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Abstract: Recent studies have shown a growing interest in the complex relationship between the
human gut microbiota, metabolism, and overall health. This review aims to explore the gut microbiota–
host association, focusing on its implications for precision nutrition and personalized medicine. The
objective is to highlight how gut microbiota modulate metabolic and immune functions, contributing
to disease susceptibility and wellbeing. The review synthesizes recent research findings, analyzing
key studies on the influence of gut microbiota on lipid and carbohydrate metabolism, intestinal health,
neurobehavioral regulation, and endocrine signaling. Data were drawn from both experimental and
clinical trials examining microbiota–host interactions relevant to precision nutrition. Our findings
highlight the essential role of gut microbiota-derived metabolites in regulating host metabolism,
including lipid and glucose pathways. These metabolites have been found to influence immune
responses and gut barrier integrity. Additionally, the microbiota impacts broader physiological
processes, including neuroendocrine regulation, which could be crucial for dietary interventions.
Therefore, understanding the molecular mechanisms of dietary–microbiota–host interactions is
pivotal for advancing personalized nutrition strategies. Tailored dietary recommendations based on
individual gut microbiota compositions hold promise for improving health outcomes, potentially
revolutionizing future healthcare approaches across diverse populations.

Keywords: gut microbiota; metabolism; precision nutrition; personalized medicine; microbiota–host
interactions

1. Introduction

In recent years, there has been a growing interest in understanding the complex
relationship between the human gut microbiota, metabolism, and overall health. This
increased attention highlights the scientific community’s growing recognition of the crucial
role that the gut microbiota plays in influencing various aspects of human physiology
and health outcomes. This paradigm shift has been fueled by advances in technology,
particularly in the field of high-throughput sequencing, which have enabled researchers
to delve deeper into the complex ecosystem that exists within the human gut [1]. The
human gut, a dynamic and multifaceted ecosystem, serves as a habitat for trillions of
microorganisms, collectively known as the gut microbiota [2]. This intricate microbial
community, consisting predominantly of bacteria [3], but also encompassing viruses, fungi,
and archaea, establishes a symbiotic relationship with its human host, exerting profound
effects on various aspects of human health and physiology. The gut microbiota, often aptly
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described as the “forgotten organ” [4,5], orchestrates a multitude of essential functions vital
for maintaining homeostasis and overall wellbeing.

At its core, the gut microbiota is intricately involved in nutrient metabolism, serving
as a critical mediator in the digestion, absorption, and utilization of dietary components [6].
Through its diverse enzymatic activities, the microbiota plays a pivotal role in breaking
down complex carbohydrates, proteins, and fats that would otherwise be indigestible by
the human host. Recent studies have implicated the gut microbiota in the regulation of
host metabolism, including energy balance, lipid metabolism, and glucose homeostasis,
highlighting its central role in metabolic health [7,8]. Moreover, certain microbial species
(e.g., Escherica coli, Bifidobacteria, and Lactobacilli) within the gut microbiota possess the
ability to synthesize essential vitamins and other bioactive compounds, further contributing
to the host’s nutritional status [9].

Beyond its role in nutrient metabolism, the gut microbiota exerts profound influences on
host immune function and homeostasis [10,11]. This microbial community plays a pivotal role
in shaping the development and maturation of the host immune system, fostering immune
tolerance, and defending against invading pathogens. Additionally, the gut microbiota con-
tributes to the maintenance of intestinal barrier integrity, thereby preventing the translocation
of harmful microbes and antigens into systemic circulation [12,13].

Moreover, the symbiotic relationship between the gut microbiota and the host en-
compasses broader physiological processes, including neurobehavioral regulation and
endocrine signaling [14,15]. Mounting evidence suggests that the gut microbiota plays a
crucial role in modulating the gut–brain axis, influencing mood, cognition, and behaviour,
through intricate signaling pathways [14,15].

Disruptions in the composition and function of the gut microbiota, termed dysbio-
sis [1], have been linked to a plethora of health conditions [16], spanning metabolic [17],
gastrointestinal [18], and even neurological disorders [19]. Dysbiosis is characterized by
alterations in the relative abundance and diversity of microbial taxa within the gut ecosys-
tem, often accompanied by functional changes that perturb host–microbe interactions. This
association was initially proposed by Metchnikoff in 1907, suggesting that replacing or
reducing “putrefactive” bacteria in the gut with lactic acid bacteria could normalize gut
health and prolong life [20]. Recent studies strongly suggest that dysbiosis contributes to
the development of various disorders, such as irritable bowel syndrome (IBS), intestinal tu-
mors, obesity, and type 1 diabetes (T1D) [21–27]. It has also been found that Firmicutes, one
of the most abundant phyla in the human intestine, exhibit reduced community complexity
in Crohn’s disease [28]. Furthermore, emerging evidence suggests a potential link between
dysbiosis and neurological and psychiatric conditions, including depression, anxiety, and
autism spectrum disorders [29–31].

Understanding the intricate web of interactions between dietary components, lifestyle
factors, and the gut microbiota is not merely an academic pursuit but a critical endeavor
with far-reaching implications for advancing precision nutrition approaches [32,33]. Preci-
sion nutrition is a tailored dietary strategy that considers an individual’s unique genetic,
environmental, and physiological factors to optimize health outcomes and prevent dis-
ease [34]. At the heart of precision nutrition lies the recognition that each individual is
biochemically unique, shaped by genetic predispositions, environmental exposures, and
the dynamic interplay between host physiology and the gut microbiota [35]. Precision
nutrition encompasses a holistic approach that extends beyond macronutrient composition
to consider micronutrient adequacy, dietary fiber intake, phytochemical diversity, and meal
timing—all factors that can profoundly shape the gut microbiota and impact metabolic
health [36,37]. By integrating cutting-edge technologies, such as high-throughput sequenc-
ing [38], metabolomics [39], and microbiome analysis [40], researchers can delineate the
intricate molecular mechanisms underlying dietary–microbiota–host interactions, paving
the way for personalized dietary recommendations tailored to an individual’s unique
microbial profile [41]. Furthermore, precision nutrition holds immense potential for pre-
venting and managing a myriad of chronic diseases, ranging from metabolic disorders,
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like obesity and type 2 diabetes (T2D), to gastrointestinal ailments, such as inflammatory
bowel disease (IBD) and IBS [42,43]. By leveraging insights into the gut microbiota’s role in
disease pathogenesis, clinicians can design personalized dietary interventions that target
specific microbial imbalances or dysbiosis patterns, thereby optimizing therapeutic efficacy
and minimizing adverse effects [44].

This review provides a thorough examination of how the gut microbiota influences
human metabolism, immune function, and disease susceptibility. By analyzing the latest
research, we aim to shed light on the implications of this relationship for precision nu-
trition. Our synthesis of existing evidence aims to advance understanding in this field
and pave the way for targeted therapeutic interventions. This review serves as a catalyst
for further research and underscores the importance of considering the gut microbiota in
healthcare strategies.

2. Methods

A gray literature search was carried out to select the most suitable articles for this
review. We partly followed the approach used in Soldani et al. [45]. To summarize, we
used reference databases, such as PubMed, Scopus, ScienceDirect, and Google Scholar,
using the following keywords: “gut microbiota in human health”, “gut microbiota diet”,
“microbiome diversity”, and “gut microbiota and precision nutrition”. “Saturation” was
used as a stopping criterion: the search was stopped when no new results/relevant concepts
emerged from the search results. The inclusion criteria considered were (i) the relevance
to the topic, i.e, relevant studies of the microbiome in relation with human health and
metabolism in the field of precision nutrition and clinical nutrition and (ii) publication
within the last 20 years (2004–2024).

The research was carried out considering both reviews and original articles. The
keywords used are related to the microbiome. Different types of studies were used, as in
this way, it was possible to obtain a broader overview [45].

