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The structural connectivity of human brain allows the coexistence of segregated and

integrated states of activity. Neuromodulatory systems facilitate the transition between

these functional states and recent computational studies have shown how an interplay

between the noradrenergic and cholinergic systems define these transitions. However,

there is still much to be known about the interaction between the structural connectivity

and the effect of neuromodulation, and to what extent the connectome facilitates

dynamic transitions. In this work, we use a whole brain model, based on the Jasen and

Rit equations plus a human structural connectivity matrix, to find out which structural

features of the human connectome network define the optimal neuromodulatory effects.

We simulated the effect of the noradrenergic system as changes in filter gain, and studied

its effects related to the global-, local-, and meso-scale features of the connectome.

At the global-scale, we found that the ability of the network of transiting through a

variety of dynamical states is disrupted by randomization of the connection weights.

By simulating neuromodulation of partial subsets of nodes, we found that transitions

between integrated and segregated states are more easily achieved when targeting

nodes with greater connection strengths—local feature—or belonging to the rich club—

meso-scale feature. Overall, our findings clarify how the network spatial features,

at different levels, interact with neuromodulation to facilitate the switching between

segregated and integrated brain states and to sustain a richer brain dynamics.

Keywords: whole brain model, neuromodulation, integration and segregation, network topology, noradrenaline,

rich club organization

1. INTRODUCTION

The human brain generates a rich repertoire of spatiotemporal dynamics characterized by the
integrated and segregated functional states (Tononi, 2004). Information processed in parallel by
domain-specific systems (segregated) is brought together (integrated) to guide adaptive behavior
(Dehaene and Changeux, 2011). The balance between segregation and integration is essential to
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coordinate the local and global communication of neural
information, it is needed to support a wide variety of cognitive
functions, and has been proposed as a prominent organizational
principle of the brain (Sporns, 2013; Cohen andD’Esposito, 2016;
Shine, 2019; Wang et al., 2021). The dynamics and flexibility of
brain activity, necessary for the coherent global functioning of the
brain, enables the coexistence of segregated and integrated brain
states (Kelso, 2012; Tognoli and Kelso, 2014; Wang et al., 2021).

Neuroimaging recording techniques such as
electroencephalography (EEG) and functional magnetic
resonance imaging (fMRI) allow the characterization of
functional connectivity (FC) of the brain, from which the
functional integration and segregation can be quantified using
network theory tools (Bullmore and Sporns, 2009; González
et al., 2016). The observed patterns of FC reflect the diversity
of neuronal dynamics that emerge, among others, from the
nonlinear dynamics of brain regions interconnected through
structural connectivity (SC) (Deco and Jirsa, 2012; Lord et al.,
2017; Guan et al., 2020). FC continuously evolves even in resting
conditions (Allen et al., 2014; Hansen et al., 2015; Cabral et al.,
2017), moreover, it changes across several tasks, highlighting the
flexible nature of brain dynamics (Cohen and D’Esposito, 2016;
Shine et al., 2016, 2019; Wang et al., 2021).

A plausible mechanism to facilitate—and regulate—
transitions between different FC patterns are neuromodulatory
systems. Neuromodulators do not directly excite neurons.
Instead, they change their excitability and response to
neurotransmitters, increasing or decreasing the probability
of firing action potentials (Thiele and Bellgrove, 2018). The
role of the cholinergic and noradrenergic systems in managing
the segregation/integration balance has been evidenced in
experimental (Shine et al., 2016, 2018b; Pfeffer et al., 2020), and
theoretical frameworks (Shine et al., 2018a; Pfeffer et al., 2020;
Coronel-Oliveros et al., 2021).

The noradrenergic system is involved in arousal when
subjects engage in high-load cognitive tasks (Aston-Jones and
Cohen, 2005; Shine et al., 2016, 2018b). For example, in
fMRI recordings during an N-back task (for assessing working
memory), the pupil diameter—a marker of noradrenergic tone
(Reimer et al., 2016)—increases (Shine et al., 2016, 2018b).
The principal source of noradrenaline in the cerebral cortex
comes from the locus coeruleus (LC) (Fuxe et al., 2010). The
GANE model of gain modulation (Mather et al., 2016; Lee
et al., 2018), proposes that the noradrenergic system modulates
neural response through an excitatory feedback loop between
glutamate receptors on varicosities of LC projections and
adrenergic β receptors on presynaptic glutamatergic neurons. At
the same time, less activated neurons are suppressed through
the action of adrenergic α2 autoreceptors expressed on the
varicosities. The overall result comprises an increase of the
neuron responsivity above a threshold, and a decrease of the
responsivity below this threshold. This is equivalent to increasing
the slope of the input-output sigmoid function, also named
filter gain, as proposed in Servan-Schreiber et al. (1990) and
Aston-Jones and Cohen (2005).

In a recent article (Shine, 2019), the noradrenergic system
was considered to promote an integrated functional network

configuration increasing the filter gain (Servan-Schreiber et al.,
1990; Aston-Jones and Cohen, 2005; Mather et al., 2016; Thiele
and Bellgrove, 2018). Computational studies (Shine et al., 2018a;
Coronel-Oliveros et al., 2021) have also shown how the interplay
between cholinergic and noradrenergic systems can regulate the
segregation/integration balance. While recent theoretical articles
point out that a non-uniform neuromodulation can explain
better the effects of neuromodulatory systems in brain dynamics
(Deco et al., 2018; Kringelbach et al., 2020), most studies so far
have considered homogeneous neuromodulation, i.e., acting in
all nodes in the same way.

