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Abstract
Studying the binding processes of G protein-coupled receptors (GPCRs) proteins is of particular interest both to better 
understand the molecular mechanisms that regulate the signaling between the extracellular and intracellular environment 
and for drug design purposes. In this study, we propose a new computational approach for the identification of the bind-
ing site for a specific ligand on a GPCR. The method is based on the Zernike polynomials and performs the ligand-GPCR 
association through a shape complementarity analysis of the local molecular surfaces. The method is parameter-free and it 
can distinguish, working on hundreds of experimentally GPCR-ligand complexes, binding pockets from randomly sampled 
regions on the receptor surface, obtaining an Area Under ROC curve of 0.77. Given its importance both as a model organism 
and in terms of applications, we thus investigated the olfactory receptors of the C. elegans, building a list of associations 
between 21 GPCRs belonging to its olfactory neurons and a set of possible ligands. Thus, we can not only carry out rapid 
and efficient screenings of drugs proposed for GPCRs, key targets in many pathologies, but also we laid the groundwork for 
computational mutagenesis processes, aimed at increasing or decreasing the binding affinity between ligands and receptors.
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Introduction

The identification and characterization of ligand binding 
sites in proteins is a fundamental step for structure-based 
drug design [1, 2]. Among all protein families, G protein-
coupled receptors (GPCRs) are probably the most popular 
family of drug targets, accounting for about 34% of all phar-
maceuticals approved by the US Food and Drug Administra-
tion [3].

GPCR proteins are characterized by a seven-helices trans-
membrane domain, that winds through the plasma mem-
brane in a serpentine fashion. Besides, they are composed 
of an N-terminal domain, which is oriented to face the extra-
cellular matrix and, in some cases, can participate in ligand 

binding, and a C-terminal domain, which is in the cytosol 
and is involved in the signaling inside the cell. Moreover, 
to maintain the serpentine structure, 3 extracellular and 3 
intracellular loops are used for connecting the alpha helices 
trans-membrane regions among them [4]. The extracellular 
loops can contribute to ligand binding as well [5].

GPCRs play a key function in many biological processes, 
mediating a large number of cellular responses to external 
stimuli, such as light, odors, hormones, and growth factors. 
The communication between the outside and the inside of 
the cell takes place through the interaction between GPCRs 
and ligands in the extracellular environment, allowing the 
protein to bind, in an intracellular environment, with a het-
erotrimeric G protein [6]. This process is followed by vari-
ous forms of signal transduction, all these events originated 
by the interaction of the GPCR with a specific ligand [7].

Therefore, the understanding of the interaction mecha-
nism between small molecules and GPCRs represents a 
fundamental step for the design of new pharmaceutical 
compounds [8]. Among all the GPCR-ligand interactions, a 
relevant part is the recognition mechanisms between odors 
and their corresponding Odor Receptors (ORs), which 
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represent the largest subfamily within the GPCRs family 
and are present in all multicellular organisms [9–11]. Indeed, 
these interactions are fundamental for many biological appli-
cations [1]. For instance, the level of expression of ORs in 
tumoral tissues is noticeably different compared to healthy 
tissues, and, currently, these receptors are candidates as 
new targets for diagnosis and therapeutics, but a complete 
comprehension of their biological role in cancer is still elu-
sive [12]. More specifically, it is still unclear how olfactory 
receptors (ORs) recognise volatile molecules [13–15], mak-
ing the design of specific receptors for any given odorant 
difficult [16]. Di Pizio et al. recently reviewed in detail the 
role of ORs in physiological and pathological processes [17].

As easily predictable given the importance of GPCR pro-
teins, in recent years many biochemistry and bioinformat-
ics approaches have been developed to study drug-recep-
tor binding [7, 18, 19], and some of them have been even 
applied for the prediction of their corresponding binding 
affinity [20, 21]. As for other protein-ligand prediction meth-
ods, most of them are based on machine learning methods 
such as SVM (Support Vector Machine) [22–24] and Neural 
Network [25, 26], but unfortunately only a limited amount 
of structural data are available for training these models.

Indeed, since GPCRs are integral membrane proteins con-
taining seven transmembranes (TM) �-helices and are char-
acterized by flexible and dynamic structures, it is very dif-
ficult to obtain experimental structures based on biochemical 
and crystallographic experiments [27]. For this reason, com-
putational studies aimed at modeling the three-dimensional 
structure and, eventually, the association between GPCR 
and ligand are fundamental to investigate the GPCR-ligand 
interaction properties [28].

Here we present a new procedure based on a parameter-
free computational approach, able to recognize, completely 
unsupervised, if a region of a GPCR protein can be involved 
in an interaction with a given ligand.