3. Measurement of Gut Microbiota

Several methods have been developed to analyze the human gut microbiota, each
offering unique advantages and limitations. The first important distinction is based on
the application of culture-based techniques and/or molecular approaches. Culture and
biochemical typing techniques were the gold standard for bacterial species identification for
many years [16]. For example, Clostridium difficile can be isolated using specific anaerobic
culture conditions with selective media containing fructose and cefoxitin, while Escherichia
coli thrives in aerobic conditions with lactose-based media, like MacConkey agar, allowing
for differential identification based on substrate fermentation [46,47]. Culture-based tech-
niques have been refined to capture a great number of microorganisms, including anaerobic
and aerobic bacteria, that without a host component allows a major reproducibility and a
supervised evaluation of more variables. On the other hand, to reach optimal results in
terms of taxonomic identification and strain isolation and to facilitate the growth of rare
species, several culture conditions are needed: oxygen, pH, temperature, culture medium,
and nutrients represent some of the key factors that potentially impact and affect bacterial
growth. For this reason, microbial cultures are often lower throughput than molecular meth-
ods, as the ultimate culture conditions are not always known for many microorganisms or
can require diverse expertise.

Culture-independent techniques have revolutionized our knowledge of the gut mi-
crobiota by providing a more representative snapshot of this niche [48,49]. Before next-
generation sequencing (NGS) applications, several techniques were commonly used to in-
vestigate the composition of a bacterial community, which are further detailed in Table 1 [16].
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Table 1. Techniques for gut microbiota characterization [16].

Technique Description Applications

Culture techniques
Historical approach isolating and growing bacteria in selective

culture media. Offers a limited view of diversity and
is labor-intensive.

Historical analysis,
basic research

16S rRNA Utilizes conserved the 16S rRNA gene for phylogenetic
identification; commonly used in non-culture techniques.

Microbial diversity,
taxonomic studies

PCR Amplifies DNA segments for analysis but is susceptible to bias;
used alone or with qPCR for quantification.

Genetic analysis,
quantification studies

DGGE and TGGE DNA fingerprinting techniques separating DNA fragments
based on sequence variation; semi-quantitative.

Comparative studies,
community profiling

T-RFLP Fragmentation of 16S rRNA gene amplicons for microbial
diversity assessment; semi-quantitative.

Diversity analysis,
community comparisons

FISH Directly visualizes bacterial cells using fluorescent
probes; semi-quantitative.

Microbial abundance,
spatial distribution

DNA microarrays Utilizes DNA chip technology for phylogenetic
identification; semi-quantitative.

Comparative studies,
large-scale analysis

Sequencing Gold standard for taxonomic identification through 16S rRNA
gene sequencing; expensive but comprehensive.

Taxonomic profiling,
metagenomic analysis

Massively parallel
sequencing

High-throughput sequencing for detecting low-abundance
bacteria; provides quantitative data.

Diversity assessment,
metagenomic studies

Shotgun sequencing and
metagenomics

Analyses genetic and functional diversity of microbiota through
random DNA sequencing; comprehensive but costly.

Functional profiling,
disease association

These techniques rely on small ribosomal RNA subunit (16S rRNA) sequence di-
vergences and can demonstrate the microbial diversity of the gut microbiota, provide
qualitative and quantitative information on bacterial species, and detect changes in the gut
microbiota in relation to diseases. Examples of these techniques include denaturing gradi-
ent gel electrophoresis (DGGE) [50], terminal restriction fragment-length polymorphism
(T-RFLP) [51], fluorescence in situ hybridization (FISH) [52], and DNA microarrays [53].
With the emergence and the development of NGS, two applications overcame the others
namely 16s rRNA sequencing (targeted-based metagenomics) and whole-genome sequenc-
ing (shotgun metagenomics), involving different laboratory organization rather than a
diverse bioinformatic complexity [54]. In Figure 1, we schematically report a standard
experimental flowchart to obtain the final library pool to sequence.

Basically, targeted-based approaches are defined by the amplification and sequencing
of one or more 16s rRNA hypervariable regions, while shotgun sequencing allows for
the sequencing of total DNA [55]. On the other hand, shotgun metagenomics is not
preceded by a specific amplification, but the total extracted DNA is used to prepare a
library to sequence [56–58]. The main features of these two applications are schematically
summarized in Figure 2.

As various pathologies and diseases are subjected to analysis regarding the potential
role of the microbiota in their causation, clinicians and clinical investigators may find them-
selves bewildered by the proliferation of molecular microbiological approaches to study
the microbiota and may struggle to determine the adequacy of a particular methodology to
address a specific research question, disease state, or study population. As such, this sec-
tion presents the techniques currently used to characterize the gut microbiota, suggesting
when these techniques may be most appropriately applied in human studies and critically
evaluating their advantages and limitations.
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Figure 1. Standard experimental flowchart to obtain the final library pool to sequence. The diagram
illustrates the steps involved in both amplicon sequencing and shotgun sequencing. Starting from
study design and sample collection from healthy patients and patients with disease, the process
includes DNA extraction and quality control. Amplicon sequencing involves target amplification,
purification, barcoding, and library pooling, while shotgun sequencing involves total DNA tagmenta-
tion, barcoding, and library pooling. Quality control is a critical step throughout both processes.
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Figure 2. Main features of 16s rRNA amplicon-based and shotgun sequencing approaches. Green
and red colors indicate the characteristic that one of the two methods shows as an advantage. In
yellow are the features that can be potentially investigated: targeted amplification is able to study
other domains (for example mycobiota) if another gene marker is used (ITS region), or a predictive
functional profile may be reached.
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4. Composition and Function of Gut Microbiota
4.1. Dominant Composition and Biogeography of Human Microbiota in the Gastrointestinal Tract

The gut microbiota is characterized by a vast diversity of bacterial species, with four
predominant bacterial phyla (Table 2 [59–62]).

Table 2. Predominant bacterial phyla in the gut microbiota: key descriptions and functions.

Phylum Description Key Functions References

Firmicutes One of the most abundant phyla in the
human intestine, crucial for gut health.

- Carbohydrate digestion
- Production of short-chain fatty acids (SCFAs) [59]

Bacteroidetes Important for immune system
modulation and metabolic processes.

- Degradation of complex polysaccharides
- Production of molecules influencing immune

system and metabolism
[60]

Actinobacteria Includes Bifidobacteria. - Fermentation of complex carbohydrates
- Production of organic acids beneficial for host health [61]

Proteobacteria Contains both pathogenic and
commensal species.

- Vitamin synthesis
- Nutrient absorption [62]

In addition to these predominant phyla, the gut microbiota hosts a wide range of
other bacterial species, each with specific functions contributing to the host’s wellbeing. A
complete description of these species is beyond the scope of this review but can be retrieved
in another study [63].

Recent research indicates that the ratios of these phyla, particularly the Firmicutes/
Bacteroidetes (F/B) ratio, serve as important biomarkers of gut dysbiosis and are fre-
quently cited in the literature as indicators of obesity [64,65]. Studies have shown that
obese individuals typically exhibit a higher F/B ratio compared to their normal-weight
counterparts, suggesting a link between this ratio and metabolic disorders. Conversely,
lower F/B ratios have been associated with leaner phenotypes and may reflect a healthier
gut microbiome [64].

In clinical settings, the F/B ratio has been correlated with various health outcomes,
including inflammation and metabolic syndrome [65]. For instance, increased F/B ratios
are observed in patients with cirrhosis, where they correlate with worse prognosis and
higher mortality rates [66]. These findings highlight the relevance of the F/B ratio not
only as a marker of obesity but also as a potential indicator of overall gut health and
disease susceptibility.

In the small intestine, typically high levels of acids, oxygen, and antimicrobials are
present, along with a short transit time [67]. These properties limit bacterial growth,
so only rapidly proliferating, facultative anaerobic bacteria capable of adhering to the
epithelium/mucosa survive [67].

