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ABSTRACT
The complete chloroplast and mitochondrial genome sequences of Scopelophila cataractae (Pottiaceae,
Bryophyta) are determined. The chloroplast genome is 122,290bp with 118 genes and the mitochon-
drial genome is 105,607 bp with 67 genes, both genomes are circular. This study showed the S. cata-
ractae plastome contains the smallest genome size, and a functional trnPGGG gene, relative to other
pottiaceous species. Phylogenetic inferences support the sister relationship of S. cataractae to all other
pottiaceous accessions.
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Pottiaceae is one of the richest families of Bryophyta, com-
prising more than 1,400 species in approximately 80 genera
(Zander 1993). Scopelophila cataractae (Mitt.) Broth. is well
known as a ‘copper moss’ that can survive in copper-rich
environments, such as around temples and shrines with cop-
per roofs, bronze artifacts, abandoned mines, and smelters
(Satake et al. 1988; Satake 2014). The species accumulate
copper in the cell wall pectin (Konno et al. 2010), although
the molecular mechanisms of accumulation have not been
revealed. In vascular plants, metal tolerance and homeostasis
are maintained by chelating, effluxing, or sequestering mole-
cules (Clemens 2001; Hall 2002). In addition to the unique
ecological features of S. cataractae, molecular phylogenetic
studies have revealed that it was included in the basalmost
clade within the Pottiaceae (Werner et al. 2004; Cox et al.
2010; Inoue and Tsubota 2016), corresponding to the sub-
family Merceyoideae. The genomic resources of organelle
have been provided in several genera of the Pottiaceae
(Chionoloma: Alonso et al. 2016, as Oxystegus;
Pseudocrossidium: Cevallos et al. 2019, 2020; Syntrichia: Oliver
et al. 2010; Yoon et al. 2016; Kim et al. 2019). The genomic
data are however still limited in the family and lack in the
major lineages. Here we present the chloroplast (cp) and
mitochondrial (mt) genomes of S. cataractae as the resources
for a better understanding of genomic structure and evolu-
tions within Pottiaceae. The phylogenetic relationships within
the family were also inferred based on the protein-coding
sequences of cp and mt genomes.

Samples of S. cataractae were collected from Tochigi
Prefecture, Japan (36�4601600N 139�4204100E). A specimen was
deposited at the Herbarium of Hiroshima University (HIRO;
Director: Tomio Yamaguchi, yamatom@hiroshima-u.ac.jp) under
the voucher number Y. Inoue 4216. The total DNA was
extracted from the axenic in vitro culture of protonemal fila-
ments derived from a single spore (Takio 1995, modified), with
NucleoSpin Plant II (Macherey–Nagel, Duren) following the
manufacturer’s protocols, and sequenced using the Illumina
MiSeq platform. A total of approximately 693K raw reads was
analyzed, comprising an average fragment length of 150bp.
Low-quality reads (<Q30), abnormal short reads (<20bp), and
adapter sequences were trimmed using fastp 0.20.0 (Chen
et al. 2018). After quality control, the GetOrganelle 1.7.1 (Jin
et al. 2020) was used to assemble the filtered reads with the
seed reads comprising published organelle genome sequences
of mosses, and the assembled sequences were polished by
Pilon 1.23 (Walker et al. 2014). The polished sequences were
annotated using GeSeq 2.03 (Tillich et al. 2017) and manually
corrected using the SnapGene 5.2.3 (from GSL Biotech; snap-
gene.com). Since the chloroplast sequence still contained one
gap, the specific primers were designed to bridge the gap with
PCR amplification and conventional Sanger sequencing by ABI
3730xl. The final annotated cp and mt sequences were submit-
ted to the DNA Data Bank of Japan (DDBJ) and assigned acces-
sion numbers LC634773 for cp and LC634774 for mt.

Phylogenetic analyses were conducted with protein-coding
sequences of chloroplast (79 genes) and mitochondrial (38
genes) genomes, respectively. Each data matrix consists of
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representative species selected from major lineages of mosses
based on Liu et al. (2019), including all pottiaceous accessions.
Sequences were aligned using MAFFT 7.475 (Katoh and
Standley 2013), with some manual adjustments by the
sequence editor of MEGA 7.0.26 (Kumar et al. 2016). Start and
stop codons were removed, and gaps were treated as missing
data. Kakusan4 (4.0.2016.11.07; Tanabe 2011) was used to
determine the appropriate substitution model and partitioning
scheme for our data based on the corrected Akaike information
criterion (AICc: Sugiura 1978). RAxML 8.2.9 (Stamatakis 2014)
was used for maximum likelihood inference using GTRþC
model, with a rapid bootstrap analysis of 1,000 replicates.

Scopelophila cataractae had a 122,290bp circular chloro-
plast genome, which is the smallest among the published cp
genomes of the Pottiaceae. The cp genome had a GC content
of 28.05% and a typical quadripartite structure, consisting of a
large single-copy (LSC) region of 83,728bp, a small single-copy
(SSC) region of 18,620bp, and a pair of inverted repeats (IRs)
of 9,971bp. It contained 118 genes, including 82 protein-cod-
ing genes, 32 tRNA genes, and four rRNA genes. Among the
published cp genomes of the Pottiaceae, trnPGGG gene is
absent or pseudogenized, while in the S. cataractae, this gene
appears to be functional according to the tRNA structure pre-
diction by tRNAscan-SE 2.0 (Lowe and Chan 2016). The mito-
chondrial genome was circular, with 105,607bp, and a GC
content of 39.11%. It contained 67 genes, including 40 pro-
tein-coding genes, 24 tRNAs, and three rRNAs.

Both cp and mt trees strongly supported the sister rela-
tionship of S. cataractae to all other pottiaceous accessions
(Figure 1). This result is consistent with previous phylogenies

based on the selected cp genes (Werner et al. 2004; Cox
et al. 2010; Inoue and Tsubota 2016).
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Figure 1. Maximum-likelihood trees of mosses inferred from the 79 chloroplast (A) and 38 mitochondrial (B) protein-coding sequences. Bootstrap values of 1,000
replicates by RAxML are shown on the branches. The root is arbitrarily placed on the branch leading to the clades that include members of the genera Sphagnum,
and Takakia or Andreaea.
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