The method is based on the 3D formalism of the 
Zernike polynomials [29, 30] and it can characterize with 
an ordered set of numerical descriptors the morphologi-
cal properties of a molecular surface. In particular, we 
computed the molecular surface [31] of a protein and we 
extract the portion generated by a specific set of residues 
(patch). This patch can be represented as a function in the 
3d space that can be expanded on the basis of the Zernike 
polynomials (see Methods, Eq. 3). The coefficients of such 
expansion are determined by the form of the specific patch 
analyzed since they represent the weights that each poly-
nomial assumes in the expansion. The Zernike descriptors 
are obtained by computing the norms of such coefficients, 
and they are invariant under rotation and translation in 3D 
space. Therefore, each selected molecular shape is sum-
marized with its corresponding Zernike descriptors. We 
calculated the Zernike descriptors for the ligand binding 

site and for the ligand itself, being able to compute their 
compatibility simply by calculating the distance between 
the corresponding descriptors (see Figure 1).

This framework allows us to effectively evaluate the 
compatibility between two molecules because, in prin-
ciple, two perfectly fitting surfaces are identical and 
then they share the same Zernike descriptors. There-
fore, the distance observed between interacting surfaces 
(ligand–binding site) is significantly lower than the one 
observed between non-interacting surfaces (ligand – ran-
domly selected exposed region of the same size of the 
binding site). In the last years, the Zernike formalism has 
been widely applied for the study of molecular comple-
mentarity [32–38].

Thus, we collected a large structural crystallographic 
dataset of GPCR-ligand experimental complexes. Com-
puting the shape complementarity employing Zernike 
descriptors, the difference, in terms of ligand compatibility, 
between binding sites or randomly surface regions is clearly 
recognizable.

We thus applied the proposed strategy to investigate the 
ligand-receptor interaction in the nematode Caenorhabditis 
elegans. This tiny roundworm detects a large class of volatile 
odorants, making the olfaction its primary sense, and repre-
sents a model organism for studying and addressing the biol-
ogy of olfaction. The olfactory system of C. elegans com-
prises approximately 32 chemosensory neurons and more 
than 5% of its overall genes are related to sensing chemical 
cues in the environment [39]. Unlike mammalian olfactory 
neurons, each expressing just one kind of olfactory receptor, 
C. elegans chemosensory neurons express more than one 
receptor per cell and each worm’s chemosensory neuron may 
respond to a large variety of molecules. As a consequence, 
despite the low number of constituting cells, the olfactory 
circuit of C. elegans recognizes hundreds of molecules at a 
wide range of concentrations [13, 39, 40].

Studying the olfactory network in C. elegans may help in 
addressing a challenge more demanding in higher brain sys-
tems: how does the neural coding strategy of odors actually 
work? Despite the compact nervous system, the nematode 
is capable to sense and integrate into reproducible behaviors 
a multitude of olfactory signals. C. elegans provides there-
fore a unique and easy-to-manage platform to study neural 
circuits underlying smell.

However, the large co-expression of GPCRs within olfac-
tory neurons makes genetic screens ineffective in linking 
receptors to odors and only a few GPCRs have been linked 
to the corresponding ligands [41]. Using the method pre-
sented in this paper, we build a comprehensive list of odor-
ant-receptor possible associations in an olfactory neuron of 
C. elegans. However, it is worth noting that this protocol can 
be applied in analogous types of analysis for every kind of 
chemosensory receptors.
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Specifically, we select 21 among GPCRs expressed 
on the main olfactory neuron mediating attraction in C. 
elegans, the AWC neuron [42]. AWC neurons are a pair of 
olfactory neurons critical for chemotaxis to volatile odor-
ants (e.g. attraction to benzaldehyde, butanone, isoamyl-
alcohol, 2,3 pentanedione, and 2,4,5 trimethylthiazole) 
[13]. Their activation induces local search behavior and 
promotes turns. We tested these 21 GPCRs against 18 
putative ligands we identified in a recent paper using a 
sequence-based methodology [43]. In particular, sampling 
the 21 olfactory receptors of C. elegans, we computed 
the shape complementarity between each receptor patch 
and the proposed ligands. Thus we can evaluate these 
results with respect to the typical complementary values 
observed in experimental GPCR-molecule interactions. 
From this perspective, with an in-silico characterization 
we propose a set of GPCR-ligand interactions in C. ele-
gans since our formalism shows that that couple exhibits 
an exceptionally high shape complementarity.

Results and discussions

The identification of the binding region responsible for 
the capture of a chemical compound on a GPCR is a key 
aspect both to understanding the molecular recognition 
mechanism and to open the door to new methodologies 
for drug design and optimization of ligand-GPCR inter-
actions. For example, it is possible to design an ad-hoc 
compound able to compete with the physiological ligand 
or, employing computational mutagenesis protocols, 
amino acid substitutions can be carried out to increase (or 
decrease) protein-ligand binding compatibility.

In this study we developed a new computational proce-
dure, completely based on shape complementarity analy-
sis, able to distinguish the specific interaction occurring 
between a ligand and its GPCR binding region from the 
non-specific ones, involving a set of randomly sampled 
regions on the surface of the protein itself. To this end, 

Fig. 1   Schematic Representation of the various step in our compu-
tational protocol. Starting from experimental structures of GPCR-
ligand complexes, we extracted the molecular surfaces of the protein 
binding regions and the ligands (left panels). These molecular sur-
faces can be expanded on the basis of 3D Zernike polynomials (cen-

tral panel). The norm of the coefficients of this expansion constitute 
a  set of rotationally invariant descriptors, summarizing the shape of 
the extracted surface (right panels). To compute the complementarity 
between two interacting surfaces, we compute a distance between 
their corresponding set of Zernike descriptors
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we selected a large experimental dataset and analyzed the 
geometric properties of the molecular surface regions by 
adopting the Zernike polynomials description, which is 
a powerful tool in capturing the structural determinants 
of both protein-protein and protein-ligand recognition 
[32–36, 38, 44].