In contrast to varying microbiota compositions among different gastrointestinal or-
gans, the microbiota within specific mucosal regions remains spatially conserved in terms
of diversity and composition, even during localized inflammation [68,69]. However, differ-
ences emerge between fecal/luminal and mucosal compositions, with Bacteroidetes more
abundant in fecal/luminal samples and Firmicutes, particularly Clostridium cluster XIVa,
enriched in the mucus layer [70]. Recent mouse experiments show that bacterial species
grow and use resources differently in the outer mucus layer versus the intestinal lumen,
highlighting the need for careful sampling methods in microbiota analysis [71]. While
interindividual differences in species disposition prevail over differences within individ-
uals, the concept of a “core microbiota” remains debated [72,73]. Instead, a functional
approach to defining the core microbiota based on microbial gene repertoire is suggested.
Microbiotic arrangements have been also divided into predictive “community types”,
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such as enterotypes, associated with varying backgrounds [74]. However, the existence
and formation of these enterotypes remain controversial, subject to ongoing debate in
the literature.

4.2. Dynamism and Influencing Factors

The human gut microbiota is established in early life but can be subsequently altered
by various factors influencing its development and diversity [75]. Understanding these
dynamics and influencing factors is crucial for comprehending the role of the gut microbiota
in health and disease. The main factors influencing the microbiota are summarized in
Table 3 [76–95].

Table 3. Main factors influencing the dynamics and composition of the gut microbiota.

Factor Description References

Ethnicity Specific members of the gut microbiota as mediators of health and diseases can
vary based on ethnicity [76,77]

Genotype Sex- and age-linked differences have been observed in the gut microbial
composition that appear independent of different ethnicities. [78,79]

Gender
Compared to men, the gut microbiota of premenopausal women exhibited

higher microbial diversity and higher abundances of multiple species known
to have beneficial effects on host metabolism.

[80]

Age Age-related gut microbial characteristics have been detected in taxa members
of the oral bacterial community. [80]

Pregnancy
Changes in vaginal microbiota before pregnancy can impair fertility.

The composition of the maternal gut microbiome contributes to obstetric
outcomes with long-term health sequelae for both mother and child.

[81–83]

Mode of delivery

Vaginally born infants have higher levels of Bacteroides, Prevotella, and
Lactobacillus in their gut microbiota compared to cesarean-born infants.

Cesarean-born infants may still acquire Bacteroides from the maternal gut, not
the vaginal microbiome.

[84]

Feeding

Infants’ intestinal colonization may begin before birth, influenced by
microbiota from amniotic fluid and placenta.

Breastfed infants have a microbiota dominated by Lactobacillus and
Bifidobacterium, supported by breast milk oligosaccharides.

Formula-fed infants have a microbiota with different dominant species,
lacking the same bacterial composition as breastfed infants.

[85,86]

Diet Diet can induce temporary shifts in gut microbiota; however, it is uncertain if
prolonged dietary changes can lead to permanent alterations. [87–89]

Medications and antibiotics

Antibiotics and certain common drugs (e.g., proton-pump inhibitors,
metformin, and laxatives) disrupt gut microbiota by reducing species diversity,
altering metabolism, and promoting antibiotic-resistant organisms, leading to

certain issues, like antibiotic-associated diarrhea and Clostridioides
difficile infections.

[90–92]

Environmental and lifestyle

Both macroenvironmental (e.g., toxic exposure, socioeconomic status) and
microenvironmental factors (e.g., smoking, diet, stress) can disrupt
microbiome composition, promoting inflammation and long-term

disease development.

[93–95]

4.2.1. Impact of Dietary Fibers

The intestinal microbiota plays a fundamental role in the fermentation of dietary
fibers, contributing to the production of SCFAs and other metabolites that influence host
health [96,97]. The large intestine is a continuous and nutrient-rich environment, with
various physiological conditions along its different parts. In the ileum, the mucus layer
is thin, with rapid transit and low microbial diversity and density, while in the distal
tract of the large intestine, the mucus layer is thick, with slow transit and high microbial



Nutrients 2024, 16, 3806 8 of 30

diversity and density [98]. Dietary fibers, such as cellulose, hemicellulose, and pectin
derived from plant cell walls, undergo degradation by the intestinal microbiota, with pri-
mary bacteria initiating the degradation process and secondary bacteria utilizing partially
hydrolyzed products as substrates [98,99]. Primary bacteria, such as Eubacterium, Roseburia,
Ruminococcus, Clostridium, and Bifidobacterium, are the first to colonize and initiate the
degradation of complex fibers. Partially hydrolyzed products from these bacteria are used
as substrates by secondary bacteria, contributing to the production of SCFAs and other
metabolites. Dietary fibers with greater resistance to fermentation are metabolized more
distally in the colon, while those more easily fermentable are used more proximally [100].
The fermentation of fibers by the intestinal microbiota leads to the production of SCFAs,
primarily acetate, propionate, and butyrate, which are absorbed by the host and used
as an energy source [101] CFAs have several beneficial effects on host health. For ex-
ample, butyrate is known for its role in preventing colon cancer and strengthening the
colonic defensive barrier [102]. SCFAs can also modulate inflammatory processes, influ-
ence immune response, and regulate endothelial function [103]. Furthermore, dietary
fibers can modulate the composition of the intestinal microbiota, conferring various health
benefits to the host. Studies on specific dietary fibers, such as arabinoxylan, xyloglucan,
fructo-oligosaccharides, and pectin, have demonstrated their role in modulating microbiota
composition and SCFA production, resulting in the improved metabolic and immune health
of the host [104–107]. For example, arabinoxylan promotes the growth of fiber-degrading
bacteria, increasing SCFA production and decreasing the abundance of opportunistic
pathogens, such as Desulfovibrio and Klebsiella, thereby improving metabolic health [104].
Xyloglucan supplementation reduces body weight and liver damage in high-fat diet-fed
mice by modulating gut microbiota composition and upregulating bile acid metabolism
pathways [106]. Similarly, fructo-oligosaccharides (FOS) increase the numbers of Lactobacil-
lus and Bacteroides, enhancing calcium absorption and reducing systemic inflammation
in senescence-accelerated mice [108]. Pectin, particularly citrus pectin oligosaccharides,
has hypocholesterolemic effects by increasing beneficial bacterial groups, such as Bifidobac-
terium, Lactobacillus, and Bacteroides, which correlate with higher SCFA levels and improved
cholesterol metabolism [105].

Moreover, dietary fibers contained in whole grains can influence the composition of the
intestinal microbiota, fostering the growth of beneficial bacteria. These fibers are complex
carbohydrates that undergo fermentation by gut microbes, leading to the production
of SCFAs, such as acetate, propionate, and butyrate. These SCFAs play a pivotal role
in maintaining intestinal health by reducing inflammation and supporting overall host
wellbeing. The fermentation of fibers in whole grains can lead to the production of SCFAs
and other metabolites that exert beneficial effects on host metabolic and immune health.
Studies in mice and cellular models have shown that supplementation with whole grains
can influence the composition of the intestinal microbiota and improve metabolic and
immune health [109,110]. For example, a diet based on whole grains is associated with a
reduced risk of obesity, heart disease, and T2D, in part due to the positive effects of the
intestinal microbiota [111].

4.2.2. Impact of Prebiotics, Probiotics, Postbiotics, and Synbiotics

Prebiotics and probiotics play significant roles in modulating the composition and
function of the gut microbiota, thereby influencing host health [112]. Probiotics, defined
as live organisms that confer a benefit to the host when provided in adequate quantities,
encompass various strains of bacteria, such as Escherichia coli Nissle 1917, Lactobacilli,
and Bifidobacteria. These probiotics contribute to gut health by producing SCFAs and
inhibiting the growth of pathogenic bacteria through competition for nutrients or receptors
on the gut wall [113,114]. Certain bacteria, like Bifidobacteria and Lactobacilli, are devoid of
lipopolysaccharides (LPS), reducing the risk of infection. Additionally, bacterial species,
like Roseburia [115] and Akkermansia muciniphila [116], have been identified as potential
probiotics, further expanding the spectrum of beneficial microorganisms. On the other hand,
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prebiotics are nutrients that promote the growth or activity of specific microbial genera
and species in the gut microbiota, conferring health benefits to the host. They stimulate
the growth of Bifidobacteria and Lactobacilli, thereby restoring a healthy gut microbiota
composition. Dietary interventions involving prebiotics have shown promise in modulating
the gut immune response and restoring intestinal homeostasis [117–119]. Recent research
has explored novel prebiotics derived from traditional Chinese medicine, such as water
mycelium extracts of Ganoderma lucidum, Hirsutella sinensis, and Antrodia cinnamomea [112].
These fungal remedies have demonstrated efficacy in reducing body weight, inhibiting
obesity-induced complications, and alleviating inflammation and insulin resistance in
high-fat diet mice. Importantly, the effects of these fungal products were mediated through
modulation of the gut microbiota, highlighting their potential as prebiotic agents for
promoting gut health and overall wellbeing.