There is evidence about the importance of network properties
of the human connectome (Cabral et al., 2014; Zamora-López
et al., 2016; Wang et al., 2019; Castro et al., 2020). For example,
its hierarchical modular organization is needed to sustain a
richer brain dynamics (Zamora-López et al., 2016; Wang et al.,
2019). Then, the repertoire of network configurations, as a
way to conceptualize the dynamical richness, can be affected
by neuromodulation. Using a neural mass model to simulate
neural activity, Shine et al. (2018a) showed that rich club regions
were strongly neuromodulated compared with non-rich club
members, especially between the transition from functional
segregation to integration. This work notably suggests that some
particular brain regions play a key role in the switching between
different functional states via neuromodulation. Here, instead
of quantifying what regions would be strongly neuromodulated,
we studied how much the impact would be on integration and
segregation when neuromodulating specific subsets of nodes, and
analyzed the structural features that define the nodes that, upon
modulation, have the largest effect on the network dynamics as
a whole.

To investigate this issue, we built a whole-brain model based
on the Jansen and Rit equations (Jansen et al., 1993; Jansen and
Rit, 1995) coupled to a human SC matrix, that allows us to
simulate the effect of the noradrenergic system on the functional
integration and segregation features of the network (Coronel-
Oliveros et al., 2021). The interaction between neuromodulation
and structural connectivity was studied at three levels: at
the global-scale, we used random surrogate connectomes that
preserve the number and strength of connections but disrupt
the global patterns. At the meso-scale, we determined whether
the modulation of a node subset containing the anatomical
rich club (Opsahl et al., 2008; Van Den Heuvel and Sporns,
2011) or the critical s-core (Garas et al., 2012; Eidsaa and
Almaas, 2013), is optimal to produce a change in network
dynamics, compared to randomly chosen subsets. At the local-
scale, we explored which local properties define the set of
nodes that, when being neuromodulated, maximize the effect on
network dynamics.

We found that when we selectively neuromodulated the brain
regions by the rich club (meso-scale property) or the high
strength criteria (local-scale) the whole-brain network dynamics
is most effectively modified. Additionally, we observed that
surrogate connectomes reduced FC richness, compared with
human SC, when neuromodulated. Overall, our findings clarify
how the neuromodulation interacts with the anatomical network
features at local-, meso-, and macro-scale levels in a whole-brain
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FIGURE 1 | Whole-brain neural mass model with neuromodulation. (A) The Jansen and Rit model is composed of a population of pyramidal neurons with excitatory

and inhibitory feedback mediated by interneurons. A series of constants Ci connect each population. The outputs are transformed from average pulse density to

average postsynaptic membrane potential by an excitatory (inhibitory) impulse response function hE (t) [hI (t)]. Then, a sigmoid function S performs the inverse

operation. Pyramidal neurons project to distant brain areas and receive both uncorrelated Gaussian-distributed inputs p(t) and inputs from other regions z(t), scaled by

a global coupling parameter α. (B) Each node represents a cortical region, whose dynamics are ruled by the Jansen and Rit equations. The structural connectivity

matrix, M, is the map of the connections (and their weights in the color bar) between cortical regions (row and columns of the matrix). The noradrenergic system

increments pyramidal neuron responsivity to relevant stimuli with respect to noise, as a filter, by increasing the slope r0 of their sigmoid function. (C) The whole-brain

model comprises 90 cortical and subcortical regions linked by a human connectome. For each region, the model produces both EEG-like and BOLD-like signals. The

brain figure was obtained using the BrainNet Viewer (Xia et al., 2013).

model to facilitate switching between segregated and integrated
brain states.

2. RESULTS

To study the effect of neuromodulatory systems on the
integrative/segregative capacities of the human connectome, we
used a whole-brain model of brain activity (Coronel-Oliveros
et al., 2021). In this model, each node corresponds to a brain area
represented by a neural mass, which consists of three populations
(Jansen et al., 1993; Jansen and Rit, 1995): pyramidal neurons,
excitatory, and inhibitory interneurons (Figure 1A). We used
the same parameters as in Jansen et al. (1993) and Jansen and
Rit (1995), except the connectivity constant from inhibitory
interneurons to pyramidal neurons C4, which we modified to
C4 = 0.5C, being C the original intra-area connectivity constant
of the model. The nodes are connected through a weighted
undirected structural connectivity matrix derived from human
MRI data (Deco et al., 2018), parcelated in 90 cortical and
sub-cortical regions with the automated anatomical labeling
(AAL) atlas (Tzourio-Mazoyer et al., 2002; Figure 1B). Pyramidal
neurons connect regions (or nodes) because it is considered that
long-range projections are mainly excitatory (Gilbert et al., 1990;
McGuire et al., 1991). The simulations generate firing rates in
each node of the network, which was used as an input to a
generalized hemodynamic model (Stephan et al., 2007). In this

way, we obtained fMRI BOLD-like signals (Figure 1C) from
which we built the FC matrices.

We modeled the influence of the noradrenergic system
through the manipulation of the filter gain (Aston-Jones and
Cohen, 2005; Shine, 2019; Figure 1B). The filter gain r0 modifies
the sigmoid function slope of pyramidal neurons, increasing their
responsivity to relevant stimuli, decreasing the response to low
amplitude stimuli, and boosting the signal-to-noise ratio.

2.1. Human Structural Connectivity
Enhances Dynamical Richness
First, we analyzed how neuromodulation depends on the
connectivity pattern of the human connectome by using different
randomized surrogate connectomes. We employed a degree- and
strength-preserving randomization (DSPR), which randomizes
the structural connectivity while preserving original degree and
strength distributions (Figure 2B); in this way we can study the
effect of disrupting the global connectivity without altering the
local nodal properties. In addition, we employed a complete
randomization of the structural connectivity (Figure 2C), which
does not preserve the degree and strength distributions.
Finally, a homogenization (binarization) of the connectome was
considered (Figure 2D); this surrogate preserves the topology,
disrupting the non-uniform weight distribution. We simulated
EEG-like and fMRI BOLD-like signals from the Jansen and Rit
model at different combinations of α ∈ [0, 1] and r0 ∈ [0, 1]
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FIGURE 2 | Effects of network structure in neural synchronization and integration. From top to bottom: structural connectivity matrix, phase synchrony R̄, global

efficiency Ew (a measure of integration), and modularity Qw (measure of segregation), obtained in the model with different structural connectivities. R̄ was obtained

from EEG-like simulated activity, while Ew and Qw were calculated using the FC obtained from the corresponding fMRI BOLD-like traces. (A) Human structural

connectivity (Human). (B) Degree- and strength-preserving randomized version of Human (DSPR). (C) Randomized version of Human, where weight values were

shuffled across the full matrix (Random). (D) Homogeneous version of Human, having the same weight in all connections (Homogeneous).

