, and failure to account for
time–activity patterns and other personal behaviors and characteristics. Several approaches
were discussed to address the sources of measurement errors and to control uncertainty.

3.1.1. Model Validation against Independent Measurements

Spatial–temporal exposure modeling, which is the process of estimating an exposure
concentration for an individual or aggregate group of individuals (i.e., census tract), is
an important method for generating exposure estimates in locations and time periods
where real exposure measurements are not available. For example, only a third of US
counties have one or more EPA air monitors, leaving many small towns and rural areas
with no air monitoring and no information on air quality due to the cost limitation [39].
Satellite-derived air quality data fill these important data gaps; exposures can be estimated
using advanced modeling approaches using satellite aerosol optical depth (AOD) data,
land use and meteorology data, and EPA ground monitoring networks. It is critical that
the models used are validated against real measurements that are external to the model
development, such as datasets from other sources, including crowd-sourced data and
data collected through low-cost sensor monitoring networks. In areas where ground
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measurements are not available (e.g., in some developing countries), model validation
becomes particularly challenging. This can be addressed by conducting validation studies
by collecting real exposure measurements from a subset of larger studies to provide an
alternative approach to addressing concerns over model validity, and subsequently help
reduce measurement errors and improve data interpretation through model calibration
against these measurements. This can be useful in population studies for many exposures
that involve complex modeling, or when not all covariates can be easily incorporated into
the model.

3.1.2. Incorporation of Mobility and Time–Activity Patterns

Measurement errors are a significant challenge in longitudinal exposure assessments.
This is due not only to the difficulties of validating historical location-based estimates
against available measurements, but also challenges in knowing individual mobility pat-
terns within the timeframe, which can be decades, such as in cancer studies. Building
complete residential histories is important, but not sufficient, as people spend many hours
outside of their residence addresses at school and work. Mobile-based GPS data and
agent-based modeling are promising approaches to address this data gap and provide
better information on exposures over space and time which often can be misaligned. In
large population studies, it is often not feasible to gather time–activity data on all partici-
pants. However, it may be possible to model more individualized exposures in a subset
of study participants and use that information to build predictive algorithms for behavior
and time–location patterns for the larger cohort, enabling the calibration of exposure esti-
mates. Accounting for individual behavior and time–activity patterns and incorporating
that information in exposure modeling is key to achieving more accurate and complete
exposure estimates from the natural, social, and built environment. However, more re-
search is needed in this area, and consideration must be given to protect privacy when
individual-level time–location data are collected, shared, and used in exposure modeling
so that stigma and discrimination can be prevented.

3.1.3. Data Gaps in Indoor Exposure

Most geospatial exposure models quantify outdoor chemical concentrations and ex-
posure levels, but Americans, on average, spend approximately 90 percent of their time
indoors [40]. The lack of data on indoor environments is a major limitation for geospatial
exposure modeling. For example, in air pollution, multiple factors that impact indoor air
quality need to be understood, including indoor sources that contribute to air pollutant
concentrations, building characteristics that may impact penetration coefficients of outdoor
pollutants, and individual behaviors. This gap can be addressed with data generated from
personal sensors or home-based stationary sensors that provide real measurements of the
pollutants [41]. For other non-airborne exposures, home environmental sampling, such as
house dust, may help better elucidate indoor source and exposure level [42]. Overall, more
research is needed to better characterize exposure to indoor pollutants and develop models
that connect outdoor exposures to indoor exposures to create more complete exposure esti-
mates. Recently, the National Academies of Sciences, Engineering, and Medicine released a
report titled “Why Indoor Chemistry Matters” to call for further research in this area [43].

3.1.4. Combining the Strengths of Diverse Geospatial Technologies

It is evident that no single data type or technology can provide both the comprehensive
coverage and the level of spatial and temporal resolution that are desired for human health
research. One of the ways forward is to combine different geospatial technologies that
provide information at different spatial and temporal scales. There is tradeoff for using
each data type individually, while integrating methods that have different spatial, and
temporal resolution can help to develop more accurate and cost-effective exposure models.
We exemplify this in Table 1 using air pollution assessments; a wide array of geospatial
exposure assessment technologies and approaches have been developed in recent years
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which provide dense and spatially resolved exposure data. These include wearable sensors,
community low-cost sensor networks, and mobile monitoring. Exposure modeling can
leverage these different data streams and combine them with satellite remote sensing to
develop better predictive models for more accurate exposure assessments at an individual
level. Exposure data enabled by diverse technologies also provide opportunities for model
validation against independent measurements.