Postbiotics are non-viable bacterial products or metabolic byproducts produced by
probiotic microorganisms that have biologic activity in the host [120,121]. These functional
bioactive compounds are generated during anaerobic fermentation of organic nutrients,
like prebiotics, and include short-chain fatty acids, microbial cell fragments, extracellular
polysaccharides, cell lysates, teichoic acid, vitamins, and other low molecular weight solu-
ble compounds [122]. Postbiotics have several advantages over live probiotics. They are
more stable and safer, as they do not require live microorganisms to confer health benefits.
Postbiotics have been shown to enhance gut barrier function, modulate immune responses,
and inhibit the growth of pathogenic bacteria [123]. This makes them a promising alterna-
tive for managing various health conditions, particularly those related to inflammation and
metabolic disorders. Beneficial effects of postbiotics can also be found in food and pharma-
ceutical applications. Indeed, they can be used as food bio preservatives, in food packaging,
and for the biodegradation of food safety-related chemical contaminants. In the phar-
maceutical industry, postbiotics have exhibited anti-inflammatory, immunomodulatory,
antihypertensive, and antioxidant activities.

Synbiotics are dietary supplements that combine the activity of both probiotics and
prebiotics to promote host health synergistically. They can also help strengthen the host
immune system and protect against harmful pathogens [124,125].

By nurturing a symbiotic relationship between prebiotics and probiotics, synbiotics
hold promise in reshaping the microbial landscape of the gut, thereby offering a multi-
faceted approach to managing various health conditions. Synbiotics can help reduce inflam-
mation, prevent insulin resistance, and encourage the release of glucagon-like peptide-1 in
the host [124].

Prebiotics, probiotics, postbiotics, synbiotics, and recent nutribiotics or pharmabiotics
can offer promising strategies for modulating the gut microbiota and promoting host
health [126]. Their ability to selectively promote beneficial microbial populations while
inhibiting pathogens underscores their potential therapeutic applications in managing and
modulating host immune response and metabolic disorders. Further research is warranted
to elucidate the mechanisms underlying their effects and to optimize their clinical utility.

4.2.3. Impact of Chewing

Chewing plays a significant role in interacting with the gut microbiota, the collection
of bacteria and other microorganisms that populate the gut [127,128]. It is not only integral
to the mechanical breakdown of food but is also pivotal in various metabolic processes.
Chewing can significantly affect smoking habits by altering the sensory experience and
reducing cravings, which is crucial for understanding how behavioral interventions can
support smoking cessation programs.

Additionally, the relationship between chewing and glucose metabolism is significant.
Chewing stimulates saliva production, which contains enzymes that initiate carbohydrate
digestion, thereby influencing glucose levels. This connection has profound implications
for managing certain conditions, like diabetes and metabolic syndrome [129].
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To deepen our understanding of these interactions, it is proposed to use specialized
devices equipped with unique metrics to monitor and evaluate chewing patterns. These
devices can provide detailed data on the frequency, duration, and intensity of chewing,
which can be correlated with changes in the microbiome, smoking behaviour, and glucose
metabolism. Integrating these metrics into research allows for comprehensive studies that
assess the direct effects of chewing and explore its broader implications on overall health.
This approach can help develop targeted interventions and personalized treatment plans
that leverage the benefits of chewing to improve metabolic health and support smoking
cessation efforts.

In summary, chewing is an essential part of the digestive process that can significantly
influence the composition and function of the gut microbiota. Proper chewing can promote
microbial diversity, beneficial metabolite production, and overall intestinal health.

4.3. Impact of Gut Microbiota on Other Body Systems

The gut microbiota plays an indispensable role in human health, influencing a wide
array of physiological processes and contributing to disease prevention. The multifaceted
interactions between the microbiota and the host organism have a significant impact on
overall health and can influence the development of pathological conditions. The gut
microbiota modulates the host’s immune system by interacting with mucosal and systemic
immune cells, thereby influencing immune cell maturation and function [130]. Intestinal
bacteria aid in digesting and absorbing nutrients, and they synthesize essential vitamins,
such as B12, folic acid, and vitamin K, which are crucial for host metabolic processes [131].
Additionally, the gut microbiota provides a protective barrier against harmful pathogens by
competing for resources, producing antimicrobial substances, and modulating host immune
responses [132]. Gut microbes also influence nutrient absorption, hormone production
related to appetite, and fat deposition, thereby impacting susceptibility to obesity and
metabolic diseases [27]. Furthermore, microbiota-derived metabolites, like short-chain fatty
acids and polyphenols, have anti-inflammatory and antioxidant effects, protecting against
chronic inflammation and associated diseases [133].

Overall, the interactions between the gut microbiota and other body systems, especially
the immune, nervous, and endocrine systems, are pivotal for maintaining organismal
homeostasis and overall health. Here, a concise overview of these interactions is presented.

4.3.1. Immune System

The immune system, a complex network of cells, tissues, and organs, is the body’s
defense mechanism against pathogens and foreign invaders [134]. It consists of two main
parts: the innate immune system, which provides immediate defense, and the adaptive
immune system, which develops targeted responses. In this section, the intricate interplay
between the microbiota—the collection of microorganisms inhabiting the body—and the
immune system will be explored. The intricate interplay between the microbiota and the
immune system is a dynamic process, heavily influenced by various internal and external
factors [135]. Just as the immune system is subject to modulation by age, sex, diet, exercise,
and environmental factors, so too is the composition and function of the microbiota within
the human body [136]. Understanding this interaction is crucial for elucidating mechanisms
of health and disease, as well as for developing targeted therapeutic interventions. The gas-
trointestinal (GI) tract harbors the highest concentration of microorganisms in the human
body, forming a symbiotic relationship with the immune system [137]. This relationship
aids in pathogen colonization resistance and influences the body’s response to pathogens
and the efficacy of immune responses. The microbiome profoundly affects various as-
pects of immune function, including cytokine production, maintenance of homeostasis,
regulation of T cell production, and modulation of the overall immune system [138–141].
For instance, microbiota-derived antimicrobial peptides, such as bacteriocins, contribute
to pathogen clearance within the microbiome, augmenting the immune response [142].
Environmental factors, particularly during birth and infancy, significantly shape the com-
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position and function of the microbiota, thereby impacting immune development and
responsiveness [143]. Antibiotics and dietary patterns also exert notable effects on the
microbiome, subsequently influencing immune function [144]. While crucial for combating
infections, antibiotics can disrupt the balance and diversity of the microbiota, compromis-
ing immune efficacy. Moreover, dysbiosis, characterized by an imbalance in the microbiota,
is implicated in various diseases, including IBD, T1D, multiple sclerosis, HIV, and certain
cancers [145–147]. The microbiota’s involvement in disease pathogenesis is exemplified
by its association with conditions, like T1D and colorectal cancer (CRC) [148]. Alterations
in gut microbiota composition, particularly during infancy, may predispose individuals
to T1D by promoting proinflammatory states. Similarly, the microbiome’s influence on
tumor development and progression in CRC underscores its role in cancer pathogenesis.
Recognizing the pivotal role of the microbiota in disease pathophysiology has led to novel
therapeutic strategies, such as fecal microbiota transplantation (FMT) [149]. FMT, which
restores microbial balance in patients with gut dysbiosis, holds promise for treating condi-
tions, like Clostridioides difficile infection (CDI), by modulating proinflammatory cytokines
and enhancing anti-inflammatory bacteria [150,151]. Emerging research highlights the
potential of microbiota-based interventions for personalized medicine. Prebiotics, pro-
biotics, synbiotics, and bacteriophages offer avenues for modulating the microbiome to
promote health and mitigate disease risk [152,153]. Moreover, understanding the impact of
the microbiome on vaccine efficacy may inform strategies for enhancing immunological
memory and improving protection against viral infections [154].