parameters. Here, the value of the parameters is equal for all the
nodes, and we refer to this case as uniform neuromodulation.
We computed the mean of the Kuramoto order parameter, also
known as phase synchrony R̄, the global efficiency, Ew, and the
modularity, Qw, as measures of global phase synchronization,
integration, and segregation, respectively. Global efficiency is a
measure of integration defined as the inverse of the characteristic
path length (Rubinov and Sporns, 2010). High values of Ew

represent an efficient coordination between all pairs of nodes in
the network, a signature of integration. Modularity is a measure
of segregation based on the detection of network communities,
or modules (Rubinov and Sporns, 2010); high modularity Qw is
associated with segregation and vice-versa.

Figure 2A shows how neuromodulation of the human
connectome causes a shift of the model toward a synchronized
and integrated state, with maximum integration observed in
an intermediate region of the parameter space, as previously
reported in Shine et al. (2018a) and Coronel-Oliveros et al.
(2021). The synchrony R̄ has an upper bound of 0.76, that
is, the network never fully synchronizes. The transition is
gradual, with many regions showing an intermediate behavior
characterized by higher metastability and richer dynamics

(Zamora-López et al., 2016; Shine et al., 2018a; Coronel-Oliveros
et al., 2021). Moreover, the region of the parameter space where R̄
increasesmatches the increment in global efficiency, Ew, verifying
a link between the fast dynamics of EEG and the slower one
of fMRI-BOLD.

We repeated the same exploration using the DSPR surrogate
connectome (Figure 2B; Rubinov and Sporns, 2011). The area of
synchronized activity in the parameter space (r0, α) is reduced,
and a spot of over-synchronized activity can be appreciated.
Most importantly, the area of intermediate values of synchrony
and integration is largely reduced, suggesting a reduction of
dynamical richness. When the connectivity matrix is completely
randomized (Figure 2C), or made homogeneous by assigning
equal weights to all connections (Figure 2D), neuromodulation
produces a large area of over-synchronized activity in the
parameter space and fewer regions with intermediate behavior.

The dramatic decrease in Ew in Figures 2C,D is a consequence
of the over-synchronization (R̄ ≈ 1) triggered by randomization.
When signals are highly synchronized in our model, the envelope
in the alpha band of the EEG (between 8 and 13 Hz) becomes
flat, and so does the BOLD-like signal calculated with the
hemodynamic model (Foster et al., 2016). For this reason, this
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FIGURE 3 | Partial noradrenergic neuromodulation. (A) The (α, r0) parameter space showing phase synchrony R̄, global efficiency Ew, and modularity Qw, for the

Human connectome (same as in Figure 2A). Blue and red dots are references for (B–D). (B–D) BOLD-like signals, FC and FCD matrices obtained when all nodes

have α = 0.65 and (B) r0 = 0.33; (C) 45 nodes have r0 = 0.33 and 45 nodes have r0 = 0.67; and (D) all nodes have r0 = 0.67. In (C), the 45 nodes with the highest

strength were modified to r0 = 0.67.

drop in Ew should not be interpreted as a reduction of integration
but a limitation of the hemodynamic model we employed in
input simulations. Nevertheless, an over-synchronized regime
of activity is a feature never found in the healthy brain
(Miron-Shahar et al., 2019).

Thus, in line with several previous reports (Cabral et al.,
2014; Zamora-López et al., 2016; Wang et al., 2019; Fukushima
and Sporns, 2020), disrupting the organization of the human
connectome (or the weight relationships between nodes) causes
over-synchronization, and highly metastable regimes can not be
easily reached employing neuromodulation.

In the following, we will study which local- or meso-scale
organization features are determinant in the effect of
neuromodulation of human connectome by evaluating the
network behavior when changing the r0 parameter in subsets of
network nodes.

2.2. Neuromodulation of High-Strength
Nodes Promotes Better Functional
Integration
In this section, we investigate the impact on functional
integration when an increasing number of nodes are
neuromodulated. The order in which nodes are modulated is
defined considering nodal measures obtained from the structural
matrix M. We calculated, for each node i ∈ [1 . . . n]: node

strength, Kw
i , nodal efficiency, Ewi , and clustering coefficient, Cw

i
(Rubinov and Sporns, 2010). The superscript w indicates the use
of the weighted versions of the measures. Then, for each metric,
nodes were ordered either from high to low or from low to high.
We fixed the global coupling α = 0.65, and swept r0 ∈ [0.33, 1]
and the number of nodes being neuromodulated in [0, 90] in
steps of three. As before, we used the EEG-like and BOLD-like
signals to extract synchrony, integration, and segregation.

A particular example of partial neuromodulation is shown
with some detail in Figure 3. The (α, r0) parameter space is
shown in Figure 3A depicting global phase synchrony R̄, global
efficiency Ew and modularity Qw in a uniform neuromodulation
scenario (all nodes identical). Figure 3B shows sample BOLD
traces, the functional connectivity (FC) and the functional
connectivity dynamics (FCD) matrices for α = 0.65, r0 = 0.33
(red dot in Figure 3A). The FCD matrix visually represents
the dynamical richness of the network, by computing time-
dependent FCs using sliding windows (Cabral et al., 2017; Orio
et al., 2018). Then, FCs are vectorized and compared to each
other using the Clarkson distance (Clarkson, 1936), resulting in
a matrix of time vs. time. At the bottom, Figure 3D shows the
same analysis for α = 0.65, r0 = 0.67 (blue dot in Figure 3A). In
the middle, Figure 3C shows the results when only half of the
nodes have been neuromodulated to r0 = 0.67 while the rest
remain with r0 = 0.33. As the number of nodes with r0 = 0.67
increases, the FC matrices become more integrated (high Ew
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FIGURE 4 | Incremental neuromodulation based on node strength. (A) Effect of the neuromodulation on phase synchrony R̄, global efficiency Ew, and modularity Qw,

at different combinations of r0 and number of neuromodulated nodes. Nodes were affected by neuromodulation according to their strength, from low to high. (B)