After demonstrating that the sensibility of the employed 
representation is good enough to properly work even when 
a predicted protein structure is considered (a significant 
aspect due to the lack of the experimentally resolved 
GPCRs structure), we applied the computational procedure 
to investigate the odor-receptor recognition mechanisms 
of the model organism C. elegans. Here, we propose some 
possible associations between the putative ligands identi-
fied in [43] and a set of 21 GPCRs belonging to AWC 
neuron of C. elegans.

Detection of ligand‑specific binding site regions 
on GPCRs

We collected a dataset of 287 experimentally solved GPCR-
ligand complexes. For each structure, we defined the GPCRs 
binding sites (BS) as the set of residues whose C� are closer 
than 6 Åto any atoms of the ligand.

We first analyzed the frequencies of amino acids occur-
rences in the binding regions, as shown in the barplot in 
Fig. 2A. Comparing our results with the corresponding ones 
regarding the binding sites of a systematic dataset of protein-
ligand complexes (about 4000), some remarkable differences 
turn out [45]. Some non-polar residues, such as Ala and Val, 
increase largely their frequencies, while charged residues 
(Arg, Lys, Glu, Asp) are very low represented in GPCRs 
binding sites. Moreover, it can be noted that interactions 
mediated by Tyr and Trp aromatic residues are less common 

Fig. 2   Analysis of the interaction between ligands and GPCRs bind-
ing sites: application of the Zernike formalism. A The amino acid 
distribution regarding the amino acids involved in binding. B ROC 
curves obtained using the Zernike Descriptors. The green line (AUC 
= 0.77) regards all the dataset, the red line (AUC = 0.60) consider 
only the interaction between GPCR protein and peptide ligand, while 
the blue line is related to the ligands with a molecular weight lower 
than 500 Da (AUC = 0.81). The molecular images represent an exam-
ple of GPCR-small molecule and GPCR-peptide recognition, respec-

tively on the left and the right. C The same as in A, but the results 
are grouped according to the membership of each GPCR-ligand com-
plex to one of the quartiles of Zernike accuracy (Cyan = 1st quar-
tile means high complementarity while Brown = 4st quartile means 
low complementarity.) D The number of Binding site residues as a 
function of the molecular weight of the ligand. The points are colored 
according to the membership to one of the quartiles of Zernike accu-
racy (Cyan = 1st quartile means high complementarity while Brown 
= 4th quartile means low complementarity.)
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than in the general case: on the contrary, some polar residues 
(Thr, Ser) increase their occurrences. Taken together, these 
results seem to give insights into the peculiar nature of the 
GPCRs binding sites, often located in a very internal area 
with limited solvent exposure.

We defined on each GPCR a set of randomly selected 
surface regions (Binding Site Decoy, BSD), in such a way 
that these are as comparable as possible with actual BS (See 
Methods Section). Thus, we calculated the Zernike descrip-
tors of both the BS and the BSD, and the ligand as well. We, 
therefore, summarized in an ordered vector of numerical 
values the geometric properties of the protein patches (BS 
and BSD) and the ligand. Since the shape of two perfectly 
fitting surfaces is the same, we quantified the complemen-
tarities between protein and ligand computing the distance 
between the corresponding Zernike descriptors, where lower 
is the distance higher is the complementarity (See Methods 
section).

This analysis aims to verify if the Zernike description 
can distinguish, in terms of shape complementarity, specific 
interactions (ligand-binding site) from non-specific ones 
(ligand-decoys), analyzing in this way both the performance 
of the designed method and the role of shape complemen-
tarity in receptor-ligand recognition. The main hypothesis 
of this study is that the binding between ligand and receptor 
is mainly mediated by the geometric complementarity of 
the two molecules. In this scenario, since the actual binding 
sites should achieve a higher shape complementarity with 
the ligand than other surface regions, the distance between 
the descriptors of the ligand and the binding site should be 
lower than the ones involving the decoys.

Collecting the results regarding all the complexes in the 
dataset, the distribution of the specific interaction Z-score 
is characterized by values significantly lower than 0, mean-
ing that the formalism on average capture the differences in 
shape complementarity between specific and non-specific 
interactions. In particular, the specific interaction Z-scores 
are characterized by a mean of -1.07 and a standard devia-
tion of 1.18.

In the light of these results, we performed a ROC analy-
sis to quantify the protocol binding site prediction power 
(Fig. 2B): labeling as positive the actual BS and as negatives 
the BSD, and using the Zernike distances with the cognate 
ligands as discriminant, we obtained an area under the curve 
(AUC) of 0.77, meaning that we satisfactorily spot the cor-
rect protein region-ligand associations.