4.3.2. Nervous System

The relationship between the microbiota and the nervous system, known as the
microbiota–gut–brain axis, underscores the intricate communication between the gut micro-
biota and the brain, exerting profound effects on both physical and mental health [155,156].
This bidirectional communication pathway involves various systems, including the central,
autonomic, and enteric nervous systems, as well as the immune and endocrine systems.
The interaction between the central nervous system (CNS) and the enteric nervous sys-
tem (ENS) is a complex and bidirectional communication process that significantly influ-
ences gastrointestinal functions and mobility. The CNS, comprising the brain and spinal
cord, communicates with the gut through efferent and afferent nerves, regulating these
functions [157]. The ENS, an intrinsic network of neurons within the gut wall, operates
independently but interfaces with the CNS through the vagus nerve and spinal terminals,
modulating gut motility, secretion, and sensation [158,159]. The gut microbiota also plays a
crucial role by producing neurotransmitters, vitamins, and metabolites, like SCFAs, which
can influence neuronal function. Although the blood–brain barrier restricts direct access to
the brain, microbial metabolites can activate afferent sensory neurons of the vagus nerve,
transmitting signals to the brain via neuroimmune and neuroendocrine pathways [160–162].
Germ-free animal studies highlight the importance of gut microbes in brain development
and neuroinflammatory responses [163,164]. Dysregulation of this microbiota–gut–brain
axis is linked to mental health disorders, such as anxiety, depression, and neurodegener-
ative diseases [165,166]. Germ-free mice exhibit learning deficits, anxiety-like behaviour,
and stress responses, which can be mitigated by microbial colonization [163,164]. Moreover,
alterations in gut microbiota composition due to stress, antibiotics, or diet impact brain
function and behaviour [162]. Therapeutically, probiotics and prebiotics show potential
in modulating gut microbiota and improving brain health, with specific probiotic strains
exhibiting antidepressant-like effects and reducing anxiety-related behaviors by influencing
neurotransmission and neuroimmune pathways [165,167]. FMT has emerged as a novel
therapeutic approach for conditions, such as IBS and Parkinson’s disease, emphasizing the
potential of targeting the microbiota–gut–brain axis in disease management [168].

In summary, the microbiota–gut–brain axis represents a complex interplay between
the gut microbiota and the nervous system, with profound implications for mental health,
behaviour, and disease susceptibility. Further research into the mechanistic underpinnings
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of this axis holds promise for the development of novel therapeutic strategies targeting the
gut microbiota to promote brain health and mitigate neurological disorders.

4.3.3. Endocrine System

Since birth, bacterial colonization of the gut has a role in the maturation of the immune
and endocrine systems [169,170]. Remarkably, commensal bacteria have been found to
synthesize and release hormones [171], thereby engaging in a dialogue with the host’s
metabolism, immunity, and behaviour. This interaction is bidirectional, as host hormones
have been demonstrated to both affect and be affected by the microbiota. Lyte and Ernst
pioneered the field of endocrine microbiology by demonstrating that stress-induced neu-
roendocrine hormones can impact bacterial growth [172]. Subsequent investigations in this
field have identified hormone receptors in microorganisms, suggesting their involvement in
intercellular communication [173]. Other studies have shown that many enzymes involved
in host hormone metabolism can be derived from horizontal gene transfers from bacte-
ria [174]. Further clues to the existence of interactions between bacteria and the endocrine
system have emerged from the discovery of inter-kingdom signaling, including hormonal
communication between microorganisms and their hosts [175]. This field has evolved
from the initial observation that bacteria perform quorum sensing (QS), a communication
based on the production and detection of autoinducer molecules [176]. These autoinducer
molecules are hormone-like elements that regulate functions, including coordinated bacte-
rial growth, motility, and virulence [133]. In addition to influencing bacteria, these signals
can modulate host cell signal transduction [177]. Host hormones also influence bacterial
gene expression, which in turn can have consequences for their hosts. For example, cat-
echolamines enhance bacterial adhesion to host tissues and influence bacterial growth
and virulence [178,179]. Conversely, human sex hormones estrone and estradiol reduce
bacterial virulence by inhibiting QS [180]. The effects of host hormones on the microbiota
are manifold and include bacterial growth, virulence, and resistance. Variations in hormone
levels resulting from host factors, such as diet, exercise, mood, overall health status, stress,
and sex can influence intestinal microbial balances. These hormone–microbiota interactions
influence a wide range of host responses, including behaviour, metabolism, appetite, and
immune responses.

In a recent study, it was examined whether the membrane fluidity of red blood cells
(RBCs), influenced by various pathways induced by hyperglycemia, could provide a com-
plementary index of HbA1c to monitor the development of macroangiopathic complications
related to T2D, such as peripheral arterial disease (PAD) [181]. Altered RBC membrane flu-
idity is associated with a spatial reconfiguration of liquid crystal (LC) domains, associated
with the development of T2D-related macroangiopathic complications. These findings are
consistent with recent discoveries in the field of endocrine microbiology, highlighting a
complex interaction between the gut microbiota and the endocrine system, with significant
implications for health and disease [171].

While this field is still in its early stages, future research will likely identify further
significant interconnections between hormones and the microbiome. Endocrine microbi-
ology may also explain how the microbiota influences the gastrointestinal and psycho-
logical health of the host. As such, hormones represent an important mechanism for
host–microbiota interaction.

5. Human Metabolism and Gut Microbiota

The gut microbiota actively participates in the metabolism of a wide range of nutrients
obtained from the daily diet, including lipids, proteins, and carbohydrates [89]. Upon
metabolism by the gut microbiota, these nutrients generate a series of bioactive metabolites
that directly influence the host’s metabolism and health [182].

The complex interaction between gut microbiota and human health involves various
bacterial species, their metabolites, and their effects on host physiology. The gut microbiota
comprises diverse bacterial species, including Akkermansia (Gram-negative, anaerobic),
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Roseburia (Gram-positive, anaerobic), non-pathogenic Escherichia coli, Bifidobacteria
(Gram-positive, obligate anaerobes), and Lactobacilli (Gram-positive, facultative anaerobes).
These bacteria produce several important metabolic compounds, including the following:

1. Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate.
2. Amino acid metabolites, like ammonia and indole.
3. Essential vitamins, particularly vitamin K- and B-group vitamins.
4. Postbiotics, including extracellular polysaccharides.
5. Fermentation metabolites, such as lactate and glycerol.
6. Various bioactive components, including bacteriocins.

These bacterial metabolites significantly influence human health through multiple
pathways, particularly in terms of regulating metabolism (lipid, carbohydrate, and pro-
tein metabolism), maintaining intestinal barrier function, modulating inflammation, and
regulating immune responses (Figure 3).
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This section provides a detailed exploration of key metabolites produced by the gut
microbiota, highlighting their interactions with human metabolic processes and their roles
in health promotion and disease prevention.

These compounds, primarily stemming from the fermentation of indigestible sub-
strates, encompass SCFAs [183], metabolites derived from amino acid metabolism [184],
and essential vitamins [185]. Specifically, SCFAs emerge as central players, originating from
the fermentation of non-digestible carbohydrates. Acetate, propionate, and butyrate, the pri-
mary SCFAs produced, not only serve as an energy source for intestinal epithelial cells, but
also modulate inflammation and regulate host lipid and carbohydrate metabolism [186,187].
Additionally, the gut microbiota is responsible for the production of lipopolysaccharides
(LPS) and bile acid conjugates, which can influence intestinal inflammation and lipid ab-
sorption [188,189]. Concurrently, metabolites derived from amino acid metabolism, such as
ammonia, indole, and sulfides, exhibit a dual nature, potentially protective or detrimental
to human health [190]. While indole and its derivatives are associated with immune system
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regulation and cancer prevention [191,192], elevated levels of ammonia and sulfides can
prove toxic to intestinal epithelial cells [193–195]. Furthermore, the production of vitamins,
including vitamin K and select B vitamins, plays an essential role in blood clotting and the
human energy metabolism [196,197].