Effect of the neuromodulation of nodes sorted from high to low strength. (C) Metrics as a function of the number of neuromodulated nodes, for r0 = 0.67 as target

value. Blue curves for neuromodulation of nodes with low strength, orange the opposite, and green for a random ordering of the nodes. Shaded areas correspond to

95% confidence intervals, for 10 realizations.

and low Qw values). Similarly, the FCD matrices change from
incoherence (red FCD), to exhibit multi-stable behavior (FCD
with yellow-green patches), and finally to show correlated FC
patterns (blue FCD). In summary, the increment of the number
of neuromodulated nodes increases phase synchrony, functional
integration, and the time correlation of FCs captured by the FCD.

Figure 4 shows the result of neuromodulating r0 with a
target value in the [0.33, 1] interval and with the number of
neuromodulated nodes ranging from 0 to 90. The order in
which nodes are neuromodulated is either from low to high
Kw
i (Figure 4A) or viceversa (Figure 4B). When the number of

neuromodulated nodes is large, R̄ and Ew raise markedly in both
cases; the opposite can be observed for Qw. However, picking
the nodes of high strength first (Figure 4B) has greater impact in
the change of those metrics. The difference is best appreciated in
Figure 4C, where we selected a target r0 value of 0.67. There, the
curves for the high to low Kw

i sorting (in orange) present a larger
effect at the beginning, compared with the low to high Kw

i sorting

(in blue). We can conclude that nodes with higher strength have
a greater impact on functional integration, and inspection of the
colormaps of Figures 4A,B reveals that this is true for almost all
values of target r0. The results were also compared with a random
selection of nodes for neuromodulation (green curves). As the
blue curve is mainly below the green curve, neuromodulation of
nodes with low Kw

i produces less synchronized and integrated
dynamics than expected by a random neuromodulation. In
contrast, choosing high Kw

i nodes is not different from random
selection, when looking at the measures of integration and
segregation. In consequence, there is a range (or possibly a set) of
nodes that produce a robust integration when neuromodulated,
compared to a random choice of nodes.

We compared the results of sorting the nodes based on
strength Kw

i , with ranking the nodes based on nodal efficiency
Ewi or clustering coefficient Cw

i (Figure 5). A node with a high
Ewi has many short paths to the rest of the nodes of the network,
while a high Cw

i is expected for nodes whose neighbors are

Frontiers in Computational Neuroscience | www.frontiersin.org 6 July 2021 | Volume 15 | Article 687075

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Coronel-Oliveros et al. Interaction Between Structure and Neuromodulation

FIGURE 5 | Incremental neuromodulation based on nodal efficiency and clustering coefficient. (A,B) Phase synchrony R̄, global efficiency Ew, and modularity Qw as a

function of the number of neuromodulated nodes, for r0 = 0.67 as target value. In (A), nodes were sorted according to nodal efficiency, Ewi , and in (B) according to

the clustering coefficient, Cw
i . Blue curves for sorting of nodes from low to high (of the particular metric), orange is from high to low, and green for a random sorting of

the nodes. (C) Difference between the area under the curve (AUC) of high vs. low sorting, averaged over the 10 realizations. Shaded areas in (A,B) correspond to 95%

confidence intervals, and barplots were built using the mean ± standard deviation. ***p < 0.001.

also connected between them. Figure 5A shows the result of
modulating an increasing number of nodes from a basal r0 =
0.33 to a target r0 = 0.67, when the nodes are ordered
from low to high or high to low Ewi . The results are similar
to the ones obtained using the strength Kw

i : neuromodulation
of nodes of high Ewi has a greater impact in synchronization
and integration, compared with the nodes of low Ewi . Here,
the random sorting of nodes is similar to the high to low Ewi .
However, when the nodes are sorted according to their clustering
coefficient Cw

i (Figure 5B), there is little difference compared to
random sorting.

When comparing the results in Figures 5A,B with the
neuromodulation of a random subset of nodes (green
curves), there is no clear advantage of selecting the nodes
with high Ewi or Cw

i . Despite the increase in R̄ being
slightly higher for the orange curves, compared with the

green curves, the difference in Ew is unnoticeable, except
in Qw when ordering the nodes from high to low Ewi .
These results contrast with the ones in Figure 4C, where
the neuromodulation of nodes with high Kw

i produced an
increase in synchronization and integration higher than
random neuromodulation.

To summarize these results, we computed the difference
between the area under the curve (AUC) for the high-to-low
minus low-to-high (orange minus blue AUCs; Figure 5C). A
larger difference implies a higher impact of neuromodulating
first the nodes with a higher value of the chosen metric
in synchronization, integration, and segregation. The mean
difference in the AUCs for the measures 1R̄, 1Ew, and −1Qw

(note that the sign is inverted for visualization purposes), is lower
for Cw

i than for Kw
i and Ewi (p < 0.001 for all comparisons using

Student’s t-test).
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FIGURE 6 | Neuromodulation based on the rich club organization. (A) Normalized and weighted rich club coefficient φw
norm(K) (blue curve), as a function of the

degree-based threshold K. This coefficient was calculated as the ratio between the human rich club coefficient (purple solid curve) and the mean coefficient for

random surrogates (DSPR, purple dashed curve). The red arrow marks the point in which φw
norm(K) is maximal; rich club nodes were found at that point. (B) Schematic

depiction of the rich club, feeders (not belonging to the rich club, but connected with it) and local nodes, (connected only to feeders). At the right, we show a glass

brain with the nodes identified as rich club (n = 17 nodes), feeders (n = 60), and local (n = 13). (C) Changes in synchrony R̄, global efficiency Ew and modularity Qw

when neuromodulating 24-node sets containing the rich club (blue), local nodes (green), or only feeders (orange). The results are shown as the difference with respect

to a random subset of nodes of equal size (null case). The bottom row summarizes the area under the curve (AUC) for each metric and nodal category, averaged over

the 10 realizations. Shaded areas correspond to 95% confidence intervals, and bar plots were built using the mean ± standard deviation. **p < 0.01, ***p < 0.001.