Interestingly, our method shows different performances 
depending on the kind of ligand bound by the GPCR. Indeed, 
when only peptidic ligands are considered the performances 
drastically decrease (AUC = 0.60), while when only small 
ligands (molecular weight lower than 500 Da) are examined, 
the computational classification protocol works even bet-
ter than in general case (AUC = 0.81). Since peptides are 

usually characterized by a high molecular weight in respect 
to non-peptidic ligands, a possible interpretation can be that 
ligand-pocket shape complementarity is sufficient for the 
identification of pockets suitable for the recruitment of small 
compounds, while for the recognition of heavier ligands it is 
also necessary a good chemical-physical interaction [46, 47]. 
Indeed, as shown in the molecular images in Fig. 2B, the shape 
complementarity can be caught by Zernike description very 
effectively when a small molecule is considered, since a small 
pocket is perfectly built around the ligand. When the molecule 
recognized by a GPCR is characterized by a high molecular 
weight ( as the peptides usually are), the binding site that rec-
ognizes it is connected to the outside solvent. Likewise, a large 
portion of the ligand molecular surface is not optimized to bind 
the protein binding site since it is not in direct contact with the 
protein. Therefore, when such molecule is expanded on the 
Zernike basis, the descriptors will represent also the part of 
the surface that is not complementary to the protein binding 
site, resulting inevitably in a decrease of protein-ligand shape 
complementarity.

To verify if certain residues can mediate preferentially 
shape complementarity with ligands, we thus grouped GPCR-
ligand complexes into 4 categories depending on the accuracy 
the method achieves in detecting the actual binding site. In par-
ticular, each GPCR was assigned in the corresponding quartile 
of the Z-scores distribution, so as the 1st quartile contains the 
complexes best classified while the 4th one incorporates the 
GPCR-ligand complexes with the worst scores.

In Fig. 2.C we reported the frequencies of amino acids 
in the binding site separated according to the 4 quartiles. 
Interestingly, in the GPCRs binding sites characterized by a 
high shape complementarity are over-expressed some amino 
acids, for instance Valine (Val) and Serine (Ser), suggesting 
that such small and flexible residues can effectively adapt 
themselves to accommodate the ligand.

Moreover, in Fig. 2.D, we showed the number of residues 
involved in binding sites as a function of the ligand molecu-
lar weight. As expected, a linear correlation between two 
quantities exists (Pearson correlation coefficient of 0.32, p 
value < 10

−5 ). The points in this plot are colored in accord-
ing to the quartile membership of each molecular complex: 
even if lighter ligands are slightly better predicted(see Fig-
ure 2.B), there are no significant separations between these 
groups and therefore we can conclude that the description 
based on Zernike moments, in this range, is not biased by the 
binding site size (note that in this analysis we not consider 
peptide ligands).

Evaluation of ligand flexibility in shape 
complementarity with GPCRs

The compatibility between a protein binding site and a 
ligand is dependent on the conformation adopted by the 
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ligand. Bound conformations are usually characterized by 
a shape complementarity higher than the one observed 
when unbound states (APO conformation) are investi-
gated. Thus, in this section, we investigated how ligand 
flexibility impacts the compatibility with the GPCR bind-
ing site. In particular, we selected a subset of ligands and 
we performed a molecular dynamics analysis to establish 
how their flexibility impacts the compatibility with the 
protein binding site. We summarized the results of this 
analysis in Fig. 3.

Looking at the distribution of the molecular weights 
of the ligands in our dataset, we selected one ligand 
from each decile. Therefore, we constituted a subset of 
10 ligands stratified in terms of molecular weight (see 
Fig. 3A). To explore the conformational space of each 
ligand, we extracted 100 different ligand conformations 
sampling uniformly each ns a 100-ns long molecular 
dynamics simulation. Finally, we summarized the shape 
features of each obtained conformation by computing its 
Zernike descriptors. For each simulation, we computed 

Fig. 3   Evaluation of shape complementarity between different ligand 
conformations and cognate GPCRs. A Density distribution of the 
molecular weights of the ligand in our dataset. The area correspond-
ing to each decile of the distribution is colored with a different color. 
We selected one small ì-molecule from each decile to study their flex-
ibility with molecular dynamics simulation. In the colored boxes we 
report the molecular representation of three selected molecules, i.e. 
RET (PDB code: 3pxo), J9P (PDB code: 6m9t), ERM (PDB code 
:4ib4). B For each ligand selected, we report in blue the Zernike 
descriptors distances between the experimental ligand conforma-

tions and all the molecular dynamics frames, and in red the distances 
between all the explored frames in the simulation. C The Z-score 
computed for each frame of each molecular dynamics as a function of 
the distance between each frame with the corresponding ligand bound 
conformation. D The Area Under ROC curve we obtained as a func-
tion of the frames considered. In the blue curve, we consider ligand 
conformations progressively less similar to the bound one. In the red 
curve, we consider ligand conformations progressively more similar 
to the bound one. The performance we obtained is better when ligand 
structures similar to the bound state are considered
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the Zernike descriptors distances between the experimen-
tal ligand conformations and all the molecular dynamics 
frames (Fig. 3B blue boxplots). Moreover, we computed 
the distances between all the explored frames in the simu-
lation (Fig. 3B red boxplots). Therefore, the red distribu-
tions represent the level of variability of each structure. 
The blue distribution, the distances between all the pos-
sible conformations with the experimental one, is typically 
higher than the red one. This is because the bound state 
represents a small region in the configurations space, often 
not located in a very explored area. This notwithstanding, 
the overlapping between the 2 distributions means that the 
molecular dynamics of the ligand explore some conforma-
tions similar to the bound state.