The dynamic interaction between microbiota metabolites and human metabolic pro-
cesses (Figure 3) occurs through complex mechanisms. For instance, SCFAs influence
gene expression in the human host, modulating the enzymatic activity involved in lipid
and carbohydrate metabolism [198]. Additionally, these metabolites can modulate the
composition and function of the microbiota itself, creating an intricate metabolic cycle
between the microbiota and the human host (Figure 3).

The following sections will provide a detailed description of the primary metabolites
produced by the gut microbiota, along with their direct effects on host metabolism and
health. These metabolites will be differentiated according to their roles in the regulation of
lipid, protein, and carbohydrate metabolism.

5.1. Regulation of Lipid Metabolism

Early studies comparing germ-free mice with conventionally raised mice provided initial
evidence for the influence of gut microbes on host energy metabolism and lipid levels [199,200].
While these studies highlighted the impact of gut microbiota on lipid metabolism, they lacked
the ability to pinpoint specific microbial candidates responsible for the observed phenotypic
changes in conventionally colonized mice. In humans, clinical correlations between obesity,
metabolic disorders, and dyslipidemia suggest potential associations between gut bacterial
taxa and lipid levels. Recent analyses in population-based cohorts have not only reaffirmed
known associations between obesity and specific bacterial taxa (e.g., Akkermansia (N34), Chris-
tensenellaceae (phylum Firmicutes; N18), Tenericutes (order RF-39; N33), Eggerthella (N3), and
Butyricimonas (N9)), but have also unveiled associations between microbial composition
and lipid levels independent of body mass index (BMI) [201].These bacterially derived
bile acids can influence hepatic and systemic lipid and glucose metabolism through re-
ceptors, such as the farnesoid X receptor (FXR) or G-protein-coupled bile acid receptor
1 (TGR5), thereby impacting host lipid levels [202–204]. Anaerobic bacteria in the cecum
and proximal colon ferment nondigestible carbohydrates, yielding SCFAs as metabolites.
SCFAs play roles in regulating intestinal immune homeostasis, serving as energy sources
for colonic epithelial cells, and inducing intestinal gluconeogenesis [205]. Moreover, SCFAs
exert metabolic benefits by affecting energy expenditure and insulin sensitivity through
G protein-coupled receptors (GPCRs) [206,207]. Gut bacteria may produce intermediate
precursors metabolized by the host into products directly influencing lipid levels. For
instance, gut microbe-mediated metabolism of dietary choline and L-carnitine leads to the
production of trimethylamine (TMA), subsequently oxidized to trimethylamine N-oxide
(TMAO) [208–210]. Elevated TMAO levels have been linked to atherosclerosis, suggesting
a potential role in lipid metabolism regulation. These mechanisms underscore the intri-
cate interplay between the gut microbiota and lipid metabolism, providing insights into
potential therapeutic targets for metabolic disorders.

5.2. Regulation of Protein Metabolism

Recent metagenomic studies have illuminated the metabolic capacity of the human
gut microbiota, particularly in relation to nitrogenous components and amino acid-related
compounds [211,212]. These studies have uncovered a significant enrichment of genes
in the human gut microbiome associated with amino acid metabolism compared to the
human genome. Consequently, the gut microbiota extends the host’s metabolic capabilities,
leading to the synthesis of a diverse array of metabolites, including essential amino acids
that humans cannot biosynthesize [213]. The metabolic phenotype (e.g., obese vs. lean)
and dietary factors have been found to influence the composition and functional capacity
of the human gut microbiota, particularly its amino acid metabolism [214]. Both animal-
and plant-based diets exert distinct effects on the expression of genes involved in amino
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acid metabolism. Animal-based diets tend to upregulate catabolic amino acid genes,
whereas plant-based diets increase the expression of biosynthetic pathways for these
amino acids [214]. Metabolomic studies have further elucidated the role of the human gut
microbiota in amino acid metabolism and its implications for health. Branched-chain amino
acids (BCAA) and aromatic amino acids have been linked to obesity and insulin resistance,
with microbiota-derived metabolites potentially contributing to these conditions [215].
High-protein diets increase the availability of undigested protein in the large intestine,
leading to alterations in microbially derived metabolites, such as branched-chain fatty acids
and ammonia, with potential implications for metabolic health [212]. Human studies have
demonstrated modifications in microbiota composition and metabolite profiles in response
to high-protein diets [216–221].

5.3. Regulation of Carbohydrate Metabolism

The human gut microbiota plays a crucial role in carbohydrate metabolism, particu-
larly in the breakdown of complex carbohydrates [222,223]. Some studies [222,224] have
provided significant insights into this area. Anaerobic microorganisms in the gastroin-
testinal tract coordinate the breakdown of plant cell walls, utilizing catalytic domains
and substrate-binding modules to degrade plant polysaccharides [225]. These anaero-
bic microorganisms include bacteria, such as Ruminococcus flavefaciens, Prevotella bryantii,
Fibrobacter succinogenes, and Ruminococcus albus, as well as fungi and protozoa, such as Poly-
plastron multivesiculatum. The specificity and organization of these enzymes vary among
different species, defining their ecological niche within the gut community based on the
substrates ingested by the host. Studies have shown that certain uncultured bacterial
species are closely associated with fibrous substrates in the gut, with specific groups, like
Ruminococcus-related species, being primary colonizers of insoluble substrates [223,225].
The breakdown of carbohydrates by gut microbiota members (e.g., Bacteroides, Prevotella,
Veillonella, Bifidobacterium, Lactobacillus, Enterococcus, Methanobrevibacter, and the Eubac-
terium cylindroides group) not only influences energy extraction but also contributes to
the production of SCFAs, crucial for colonic health [226]. Butyrate-producing bacteria
(e.g., genus Clostridium) are integral to colonic health in humans, with diverse phylogenetic
groups contributing (such as Cloistridiales) to butyrate synthesis [227,228]. These bacteria
utilize different gene organizations in the central pathway of butyrate synthesis, generating
energy through substrate-level phosphorylation and proton gradients. The microbiota’s
ability to process complex carbohydrates has been studied extensively, comparing gut
isolates from various environments to understand their survival mechanisms. Studies
in animal models have demonstrated the adaptation of gut bacteria to each other, high-
lighting their specialization and interdependence in carbohydrate metabolism [223]. The
functional biodiversity of the gut microbiota in carbohydrate breakdown has only recently
been explored. Carbohydrate-degrading populations, particularly butyrate producers,
are predominant in healthy individuals, contributing to normal gut fermentation, energy
extraction, and host health [108]. However, significant interindividual differences exist in
these functional groups.

In conclusion, the human gut microbiota is intricately involved in carbohydrate
metabolism, impacting energy extraction, SCFAs production, and overall gut health. Ad-
vances in technology have opened new avenues to unravel the complex interactions be-
tween dietary carbohydrates, gut microbiota composition, and host metabolism, offering
promising prospects for targeted dietary interventions and therapeutic strategies.

5.4. Summary

To provide a comprehensive overview of these findings, Table 4 summarizes key
insights from recent research on the role of the gut microbiota in metabolic processes.
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Table 4. This table provides a concise summary of the key aspects discussed in each section, high-
lighting the role of gut microbiota, underlying mechanisms, clinical implications, research advances,
and potential therapeutic applications.