2.3. Neuromodulation of Rich Club Nodes
Strongly Impacts Functional Integration
Node strength, nodal efficiency and clustering coefficient are
considered local-scale properties, i.e., they belong to each node.
Several meso-scale network properties have been described as
being determinant for network dynamic too, such as the rich club
organization (Van Den Heuvel and Sporns, 2011) and the s-core
(Hagmann et al., 2008; Garas et al., 2012; Eidsaa and Almaas,
2013; Castro et al., 2020). We identified the nodes belonging to
the “rich club,” using the weighted rich club coefficient φw(K),
where K is a threshold based on degree (Opsahl et al., 2008).
The rich club comprises a subset of the graph, thresholded

at K, in which nodes are more strongly interconnected than
expected by chance (Van Den Heuvel and Sporns, 2011). The
coefficient is normalized using random surrogates φw

rand
(K), in

our case DSPR surrogates (Rubinov and Sporns, 2011). If the
normalized coefficient φw

norm(K) is greater than 1, the network
has a rich club organization at threshold K. Figure 6A shows
a plot of φw

norm(K) (blue) as a function of K. The red arrow
marks the point in which the normalized coefficient is maximal
[φw

norm(K) = 1.367, p < 0.002]. Then, we identified feeder
nodes—nodes that do not belong to the rich club but are
connected to at least one of its members—and local nodes—
connected to feeders but not to the rich club (Figure 6B). We
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found 17 nodes belonging to the rich club, 60 feeders and 13 local
nodes (Figure 6B). The rich club members are the brain regions
in Table 1.

As the analysis of the rich-club properties of the human SC
defines sub-networks, instead of sorting the nodes, we chose
a different approach than the neuromodulation of increasing
subsets of nodes. Here, we simulated neuromodulation of a
fixed-size subset of nodes, that included all nodes belonging
to a certain category (rich club, feeders, or local). Because
the categories differ in size, we complemented the rich club
and local nodes with 7 and 11 nodes, respectively, selected
randomly from the feeders. For the last one, we randomly chose
24 feeder nodes. Also, we had a null case, composed of 24
nodes randomly selected from the complete set of nodes. We
repeated the random selection of nodes with 10 realizations,
always using subsets of 24 nodes. The nodes started with a basal
r0 value of 0.33, and r0 was swept up to 1 but only in the
designated subset of nodes. For each r0 increment, we measured
R̄, Ew, and Qw. Then, we subtracted to each measurement the
result of the null case. The results are shown in Figure 6C.
Neuromodulation of the rich club nodes produces an increase in
synchronization and integration, and a decrease in modularity,
above chance. The difference becomes more pronounced with
further increments of r0. Opposite results were observed for
the subsets containing local nodes. Finally, neuromodulation
of subsets containing only feeder nodes produce no difference
compared to random selection of nodes. As a summary index,
we calculated the AUC for each nodal category (Figure 6C).
Considering the three measurements, the AUC is higher (lower
in the case of modularity Qw) for the rich club respect to feeders
and local, and higher (lower in the case of Qw) between feeders
and local (p < 0.001 for all comparisons using Student’s t-
test). Our results show that noradrenergic neuromodulation of
a subset including the rich club nodes has a greater impact
on integration compared to the feeders, locals, and a random
selection of nodes.

As previously shown, functional integration is also achieved
by neuromodulation of highest strength nodes. To highlight
the difference between the local and meso-scale approaches, we
quantified the overlap between the rich club nodes and the 17
nodes with higher strength. We found that only 8 members of
the rich club belong to the subset of 17 nodes with higher strength
(Table 1). Thus, there are some high-strength key nodes that do
not belong to the rich club, that promote functional integration
via neuromodulation.

To explore a second meso-scale network organization, we
performed a s-core decomposition (Garas et al., 2012; Eidsaa
and Almaas, 2013) that classifies nodes according to their core-
periphery organization (Hagmann et al., 2008; Figure 7A). We
defined three categories considering a range of critical s-core
values: S3 with 10 nodes (1.54 < s < 1.78), S2 with 56 nodes
(1.48 < s < 1.54), and S1 with 24 nodes (s < 1.48; Figure 7B).
The critical s-core is defined as the maximal value of s at which
nodes are still connected to the network. Thus, S3 are nodes
connected within them with highest strength, S2 middle-strength
nodes, and S1 the nodes with the lowest strength. The S3 subset
comprises the brain regions shown in Table 1.

TABLE 1 | List of regions belonging (X) to the rich club, the S3 category, and the

17 nodes with highest strength.

Brain regions Rich club S3 core Top strength

Posterior cingulate gyrus (L, R) X X X

Precuneus (L, R) X X X

Calcarine fissure (L, R) X X

Cuncus (L, R) X

Cuneus (L, R) X X

Caudate nucleus (R) X

Hippocampus (L, R) X

Insula (L) X

Middle occipital gyrus (L) X X

Pallidum (L, R) X

Putamen (L, R) X X

Rolandic Operculum (L) X

Superior dorsal gyrus, dorsolateral (L, R) X

Superior frontal gyrus, orbital (L) X

Superior occipital gyrus (L, R) X

Superior frontal gyrus, medial (L) X X

Thalamus (L, R) X

L, left hemisphere; R, right hemisphere. The regions listed here are the same displayed in

the glass brains of Figures 6, 7.