We studied as the difference between the unbound states 
and the bound one, in terms of Zernike descriptors, is cor-
related with the pocket-ligand specificity (Fig. 3C). In par-
ticular, for each frame of the simulations, we calculated the 
complementarity between the particular ligand conformation 
and the experimental binding pocket or the decoys. Thus, we 
normalized with the Z-score as explained in the manuscript, 
so as the Z-score of the ligand-binding pocket association 
is a measure of the sensibility of our approach (the more 
negative the Z-score is, the more correct is the association 
between ligand structure and the pocket). As evident, exist a 
correlation between the difference with the bound state and 
the capability of recognizing the binding pocket (Pearson 
correlation coefficient = 0.45). It is interesting to note that 
the points out of the linear trend are mainly belonging to the 
dynamics of K86(5xpr), a ligand that we can not correctly 
assign to its pocket even using the experimental conforma-
tion (its experimental Z-score is 1.55).

Finally, we calculated the area under the ROC curve 
obtained when molecular dynamics frames are considered 
(Fig. 3D). Ordering the frames according to their similar-
ity with the experimental ligand structure, we report in the 
figure the mean AUC we obtained considering frames from 
most to least similar (blue curve) or from least to most similar 
(red curve). The orange dashed line represents the AUC we 
obtained with experimental conformation, for this specific sub-
set of GPCR-ligand interactions. It has to be noted that when 
we consider the structure most similar to the experimental one, 
the mean performance we get (AUC = 0.75) is very similar 
to the experimental case (0.76), while the mean performance 
obtained when the ligand structure is least similar to the bound 
state is significantly lower (0.67). Including a number pro-
gressively higher of structures, by construction, the 2 perfor-
mances tend to become more and more similar until the perfect 
identity of the last point (when we consider all the structures 
of the simulations in both cases). Intuitively, as long as the 
unbound structure is similar to the bound one, we obtain per-
formances very similar to those obtained in such case; indeed, 

the conformations explored in dynamics are close enough to 
the bound state to make possible a satisfying performance.

The application of Zernike formalism to GPCRs 
models

In the previous section, we demonstrated that our approach 
based on Zernike formalism obtains very good results in bind-
ing site identification when applied to experimental GPCR-
ligand structures. Unfortunately, the structural details of a very 
large fraction of GPCRs are still lacking [48, 49], also because 
of the inherent difficulties of working with membrane proteins.

Therefore, to extend the applicability of this formalism 
to the whole GPCR family, we need to establish if the shape 
representation employing Zernike descriptors works properly 
even when we deal with predictions of GPCR structures pro-
vided that, obviously, the results of this study will depend on 
the quality of the predicted structures.

In light of these considerations, we tested our protocol 
selecting a subset of the structural dataset and investigating 
the similarities between predicted and experimentally solved 
structures. In particular, choosing 14 structures (approximately 
5% of the entire dataset) belonging to different classes of 
GPCRs (according to GPCR-EXP database [50]), we extracted 
the protein amino acid sequence and we modeled the structure 
using the I-Tasser web-server [51], excluding from the possible 
template for homology modeling known structures with too 
high sequence similarity (all possible templates with sequence 
identity higher than 25% have been excluded).

We thus compare the native experimental structures and 
the predicted ones. For each GPCR, we defined for both the 
experimental and predicted structures a set of surface regions, 
basically centering on each residue a spherical patch with a 
radius of 9 Å. We computed the Zernike descriptors of all 
these patches. It is hence possible to define on one hand the 
specific similarities, the distances between the corresponding 
patches on the experimental and modeled structure (those cen-
tered on the same residues), and on the other hand the non-
specific similarities, the distances between all the couples of 
non-corresponding patches (centered on different residues), 
as illustrated in Fig. 4.A. If the modeling works properly, the 
mean of the specific similarities has to be lower than the mean 
of the non-specific similarities.

Therefore, for each protein sampled with i = 1,…,N 
patches, it holds

(1)Ss =
1

N

N
∑

i=1

Ss,i =
1

N

N
∑

i=1

dist(Ei,Mi)

(2)Sns =
2

N(N − 1)

N
∑

i=1

N
∑

j>1

Ss,ij =

N
∑

i=1

N
∑

j>1

dist(Ei,Mj)
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where Ei and Mi are the Zernike descriptors of the i-th patch 
relative to the Experimental or Modeled structures, respec-
tively. Ss and Sns thus represent the specific and non-specific 
similarity relative to the examined protein. We therefore 
defined the Zernike Sensitivity as SZ = Sns − Ss , meaning 
that when SZ > 0 our representation preferentially associate 
corresponding regions.