Aspect Lipid Metabolism Protein Metabolism Carbohydrate
Metabolism

Impact of Dietary
Fibers Prebiotics, Probiotics

Role of the gut
microbiota

Influences host
energy metabolism

and lipid levels

Extends host
metabolic

capabilities,
synthesizes diverse
array of metabolites

Plays a crucial role in
carbohydrate

breakdown, energy
extraction, and SCFA

production

Contributes to the
production of SCFAs
and other metabolites,
modulates microbiota

composition

Modulates gut
microbiota

composition, inhibits
pathogenic bacteria

growth, restores
gut homeostasis

Mechanisms

Production of SCFAs,
modulation of bile
acid metabolism,

influence on
lipid levels

Enrichment of genes
associated with

amino acid
metabolism,

synthesis of essential
amino acids,
metabolite
production

Coordination of plant
cell wall breakdown,
production of SCFAs,

energy harvesting
from different

polymers

Degradation of dietary
fibers, fermentation

leading to SCFA
production,

modulation of
microbiota composition

Production of vitamins,
antioxidants, and

SCFAs; inhibition of
pathogenic bacteria

growth, restoration of
gut health

Clinical
implications

Correlations with
obesity, metabolic

disorders,
dyslipidemia;

potential
therapeutic targets

Links to obesity,
insulin resistance;
implications for
metabolic health

Links to obesity,
insulin resistance;
implications for
metabolic health

Reduced risk of obesity,
heart disease, T2D;

improved metabolic
and immune health

Therapeutic
applications in

managing
inflammatory diseases,

metabolic disorders

Research
advances

Population-based
cohort analyses,
identification of

microbial candidates
responsible for

lipid metabolism

Identification of
metabolic capacity of

gut microbiota
concerning
nitrogenous
components

Whole-genome
sequencing,

understanding of
polysaccharide

utilization
mechanisms,

metabolite analysis

Studies on specific
dietary fibers and their

role in modulating
microbiota composition
and SCFA production

Exploration of novel
prebiotics from

traditional medicine,
effects on gut

microbiota and
host health

Each section highlights the mechanisms underlying microbial metabolism, clinical
implications, recent advancements, and potential therapeutic applications. This summary
aims to offer a consolidated understanding of the multifaceted relationship between the gut
microbiota and host metabolism, underscoring the significance of microbial contributions
to human health and disease.

6. Precision Nutrition and Microbiota Interventions

Increasing attention has been focused on the importance of modulating the gut micro-
biota through dietary choices and nutritional interventions [32,41,229–232]. This approach,
known as gut microbiota modulation, aims to promote a balanced bacterial composition
that supports host health. One of the most effective strategies for modulating the gut micro-
biota is adopting a fiber-rich diet. Dietary fibers serve as the primary substrate for beneficial
gut bacteria, promoting their growth and activity. Sources of fiber, such as fruits, vegetables,
legumes, and whole grains, provide a favorable environment for SCFA-producing bacteria,
which are essential for intestinal health [233]. Additionally, incorporating probiotics and
fermented foods into the diet can aid in restoring the balance of the gut microbiota [234].
Probiotics are strains of beneficial bacteria that, when consumed in adequate amounts, can
improve microbiota composition and promote intestinal health. Certain foods, such as
yogurt, kefir, sauerkraut, and kimchi, are rich in natural probiotics and can be incorporated
into the diet to support a healthy gut microbiome.

However, it is also important to limit the consumption of foods high in added sugars
and saturated fats, which may promote the growth of pathogenic bacteria in the gut micro-
biota [32]. Excessive consumption of these foods can contribute to intestinal inflammation
and increase the risk of metabolic disorders.

Integrating prebiotic-rich foods into the diet, such as garlic, onions, Jerusalem arti-
chokes, and other non-digestible fiber-rich vegetables, can selectively promote the growth
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of beneficial bacteria in the colon, thus helping to maintain a balanced gut microbiota [235].
The Mediterranean diet, characterized by a wide variety of nutrient-rich foods, such as
fruits, vegetables, fish, whole grains, and vegetable oils, has been associated with a healthy
composition of the gut microbiota and numerous health benefits [236]. This dietary pattern
provides a diverse range of nutrients and bioactive compounds that can positively influence
intestinal health and microbiota diversity (Table 5 [32,41,236–242]).

Table 5. Overview of dietary strategies for modulating gut microbiota composition and health.

Dietary Strategy Characteristics Benefits References

Fiber-rich diet

- Rich in dietary fibers sourced from fruits,
vegetables, legumes, and whole grains.

- Dietary fibers serve as the primary substrate for
beneficial gut bacteria, promoting their growth
and activity.

- Sources of fiber provide a favorable environment
for SCFA-producing bacteria essential for
intestinal health.

- Promotes growth and activity of
beneficial gut bacteria. [237]

Probiotics and
fermented foods

- Incorporates probiotic-rich foods, such as yogurt,
kefir, sauerkraut, and kimchi, into the diet.

- Fermented foods aid in restoring the balance of
the gut microbiota.

- Probiotics are beneficial bacteria that improve
microbiota composition and promote intestinal
health when consumed adequately.

- Aids in restoring balance to the
gut microbiota.

- Improves microbiota
composition and promotes
intestinal health.

[238,239]

Limiting
sugars and

saturated fats

- Reduces consumption of foods high in added
sugars and saturated fats.

- Limits the growth of pathogenic bacteria in the
gut microbiota.

- Reducing intake of these foods helps prevent
intestinal inflammation and decreases the risk of
metabolic disorders.

- Reduces the growth of
pathogenic bacteria in the gut
microbiota.

- Prevents intestinal
inflammation and lowers the
risk of metabolic disorders.

[240,241]

Incorporating
prebiotic-
rich foods

- Integrates prebiotic-rich foods, such as garlic,
onions, Jerusalem artichokes, and non-digestible
fiber-rich vegetables, into the diet.

- Prebiotics selectively promote the growth of
beneficial bacteria in the colon.

- Non-digestible fibers provide a substrate for
beneficial bacteria, helping maintain a balanced
gut microbiota.

- Selectively promotes growth of
beneficial bacteria in the colon.

- Helps maintain a balanced
gut microbiota.

[242]

Mediterranean
diet

- Characterized by an abundance of
nutrient-rich foods, such as fruits, vegetables,
fish, whole grains, and vegetable oils.

- Moderate consumption of dairy products
and poultry.

- Limited intake of red meat and processed foods.
- Provides diverse nutrients and bioactive

compounds that positively influence intestinal
health and microbiota diversity.

- Associated with a healthy
composition of the
gut microbiota.

- Linked to numerous health
benefits including reduced risk
of cardiovascular diseases,
improved cognitive function,
and longevity.

- Provides diverse nutrients and
bioactive compounds that
positively influence intestinal
health and microbiota diversity.

[32,41,236]

6.1. Scientific Evidence on the Efficacy of Interventions

The critical analysis of the available scientific evidence regarding the efficacy of various
dietary and nutritional interventions in modulating the gut microbiota plays a crucial role in
guiding clinical practices and directing personalized dietary recommendations. Numerous
clinical and experimental studies have investigated the impact of diet on the composition
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and functioning of the gut microbiota [41,243–245]. Among the relevant research, one
study delved into the complex mechanisms regulating the effects of nutrients and specific
foods on the balance and functioning of individual gut microbiota. Through the analysis
of seven volunteers, Bianchetti et al. provided valuable insights into the effectiveness of
specific personalized dietary interventions in modulating the gut microbiota, contributing
to the field of personalized nutrition [41]. Other studies have examined the role of diet in
modulating the gut microbiota concerning health and disease [246–248]. Evidence suggests
that diet can influence the diversity, population size, and metabolic functions of the gut
microbiota [249]. However, conducting further longitudinal studies is fundamental to fully
understanding the long-term effects of specific diets and dietary components on the gut
microbiota [41], as well as to identify variations among individuals [41].