We simulated the neuromodulation in subsets of 24 nodes,
containing either the S3 or the S1 category, and complementing
S3 with 14 random nodes from S2 as done with the rich club. A
third group was built with 24 nodes randomly selected from S2,
and all groups were compared to a random selection of 24 nodes
from the whole set. As shown in Figure 7C, the selection of S2
nodes for neuromodulation shows the largest effect in 1R̄, 1Ew,
and 1Qw, compared with S1 nodes (p < 0.001 using Student’s t-
test) and compared to the selection of S3 nodes (p < 0.001, except
for 1Ew with p = 0.106). Thus, nodes belonging to the highest
s-core (nodes of the highest within-strength sub-network) do
not behave like the rich club, as their neuromodulation does
not have the highest impact on network synchronization and
integration/segregation properties.

3. DISCUSSION

In this work, we sought to identify the relationship between
structural features of the human connectome and the specific set
of regions that, when neuromodulated in a biologically realistic
whole-brain model, produce a significant increase in functional
integration. We found that the global organization of the
connectome sustains rich metastable and partially synchronized
states, essential to the effects related to neuromodulation. At the
meso- and local-scales, nodes belonging to the anatomical rich
club, and those having high nodal strength, produce a marked
increase in functional integration (and a decrease in segregation)
when neuromodulated.

Our results show that the whole-brain model exhibits over-
synchronized behavior when using surrogate connectomes,
restricting the dynamic features of the model. This result is in the
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FIGURE 7 | Neuromodulation based on the s-core decomposition. (A) s-core decomposition. At the left, example based on degree (k-core). Nodes are recursively

removed based on a degree threshold. The remaining nodes form a subgraph or core where all nodes have a within-degree above the threshold. For example, the

three-core of the figure corresponds to a subgraph where all nodes have a degree of three or more. The numbers on the circles correspond to nodes’ degree. The

right plot shows the number of remaining nodes in s-core after applying the strength-based threshold s. (B) Brain regions identified using the s-core decomposition.

We defined three categories, considering a range of s values: S3 (n = 10 nodes), S2 (n = 56), and S1 (n = 24). (C) Changes in synchrony R̄, global efficiency Ew and

modularity Qw when neuromodulating 24-node sets containing the S3 nodes (blue), S1 nodes (olive green), or only S2 nodes (pink). S1 and S3 sets were

complemented with random nodes from S2 to obtain sets of 24. Results are shown as the difference with respect to a random subset of nodes of equal size (null

case). The bottom row summarizes the area under the curve (AUC) for each metric and nodal category, averaged over the 10 random seeds. Shaded areas

correspond to 95% confidence intervals, and bar plots were built using the mean ± standard deviation. ***p < 0.001.

same line as other previous findings (Cabral et al., 2014; Zamora-
López et al., 2016; Wang et al., 2019; Fukushima and Sporns,
2020). Here, we show this behavior in the (α, r0) parameter
space, where simulations with randomized connectomes show
either incoherent or over-synchronized activity. Using a whole-
brain model to simulate and fit magnetoencephalography (MEG)
resting-state recordings, Cabral et al. (2014) found not only
that randomized and homogenized versions of the human
structural connectivity did not fit empirical data; moreover,
they found that the fit was maximal in the metastable region
of the parameter space, when unsynchronized (segregated)
and synchronized (integrated) regimes of activity coexist. In
the same way, Fukushima and Sporns (2020) using more

complex surrogate data in the context of whole-brain models,
found features of the human connectome that better capture
the dynamic fluctuations in fMRI resting-state recordings.
Additionally, computational studies conducted by Zamora-
López et al. (2016) showed that the human connectome better
maximizes functional complexity in fMRI recordings, compared
with different surrogate connectomes. Finally, Wang et al. (2019)
analyzed how the hierarchical modular structure of the human
connectome enables the coexistence of segregated and integrated
functional states, also with the use of network surrogates in
which hierarchical levels were controlled. Our study interpret the
explorations of the parameter space as levels of neuromodulation,
that allow the brain to tune its integration or segregation levels
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to environmental demands. However, neuromodulation cannot
bring back a dynamically rich regime to a network without a
structural connectome that sustains it.

At the local level, the effects of neuromodulation strongly
depend on the characteristics of the nodes in the human
connectome. In our model, the nodes with high strength
are the ones that better facilitate functional integration when
neuromodulated. This result resonates with a recent work by
Herzog et al. (2020), who studied a whole-brain model fitted
to reproduce the effects of lysergic acid diethylamide (LSD) in
resting-state brain dynamics. In their model, the serotonergic-
induced changes in nodal entropy correlated positively with
node strength. Notably, the correlation disappears when the
human connectome was randomized without preserving the
strength distribution, emphasizing the importance of the specific
organization of the human connectome in shaping brain
dynamics. Interestingly, the entropy changes described by
Herzog et al. (2020) are poorly explained by the 5HT2A receptor
density map, obtained by PET (Beliveau et al., 2017), and
depends on both node strength and receptor density. Thus, the
interaction between the structural connectivity, receptor density,
and neuromodulation is not straightforward. A similar complex
picture arises when our results are contrasted with receptor maps
of noradrenergic receptors (see below).

Network hubs, or nodes belonging to the rich club or
network’s ignition core, can be critical elements for binding
information of segregated brain regions, that is, to integrate
information across brain areas (Griffa and Van den Heuvel, 2018;
Castro et al., 2020). Considering the relevance of integration
for the brain function (Tononi, 2004), and the noradrenergic
influence on integration (Shine, 2019), we hypothesized that
anatomical network hubs are pivotal elements for promoting
functional network integration. Our results confirmed this
hypothesis, being the neuromodulation of rich club nodes the
one that most effectively facilitates functional integration and
synchronization of brain activity. This result agrees with findings
reported in a fMRI resting-state model of the brain by Deco
et al. (2017), where removing the rich club nodes causes a larger
decrease in integration compared to the removal of the non-rich
club members. Similar results have been found in computational
models of noradrenergic neuromodulation where rich club nodes
are strongly neuromodulated causing functional networks to
switch from segregation to integration (Shine et al., 2018a).