In Fig. 4.B, we reported for each protein the Zernike Sen-
sitivity as a function of the Root Mean Square Deviation 
(RMSD) between the modeled and the experimental struc-
ture (both the superposition and the calculation was based on 
C� atoms). When the model has a good quality (low RMSD) 
the Zernike protocol performs well in recognizing the same 

region in the 2 structures (high Zernike sensitivity) (Pearson 
Correlation Coefficient R = -0.65, p-value = 0.01).

Moreover, beyond the global quality of a model and the 
corresponding Zernike accuracy, it is interesting to study 
even the local goodness of the predicted structure. Indeed, 
the I-Tasser web server returns an estimation of the exact-
ness of the single residue position prediction (L-score [52]).

Calculating the mean L-score of each region previously 
defined we basically defined the confidence of this region 
prediction. For each experimental-modeled pair of struc-
tures, we normalized the distribution of specific similarities 
and non-specific similarities with the Z-score, similarly to 
what was done above. In this way, when a region exhibits a 

Fig. 4   Comparison between experimental and predicted GPCR struc-
tures. A Molecular representation of an experimental and predicted 
structure of a GPCR (pdb:41ar). The similarity between the red 
regions in these 2 proteins, centered on the same residues on both 
structures, constitutes the specific similarities ( see Eq. 1), while the 
comparisons between unrelated regions, depicted in blue and red 
in this representation, constitute the non specific similarities ( see 
Eq. 2). B The Sensitivity of the Zernike method, defined as Sns − S

s
 , 

as a function of the RMSD between experimental and predicted 
structures. C Boxplot representing the Mean L-score of the residues 
constituting a pocket as a function of the difference between specific 
and non-specific similarities calculated and normalized on a single 
pocket. On the top are reported the percentage of pockets in each 
interval: it results than over 70% has a Z-score lower than 0, high-
lighting a specific similarity statistically better than non-specific ones
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low similarity Z-score it means that the specific similarity 
is better than the typical non-specific one.

In conclusion, we compared the similarity Z-scores with 
the mean L-score of the region and we reported the results 
in the boxplot shown in Fig.4.C: as expected, when the local 
predicted quality of the model is good (low L-score) even 
the Zernike formalism can recognize better the similarity 
between predicted and experimental structure.

In this section, we demonstrated that both from the 
global or local point of view, as long as the protein mod-
eling reaches good results the Zernike description grasp the 
similarity of the regions and can be therefore applied, with 
good approximation, on predicted structures.

Olfactory receptors: the case of Caenorhabditis 
elegans

In this section we focused on the olfactory receptors of the 
model organism C. elegans [42].

In a recent work [43], we have designed a new sequence-
based strategy to determine the association between each 
OR and a set of new possible volatile compounds, based on 
the hypothesis that similar compounds bind similar proteins 
[54]. In that work, we produced a list of possible ligands for 
C. elegans GPCRs, reported in Table 1, where compounds 
have been considered if they have been found experimentally 
in complex with a GPCR at least once.

To structurally predict possible associations between 
ligands and receptors, in this section we assessed the shape 
complementarity observed between each protein and each 
ligand.

Since the structural details of these proteins are still not 
available, we modeled them using GPCR I-Tasser web-
server. In the previous section, we have shown that when 
the model is good enough our approach can accurately 
summarize local shape information. Here, since we can not 
make the comparison with the experimental structures, we 
collected for each model the cognate C-score, a confidence 
score for estimating the quality of the predicted model, as 
returned by the web-server. As stated here [55], since the 
C-score highly correlates with the RMSD, when it is higher 
than − 1.5 the model can be considered satisfactory. In pan-
els A, B,C of Fig. 5, the GPCRs related to models with a 
C-score higher than − 1.5 are highlighted in blue print while 
those with a C-score lower than − 1.5 are highlighted in red 
print.

Thus, we extracted from each GPCR a set of possible 
ligand binding sites, simply centering on a residue and 
selecting all the residues closer than 9 Åto it. Selecting 
the surface points generated by these residues, we defined 
the patches and computed the Zernike descriptors of each 
of them. Moreover, we described with the corresponding 
Zernike descriptors also all the 18 chosen ligands.

We then computed the complementarities between 
ligands and GPCRs regions, labeling each ligand-GPCR pair 
with the higher shape (lower distance) compatibility between 
the compound and one of the protein pockets (Fig. 5A). At 
the same time, we reported in Fig. 5B the local mean L-score 
of the selected protein pockets, characterized by the best 
complementarity value of the ligand-GPCR pair.

We established an association between a ligand and a 
GPCR if the Zernike distance is lower than 0.09, the upper 
bound of the 5% lower interval of the distribution of dis-
tances between random surface regions and ligands in the 
structural dataset. This means that an association is formed 
when there is a probability lower than 5% that the observed 
shape complementarity belongs to the distributions of 
“non-associations”.

Moreover, to further control the goodness of the ligand-
protein pairing, we required also that the selected binding 
region exhibits a good mean L-score, belonging to the first 
quartile of L-scores considering all the protein regions 
defined in our modeled GPCRs.