Table 1. Comparison of diverse geospatial technologies and data types discussed at the workshop
(using air pollution (PM2.5, NO2, O3, etc.) as an example).

Satellite Remote Sensing Hyperlocal Mapping Personal Monitoring

Spatial and Temporal
Coverage

Global or large geographical area;
years to decades of data

Neighborhood or community;
months to years of data

Individual; usually days to
weeks of data

Spatial and Temporal
Resolution

Varies across measurements, and
usually low (250 m–1 km or

lower); annual or daily average

Street level (10–30 m);
multiple time points per day

or real time

Immediate proximity of the
person; real time (minutes

or seconds)

Ambient or Indoor Ambient measurements only Ambient measurements only Both indoor and
outdoor measurements

Cost Publicly available data, no cost to
the users

May require new data
collection, cost to the user

is medium

Likely requires extensive
efforts for data collection, cost

to the user is high

Disadvantages
Lower resolution of data may not

be sufficient, and pollutants
are limited

Require modeling techniques
and validation to make the
point estimates into useable

continuous surfaces

Cost to collect, store, and
analyze the highly

dimensional dataset is high

3.2. Enabling Multiscale Data Integration by Improving Data Access and Computational Methods
and Models

There has been a dramatic increase in the amount of publicly available geospatial
datasets in the last two decades, attributed to advances in ubiquitous environmental sens-
ing, GIS technologies, and crowdsourcing. Yet, the utility of these datasets has not been
fully utilized for health research. This is partly because many geospatial datasets are not
easily findable, accessible, interoperable, or reusable by general health researchers (the
FAIR principles) [44]. Additionally, integrating multiscale and diverse geospatial environ-
mental data with complex personal health outcome data requires advanced computational
methods, models, and ethical considerations to protect participant privacy, as well as
interdisciplinary collaborations. The section below will discuss challenges in data access,
computational methods and models, and potential solutions.

3.2.1. Data Access and Data Interoperability

There are numerous publicly available geospatial datasets, but many of them are
not easily accessible or readily usable by health researchers. In many cases, data science
expertise is required to obtain and utilize these data. For example, data transformation and
exposure modeling may be needed to convert satellite imagery data to air quality estimates
before it can be applied in health research, which requires not only proficiency in computer
programming languages but expertise in atmospheric science. There are also multiple
datasets on the same pollutants generated using different exposure modeling approaches
and with different spatiotemporal coverage, which creates further confusion for non-expert
users. Through partnering with epidemiologists and health organizations, the new NASA
MAIA mission, which will be launched in the near future, will produce air quality data
that can be used directly by the health research community [45]. These include total PM10
and total PM2.5, as well as PM2.5 speciation. This will greatly improve the accessibility of
the new data by the health research community. For existing diverse geospatial datasets
(such as historical air monitoring, water contamination, pesticide usage, and administrative
data), proper documentation on how the data were generated, including the advantages
and limitations of each exposure modeling approach, will help guide the selection of the
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right datasets for the research question and improve data interoperability and integration.
This would require collaborative efforts across the global science community to develop
and promote common data standards and metadata standards.

3.2.2. Data Infrastructure and Data Platforms

Data infrastructure and data platforms are critical for promoting data sharing and data
integration. Establishing and maintaining such infrastructure needs substantial involve-
ment from the scientific community. The Canadian Urban Environmental Health Research
Consortium (CANUE) provides an example of how a centralized data platform can work.
The CANUE DATA PORTAL not only provides researchers access to large-scale, historical
geospatial datasets, but a set of statistical and data science tools to facilitate data analysis
and integration [46]. Another example of a centralized platform is the geospatial resource
established by the NIH Environmental Influences on Child Health Outcomes (ECHO)
Program. This brings together a diverse set of geospatial data, methods, and modeling
approaches to allow consortium researchers to look at the effects of environmental and
social risk factors in a nationwide, geographically diverse cohort [9]. Currently, building
geospatial data infrastructures and data platforms around large consortia seems to be an
efficient way to support geospatial data sharing and integration. It was also recognized
by the workshop participants, however, that the community should encourage broader
sharing and the utilization of datasets and data science tools to prevent duplicative efforts.