Notably, neuromodulation of nodes belonging to the critical
s-core (the maximally inter-connected core) does not promote
integration as the rich club nodes do. Both meso-scale analyses
rely on sets of nodes organized with strong connection weights.
However, they do it differently. The rich club coefficient threshold
is based on degree, and rich club members are highly connected
between them as well as with the non-rich club members. In
contrast, the s-core decomposition find subsets of nodes highly
interconnected at strength s, but not necessarily well connected
to the rest of the network. Thus, the whole-network changes are
more easily achieved if the set of nodes to be neuromodulated
is highly connected both between them and with the rest of
the network. The rich-club organization captures additional
information that is missing in the local (weight) analysis. For

example, the 17 rich club nodes have an overlap of ≈50% with
the 17 highest strength nodes. In contrast, nodes belonging to the
S3 category are the nodes of the highest strength in the network;
however, they cannot boost functional integration to the same
extent as the rich club nodes.

Part of the brain regions we found in the rich club
support high order brain functions. For example, frontoparietal
regions play an important role in cognition, and are markedly
activated when subjects engage in cognitive tasks (Cavanna,
2007). Precuneus has been associated with consciousness, and
a decrease in its activity was reported in sleep, anesthesia, and
vegetative states (Lückmann et al., 2014). Thalamus, the brain
“relay station,” strongly connects several networks that comprise
multiple cortical regions (Hwang et al., 2017). Multi-task fMRI
recordings in humans suggest a robust role of the anatomical rich
club as facilitating elements of functional integration in overall
tasks (Shine et al., 2019). An extended analysis and discussion
about the role of the rich club, in both health and disease, can be
found in Griffa and Van den Heuvel (2018).

The non-uniform expression of receptors across several
brain areas suggests that the brain uses selective or partial
neuromodulation. In this way, the effect of the noradrenergic
system on filter gain may be modeled as proportional to
adrenergic receptor expression. Experimentally, the optogenetic
activation of the LC in mice increased average functional
connectivity, which correlates with the expression of α2, α1,
and β1 adrenergic receptors (Zerbi et al., 2019). Thus, a future
research avenue in computational models may include a density-
dependent noradrenergic neuromodulation with the addition of
some receptors maps, obtained by positron emission tomography
(PET), or even gene expression maps (Shen et al., 2012) that
correlate with receptor density maps (Komorowski et al., 2017).
Surprisingly, using the Allen Human Brain Atlas database (Shen
et al., 2012) we found that some adrenergic receptor genes,
i.e., the ADRA2A and ADRB1, are less expressed in the rich
club nodes than in feeders and local nodes (Figure 8). As a
consequence, the noradrenergic-mediated increase in filter gain
could have a lower impact on rich club nodes. It is possible that
this reduced expression constitutes a compensation for the high
connectivity of rich club nodes, specially considering the higher
metabolism of rich regions that exposed them to oxidative stress
and neuroinflammation (Griffa and Van den Heuvel, 2018). On
the other hand, receptor expression can itself be compensated by
a specific sub-cellular localization or other excitability factors that
may enhance the effect of noradrenaline.

It has been suggested that the effect of noradrenaline
in functional connectivity is context-dependent (Shine et al.,
2018b; Pfeffer et al., 2020). In that line, modeling the effect
of noradrenaline in resting-state and task conditions could
untangle the mechanisms behind this context-dependent effect
of noradrenaline. The anatomical backbone and other dynamical
parameters of this model can be substituted to study themouse or
monkey brain and to any other species for which the whole-brain
white-matter connectivity is available.

Our work considers an arbitrary basal value of r0. Despite
this, we reported a clear effect of the selective noradrenergic
neuromodulation on functional integration, that is, some brain
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FIGURE 8 | Expression of some noradrenergic receptors genes in brain regions. Genes ADRA2A, ADRA2C, and ADRAB1 are related to noradrenergic receptors α2A,

α2C, and β1, respectively. The normalized expression was obtained from the Allen Human Brain Atlas using the AAL parcelation. Bar plots were built using the mean ±
standard deviation. ***p < 0.001, **p < 0.01, *p < 0.05, ∼p < 0.1.

regions have a greater impact in the noradrenaline-mediated
effect on brain function. A further improvement to our approach
constitutes the use of a different benchmark, e.g., fitting
the model to reproduce the empirical FC in resting-state,
and then apply a homogenoeus or selective neuromodulation.
Furthermore, the addition of receptors maps may be considered,
as commented above.

Overall, our results offer new insights into the key regions
of the human brain that, when neuromodulated via the
noradrenergic system, promote transitions to integrated
functional states. Our results highlight the importance of the rich
club and high-strength connections in producing changes related
to neuromodulation. We hope that our theoretical framework
inspires new research toward clinical applications or treatments
of human brain disorders caused by or associated with changes
in functional and structural brain connectivity.

4. METHODS

4.1. Whole-Brain Neural Mass Model
We simulated neuronal activity using the Jansen and Rit neural
mass model (Jansen et al., 1993; Jansen and Rit, 1995). In this
model, a brain area consists of three populations of neurons:
pyramidal neurons, excitatory and inhibitory interneurons.
The dynamical evolution of the three populations within the
brain area is modeled by two blocks each. The first block
transforms the average pulse density in average postsynaptic
membrane potential (which can be either excitatory or inhibitory;
Figure 1A). This block, denominated post synaptic potential
(PSP), is represented by an impulse response function. For the
excitatory outputs:

hE(t) =
{
Aate−at , t ≥ 0

0, t < 0
(1)

and for the inhibitory ones

hI(t) =
{
Bbte−bt , t ≥ 0

0, t < 0,
(2)