The proposed interactions are depicted in Fig. 5C, where 
a colored spot is placed when a ligand-protein association is 
hypothesized. It is interesting to note that 2 ligands, AZ8838 
(8TZ) and Adenosine (ADN), show a high number of pos-
sible associations: this behavior can be due to the small 

Table 1   The putative GPCRs ligands selected in this analysis

The first column reports the PDB code of the experimental structure 
where each ligand has been found in interaction with a GPCR, and 
from which is taken its 3D structure

PDB entry Ligand Pubchem CID [53] X-ray resol [Å]

5U09 Taranabant 11226090 2.6
4N6H Naltrindole 5497186 1.8
5NDD AZ8838 126961334 2.8
5ZBH BMS-193885 9960164 3
4IB4 Ergotamine 8223 2.7
5G53 N-Ethyl-5’-Car-

boxamido 
Adenosine

8804901 3.4

5L7D Cholesterol 5997 3.2
4DJH JDTic 9956146 2.9
5TGZ AM6538 46912833 2.8
1U19 Retinal 638015 2.2
2YDO Adenosine 60961 3.0
4Z34 ONO9780307 252166790 3.0
4BVN Cyanopindolol 46937143 2.1
4JSP ATPgammaS 44123300 3.3
3EML ZM241385 176407 2.6
3UON Quinuclidinyl 

benzilate
688566 3.0

2RH1 (S)-Carazolol 13023332 2.4
4IAQ Dihydroergotamine 10531 2.8
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size of these compounds (molecular weight of 219 and 254 
Da respectively), that make them compatible, in terms of 
shape complementarity, with a larger set of protein binding 
pockets.

Conclusions

Given their centrality in several biological processes and 
their importance as a drug target, GPCR proteins have been 
largely studied to understand the mechanism of interaction 
with ligands. Here, using a method based on Zernike poly-
nomials on a large dataset of ligand-GPCR X-ray structures, 
we quantitatively demonstrated that the ligand recognition 
is mediated by a high shape complementarity with the pro-
tein binding sites. We thus assessed the impact of ligand 
flexibility, studied with molecular dynamics simulation, on 
the sensibility of our method: we showed that as long as the 
conformational exploration can reach molecular conforma-
tion similar to the experimental ones, our formalism reaches 
performances in line with those obtained using experimental 
data. Moreover, the reliability of the Zernike formalism is 
confirmed when predicted protein structures are used, and 
this aspect is particularly relevant considering the inherent 
difficulty in obtaining experimental GPCR structures.

Based on these results, we designed a new fully com-
putational procedure for the GPCR-ligand association and 
binding sites prediction. Indeed, working on some proteins 

of the olfactory network in C.elegans and on a set of pos-
sible ligands, we can hypothesize an association if the com-
plementarity between a small molecule and a confidently 
predicted protein pocket is exceptionally high.

Undoubtedly, other elements characterizing ligand-
pocket compatibility have to be included in the evaluation 
to improve the method performance. The expansion in the 
Zernike polynomials can be used also in such a direction, 
since any Physico-chemical property, such as electrostatic 
potential or hydrophobicity profile computed on the molecu-
lar surface, can be represented with Zernike descriptors [33, 
38, 56].

From this point of view, our results can represent a 
promising step toward the elusive and important goal of 
predicting GPCRs specificity. The development of reli-
able and accurate computational methods for GPCR-ligand 
association can have numerous applications, from driving 
the design of a drug able to compete for binding in a given 
pocket to the evaluation of which amino acid substitutions 
can disrupt a molecular binding.

Materials and methods

Datasets

For the study of shape complementarity between small 
molecule and the corresponding binding region of the 

Fig. 5   Summary of the associations between ligands and C. elegans 
GPCRs. A The distances, computed in terms of their Zernike descrip-
tors, between each putative ligand and the most suitable pocket on 
each protein structure. It is important to note that when the distance 
is low (yellow pixel) the complementarity is high. B For each GPCR, 
the mean L-score of the residues constituting the pocket character-
ized by the best complementarity with each ligand is reported. C The 

hypothesized associations between protein and ligands are colored. 
On x-axis of A), B and, C the GPCRs highlighted in blue print refers 
to models with a C-score higher than −  1.5, those highlighted in 
red print to models with a C-score lower than − 1.5. In addition we 
reported the molecular representation of the two ligands characterized 
by the highest number of possible GPCR associations and four GPCR 
proteins
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GPCR, we used GPCR-EXP database [50], selecting only 
GPCR-ligand experimentally solved complexes. Among 
all the complexes available, we have considered the com-
plexes experimentally solved in X-ray crystallography. We 
have obtained a total of 287 structures and we called it 
“GPCR-Lig dataset”.

In order to study the molecular mechanisms of C. elegans 
odor recognition via receptor-small molecule interaction, we 
have selected a set of 21 GPCR genes, 20 of them encoding 
GPCRs expressed on AWC neurons: sra-13, srab-16, srd-
5, srd-17, sre-4, sri-14, srj-21, srj-22, srsx-3, srsx-5, srsx-
37, srt-7, srt-28, srt-29, srt-45, srt-47, srx-1, str-2, str-130, 
str-199 [57]. For this study we include also odr-10, a gene 
expressed on AWA neuron [43] because, together with sri-
14, odr-10 also senses diacetyl (low concentrations versus 
high concentrations) and it is one of the few GPCRs linked 
to a specific target molecule [58, 59].