3.2.3. Data Analysis across Multiple Modalities

Accurate and efficient data integration of multiscale and diverse data across environ-
ment, genetics and health outcomes is essential for maximizing the utility of geospatial
datasets for research. However, it remains a significant challenge in environmental health
studies. A common challenge is how to disentangle the highly correlated exposure mea-
sures and confounding variables in exposure–health association analysis. A number of
new statistical methods developed by the NIEHS Powering Research Through Innovative
Methods for Mixtures in Epidemiology (PRIME) Program have been published recently,
including several new methods addressing mixtures of exposures that vary over space
and time [47]. In addition to statistical strategies, data science methods such as machine
learning and artificial intelligence (AI) have been increasingly applied in the analyses of
complex environmental health data for exposure prediction, disease prediction, and causal
inference [48]. Another significant challenge is the integration of multi-dimensional and
time-varying geospatial environmental data with high dimensional omics data, such as
metabolomics, genomics, and epigenomics data. It is becoming increasingly apparent that
health outcomes are the result of complex interactions between genetic variations and
complex environmental exposures that impact common biological pathways implicated
in many diseases. While comprehensive exposure measurements and high-dimensional
omics data together offer the opportunity to study both mediation and more complex gene
environment interactions, the true understanding of complex biological systems requires
not only advanced computational approaches, but also the incorporation of biological
knowledge into the data analysis. Last but not least, a common barrier in data analysis
is how to scale up the linkage of spatial data to personal health information while pro-
tecting participant privacy. The confidentiality of patients and research subjects must be
safeguarded. DeGAUSS (Decentralized Geomarker Assessment for Multi-Site Studies), a
software application developed for multi-site studies, provides a method for decentralized
geocoding to avoid the translocation of sensitive participants’ residential data from one site
to another [49].

4. Conclusions

The complex nature of the exposome requires an interdisciplinary approach to imple-
ment in health studies. Population-based cohort studies offer several strengths including
the measurement of exposure prior to disease onset, stored biospecimens, robust covariate
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information, and the opportunity for follow-up and repeated sampling. Additionally, the
geographic and genomic variation that cohort studies can provide make it a particularly
attractive resource for researchers. Therefore, existing cohorts that have rich longitudinal
data such as physical measurements, biologic information, questionnaire data, and up-to-
date information from participants’ electronic health records (EHR) should be leveraged.
Opportunities need to be created for geospatial experts to collaborate with cohorts to
identify important scientific questions, bring expertise together, and develop use cases
where new research questions can be addressed by incorporating geospatial datasets. The
diverse demographics and health outcomes of large national and international cohorts may
offer more power to discover geographically linked exposures impacting health, especially
for rare exposures and diseases. For example, the All of Us Research Program is a large
nation-wide longitudinal cohort that aims to collect electronic health records, self-reported
survey data including geographic location, physical measurements, bio-samples, genetic
and digital health data on participants ages 18 and above. All of Us has been designed as
a platform program which is disease agnostic and will allow researchers to utilize data
to answer their own questions without worrying about recruitment issues. Integrating
multiscale geospatial environmental data into large population health studies such as All of
Us presents a unique opportunity to better understand how environmental exposures can
impact health on a local scale. Moving forward, communication is the first step to bridge the
disconnection between research communities (exposure science, geospatial technologies,
population science, genomics and genetics, and data science). International coordination on
data and metadata standards and exposure modeling efforts is key to promoting broader
sharing and the better utility of geospatial data and resources. The NIEHS Environmental
Health Language Collaborative is an initiative to advance community development and
the application of a harmonized language for environmental health [50]. This is an ongoing
effort to address challenges in data harmonization and interoperability, including placed-
based measurements. Furthermore, federated data platforms can provide easy access to
implementable datasets and interoperability across studies. It is also important to build
diversity into the organizing structure of large initiatives so that appropriate expertise in
environmental health science will be included and environmental factors will be considered
at the planning stage of large longitudinal cohorts.
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