Some studies have investigated how probiotics, prebiotics, and dietary fibers influence
the gut microbiota and human health outcomes. For instance, in a recent study [250], Bumjo
Oh et al. found that probiotic supplementation significantly increased the abundance of
beneficial bacteria, such as Lactobacillus, Bifidobacterium, and Bacteroides. These changes
are crucial, as they contribute to a healthier microbiome balance, potentially enhancing
immune function and metabolic health. Similarly, another study [251] explored the effects
of probiotic yogurt on patients with IBD. Results showed an increase in Lactobacillus and
Bifidobacterium levels in the intestines and colons of IBD patients, suggesting a beneficial
impact on gut health. In the context of infant health, research [252] on preterm infants
indicated that prebiotic and probiotic supplementation reduced excessive crying and
fussing. This improvement was associated with lower levels of potentially harmful bacteria,
like Clostridium histolyticum group, indicating a positive modulation of the microbiome
towards a less colic-prone state. Furthermore, dietary fiber interventions were examined in
healthy adults in a study [253]. Although overall microbial community structure did not
change significantly, there was a notable increase in beneficial bacteria, such as Alloprevotella,
Parabacteroides, and Parasutterella. This shift suggested a promotion of a more balanced
microbiota composition, potentially contributing to better overall gut health.

These findings underscore the potential of probiotics, prebiotics, and dietary fibers
in optimizing gut microbiota composition for improved health outcomes. Understand-
ing individual variations in gut microbiota response is crucial for tailoring personalized
nutrition strategies that leverage the microbiome as a biomarker, as highlighted in recent
research [89,254]. This approach opens avenues for developing more effective dietary
interventions and preventive measures tailored to individual microbiome profiles [255].

6.2. Challenges Associated with Implementation

Implementing dietary and nutritional intervention strategies to modulate the gut
microbiota faces various challenges and limitations that influence their effectiveness and
practical applicability. One of the main challenges is the individual variability in the effec-
tiveness of intervention strategies. As highlighted by various sources, including clinical
studies and longitudinal analyses, gut microbiota responses to dietary interventions can
vary significantly from person to person. This variability may be influenced by genet-
ics, environmental factors, and even by the frequency and intensity of the interventions
themselves [254,256]. The intrinsic complexity of the gut microbiota represents another
fundamental challenge. The microbiota is a complex and dynamic ecosystem characterized
by a vast diversity of bacterial species and intricate interactions among them and with the
human host. A comprehensive understanding of this system requires multidisciplinary
approaches and advanced methodologies, which often prove burdensome and complex
to implement. Furthermore, assessing the long-term effects of dietary interventions on
the gut microbiota presents significant challenges. Long-term studies are essential to fully
understand the lasting impacts of dietary modifications on the microbiota and host health.
However, such studies require considerable resources and time and may be subject to
follow-up losses and variations in participant compliance over time. Finally, interpreting
microbiotic data and translating the information obtained into personalized dietary rec-
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ommendations remains an important challenge [257]. Although technology has enabled
significant advancements in characterizing the gut microbiota, the correlation between
microbiota composition and host health is not always direct or linear. It is necessary to de-
velop more sophisticated analytical and interpretative approaches to translate microbiotic
data into clinically meaningful and applicable information in clinical practice. A summary
of these challenges is reported in Table 6.

Table 6. Summary of the challenges associated with implementing dietary and nutritional interven-
tion strategies for modulating the gut microbiota.

Challenges Description

Individual variability Gut microbiota responses to dietary interventions vary significantly among
individuals due to genetic, environmental, and intervention-related factors.

Complexity of the gut microbiota
The gut microbiota is a complex and dynamic ecosystem with diverse bacterial

species and intricate interactions, requiring multidisciplinary approaches for
comprehensive understanding.

Long-term effects assessment
Assessing the long-term impacts of dietary interventions on the gut microbiota
and host health requires extensive resources, time, and may face challenges, like

participant compliance.

Data interpretation and translation
Despite technological advancements, translating microbiota data into

personalized dietary recommendations is challenging due to the complexity of
the microbiota–host health correlation.

Standardization of methods and practices

Establishing standardized methods (sequencing, analysis, and the type of data
shared with clinicians/patients) is essential for creating a reliable and consistent

signature of a healthy gut microbiota. This standardization will enhance
comparability across studies and improve the reproducibility of results.

In conclusion, the challenges associated with implementing dietary and nutritional in-
tervention strategies for the gut microbiota require a holistic and interdisciplinary approach.
It is crucial to address these challenges through collaboration among scientists, clinicians,
nutritionists, and researchers to develop more effective and personalized approaches for
modulating the gut microbiota and improving host health.

7. Conclusions

The advent of advanced technologies, particularly high-throughput sequencing, has
facilitated deeper exploration of the intricate relationship between the human gut micro-
biota, metabolism, and overall health, shedding light on its profound implications for
precision nutrition [232,258]. Therefore, understanding the composition and functionality
of the gut microbiota, as outlined in Sections 4 and 5, provides critical insights into its role
in human health and disease.

The influence of key metabolites produced by the gut microbiota, such as SCFAs,
vitamins, and other bioactive compounds, extends far beyond simple digestive processes.
These metabolites are not just byproducts of fermentation; they are essential mediators
that profoundly impact host physiology and wellbeing. Moreover, the gut microbiota and
its metabolites impact neurobehavioral regulation and endocrine signaling, influencing
mood, cognition, and behavior via the microbiota–gut–brain axis and hormonal interactions.
Furthermore, precision nutrition uses microbiota insights to tailor diets that support gut
health, emphasizing fiber-rich foods, probiotics, and fermented items to boost beneficial
bacteria and SCFA production. Reducing sugars and saturated fats lowers pathogenic
bacteria, while certain foods, like garlic and artichokes, selectively promote healthy bacteria.
Certain diets, like the Mediterranean diet, are rich in diverse, whole foods and enhance
microbiota diversity and overall health, though individual variability and the need for
long-term studies remain key challenges.
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Recent advances using stable isotope probing and metabolite analysis have elucidated
microbial metabolites derived from carbohydrates in the human gut. This method offers
insights into label incorporation into microbial biomass and metabolites, enabling the
study of temporal modulation of the human gut microbiota by individual nutrients. Such
studies manipulate substrate availability and microbiota composition to control profiles of
short-chain fatty acids. Additionally, this approach provides a quantitative understanding
of microbial metabolites’ caloric contribution to host energy uptake [259].

These insights are pivotal for developing targeted therapeutic strategies for metabolic
and inflammatory conditions, advancing precision medicine in metabolic health. However,
integrating this knowledge into practice through digital platforms underscores the neces-
sity for longitudinal studies to comprehensively assess sustained effects and individual
responses to dietary interventions.

The microbiota can be of use as part of the practical solutions utilized by specialists,
leveraging platforms, like web-based nutrition management systems, where nutritionists
utilize microbiota data to create tailored diets [260]. This integration is further enhanced
by the advent of new smart technologies that allow the seamless integration of multiple
devices, streamlining data collection and analysis processes. Such advancements enable a
more efficient and effective utilization of microbiota insights in practical settings, ultimately
contributing to improved health outcomes and personalized dietary interventions [261].
Personalized dietary recommendations can be tailored to optimize therapeutic efficacy
and promote overall wellbeing. Proper utilization of microbiota insights holds immense
potential for revolutionizing healthcare strategies and improving health outcomes in di-
verse populations. An effective avenue involves integrating and managing the microbiome
within novel metabolic models [262–264], which serve as essential tools for crafting person-
alized dietary interventions. These models must prioritize precision and individualization,
rendering them valuable assets in both clinical and nutritional domains. In contrast to
overly intricate models, such as genome-scale metabolic models [265,266], which may lack
practical applicability due to their complexity, emerging metabolic models should leverage
microbiota data to furnish tailored dietary recommendations that correspond to individual
metabolic profiles. Moreover, recent studies have highlighted how insights from the gut
microbiota can enhance athletic performance by refining VO2max models for accurate
assessment of aerobic capacity [267]. Integrating microbiota data enables the develop-
ment of personalized predictive models and tools [268,269], optimizing training regimens
and mitigating injury risks. Overall, this integration revolutionizes nutrition and athletic
preparation, fostering a deeper understanding of health and performance optimization.
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