Unfortunately, since any experimental information about 
their structure is available, a bioinformatic prediction must 
be performed. We use the GPCR-I-TASSER [51] server pro-
tocol to do it and it returns the ten closest X-ray resolved 
structures to the predicted one. Almost every X-ray resolved 
structure has at least a “specific ligand” in its template, 
where by “specific ligand” we assume that this ligand has a 
pharmaco-biological significance (for example an inhibitor 
or an activator). We exclude templates with ligands with 
unclear significance or useful to our analysis (e.g. cofac-
tors, metals, solvents etc). With these criteria, a collection of 
more than 20 resolved protein templates is thus retrived. We 
clear each PDB file in order to have a clean “protein-ligand 
only” file, ready to be submitted to our algorithms.

Binding site definition

Given each GPCR-ligand complex the binding region was 
defined by calculating the distance between all C-alpha 
atoms of the protein and all the atoms of the small molecule. 
We consider a residue belonging to the real Binding Site 
(called BS) if it has at least one C-alpha atom with a distance 
less than 6 A with at least one ligand atom.

For the purpose of comparison, we have adopted the fol-
lowing procedure for the definition of Binsing Site Decoy 
(called BSD):

•	 The aim is to define a set of randomly selected BSD on 
the receptor surface. To this end, we define the BSD in 
such a way that the number of residue that make up the 
BSD to be on average as close as possible to the number 
of BS residue.

•	 We center a “probe sphere” on each C-alpha of any 
receptor and we define for each residue a BSD which is 
dependent on the radius R of the sphere.

•	 For each residue Ri, the BSD is composed of the resi-
dues that have a distance between their C-alpha and the 
C-alpha of the residue Ri less than R.

•	 The purpose of this procedure is to vary R in order 
to find the optimal value in terms of patch size. As 
R increases, the number of residues increases and the 
patch size tends to increase. The procedure starts with a 
radius of 6 A and increasing its dimension by 1 A each 
iteration step, until a maximum value of 20 A.

•	 Given a GPCR, we define the BSDs considering the 
radius R which provides (on average) the number of 
residues belonging to the BSDs closest to the number 
of residues belonging to the BS. Therefore, each GPCR 
has the specific patch decoy size according to the size 
of the real binding region.

Surface patch analysis with Zernike descriptors

For each receptor and its cognate ligand, we calculate 
separately the molecular surface using DMS software 
[31]. We extracted the portion of protein surface regarding 
selected residues. Then, with a voxelization procedure, we 
represent the protein patch and the ligand as 3D functions.

These 3D functions can be expanded in the basis of 
the 3D Zernike Polynomials [30, 36, 44]: the norm of the 
expansion coefficients constitutes a ordered set of descrip-
tors that compactly characterize the geometrical shape of 
the molecular surface.

Indeed, a function f (r, �,�) can be represented as:

where Zm
nl

 are the 3D Zernike polynomials, while the coef-
ficients Cnlm are defined as Zernike moments.

Zernike polynomials can be written as:

where the Y functions are complex spherical harmonics. 
These functions depend on both the angular variable � and � , 
while the dependence on the radius variable, r, is enclosed in 
the function R, which is given by the following expression:

where N is a normalization factor.
Therefore, the 3D Zernike moments of molecular sur-

face (described by a function f (r, �,�) ) are defined as the 
coefficients of the expansion defined in eq 3:

(3)f (r, �,�) =

∞
∑

n=0

n
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l
∑
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where Z is the polynomial complex conjugate.
Their rotation invariant norms constitute the Zernike 

descriptors:

The detail of the Zernike formalism can be modulated modi-
fying the order of the expansion n. In our implementation, 
we set the maximum order of expansion was to 10, giving a 
total of 36 invariants for each surface studied.

Represented as an ordered set of 36 numbers, the shape 
complementarity between 2 surfaces can be easily evaluated 
[32, 33, 38]. Since the shape of 2 perfectly fitting surface is 
exactly the same, they share very similar descriptors. Indeed, 
using the manhattan distance ( D(�,�) =

∑

i ∣ Xi − Yi ∣ ), 
when 2 surfaces have a low distance between them, they 
are characterized by a similar shape and therefore they are 
suitable for binding.

For each GPCR-ligand complex, we normalized the com-
plementarity with the Z-score, as following:

where the subscript i refers to the i-th patch considered, xi 
is the Manhattan distance between its Zernike descriptors 
and the ones of the ligand, � and � represent the mean and 
the standard deviation of all the patch-ligand distances, 
respectively.

Molecular dynamics simulations

All simulations were performed using Gromacs 2020.6 [60]. 
Parameters of the systems were built using Swiss-Param web 
server [61]. Molecules was placed in a cubic simulative box, 
with periodic boundary conditions, filled with TIP3P water 
molecules [62]. All the molecules were simulated for 100 
ns, using an integration step of 1 fs and saving molecules 
conformations each ns.
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