The constants A and B define the maximum amplitude of the
PSPs for the excitatory (EPSPs) and inhibitory (IPSPs) cases
respectively, while a and b represent the inverse time constants
for the excitatory and inhibitory postsynaptic action potentials,
respectively. The second block transforms the postsynaptic
membrane potential in average pulse density, and is given by a
sigmoid function of the form

S(ν, r) =
ζmax

1+ er(νth−ν)
, (3)

with ζmax as the maximum firing rate of the neuronal population,
r the slope of the sigmoid function, νth the half maximal
response of the population, and ν their average PSP. Additionally,
pyramidal neurons receive an external stimulus p(t), whose
values are taken from a Gaussian distribution with mean µ =
2 impulses/s and standard deviation σ = 2. In this model
(Figure 1A), each node i ∈ [1 . . . n] represents a single brain
area. The global coupling is scaled by a parameter α, and nodes
are connected by a normalized structural connectivity matrix M̃
(Figure 1B). This matrix is derived from a human connectome
(Deco et al., 2018) parcelated in n = 90 cortical and subcortical
regions with the automated anatomical labeling (AAL) atlas
(Tzourio-Mazoyer et al., 2002); the matrix is undirected and
takes values between 0 and 1. Because long-range connections
are mainly excitatory (Gilbert et al., 1990; McGuire et al., 1991),
only links between the pyramidal neurons of a node i with
pyramidal neurons of a node j are considered. We applied a
global normalization procedure to the structural connectivity
matrix M. The normalization consisted of dividing all the values
of the matrix by the mean strength of the nodes. The resulting
normalized matrix M̃ is defined as

M̃ =
M

1
n

∑n
i=1

∑n
j=1,j 6=iMij

(4)
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The set of equations, for a node i, includes the within and between
nodes activity

ẋ0,i(t) =y0,i(t)

ẏ0,i(t) =Aa
[
S(C2x1,i(t)− C4x2,i(t)+ Cαzi(t), r0)

]

− 2ay0,i(t)− a2x0,i(t)

ẋ1,i(t) =y1,i(t)

ẏ1,i(t) =Aa
[
p(t)+ S(C1x0,i(t), r1)

]
− 2ay1,i(t)− a2x1,i(t)

ẋ2,i(t) =y2,i(t)

ẏ2,i(t) =Bb
[
S(C3x0,i(t), r2)

]
− 2by2,i(t)− b2x2,i(t)

ẋ3,i(t) =y3,i(t)

ẏ3,i(t) =Aā
[
S(C2x1,i(t)− C4x2,i(t)+ Cαzi(t), r0)

]

− 2āy3,i(t)− ā2x3,i(t)

(5)

where x0, x1, x2 correspond to the outputs of the PSP blocks of the
pyramidal neurons, and excitatory and inhibitory interneurons,
respectively, and x3 the long-range outputs of pyramidal neurons.
The constants C1, C2, C3, and C4 scale the connectivity
between the neural populations (see Figure 1A). The first pair
of equations, x0 and y0, are related to the outputs of pyramidal
cells to both interneurons; the second pair, x1 and y1, represent
all the local excitatory inputs that the pyramidal neurons receive;
x2 and y2 constitute the inhibitory contribution to pyramidal
cells. An additional pair of equations (x3 and y3) are introduced
to represent long-range (inter-area) connections, as they target
the apical dendrites of pyramidal neurons and thus their EPSP
have a larger characteristic time constant. We used the original
parameter values of Jansen and Rit (Jansen et al., 1993; Jansen
and Rit, 1995), except for C4: ζmax = 5 s−1, νth = 6 mV,
r0 = r1 = r2 = 0.56 mV−1, a = 100 s−1, b = 50 s−1, A = 3.25
mV, B = 22 mV, C1 = C, C2 = 0.8C, C3 = 0.25C, C4 = 0.5C,
and C = 135. Changing C4 from 0.25 C to 0.5 C allowed the
model to sustain oscillations in a wider range of α values. The
parametersA, B, a, and bwere selected to produce IPSPs longer in
amplitude and latency in comparison with the EPSPs. The inverse
of the characteristic time constant for the long-range EPSPs was
defined as ā = 0.5a. This choice was based on the fact that long-
range excitatory inputs of pyramidal neurons target their apical
dendrites, and consequently this slows down the time course of
the EPSPs at the soma (Branco and Häusser, 2011).

The input from brain areas j 6= i to the region i is given by

zi(t) =
n∑

j=1,j 6=i

M̃ijx3,j(t) (6)

The average PSP of pyramidal neurons in region i characterizes
the EEG-like signal in the source space; it is computed as (Jansen
et al., 1993; Jansen and Rit, 1995)

ν(t)i = C2x1,i(t)− C4x2,i(t)+ Cαzi(t) (7)

The firing rates of pyramidal neurons ζi(t) = S[ν(t)i, r0] were
used to simulate the fMRI-BOLD signals.

4.2. Neuromodulation
The effect of the noradrenergic system was simulated controlling
the parameter r0 (filter gain; Figure 1B), which represents
the sigmoid function slope of the pyramidal population, and
increases the signal-to-noise ratio of pyramidal cells (Servan-
Schreiber et al., 1990; Thiele and Bellgrove, 2018). Details about
the relationship between the noradrenergic system and filter
gain can be found in the Introduction section. Further analysis
about this relationship has been presented previously in Mather
et al. (2016) and Shine (2019). We analyzed the effect of the
noradrenergic neuromodulation in three scenarios:

Macro-scale: Noradrenergic neuromodulation was studied in
interaction with the cholinergic system, represented by the
parameter α. The parameters were the same for all nodes. We
changed the features of the connectivity matrixM (see Figure 2)
to study the combined effect in neural coordination.

Meso-scale: nodes were classified in different categories, either
according to the rich club organization (Van Den Heuvel and
Sporns, 2011) or s-core decomposition of the network (see
section 4.5; Garas et al., 2012; Eidsaa and Almaas, 2013). Global
coupling was fixed in α = 0.65, and the basal value of r0 was
0.33 for all nodes (Figure 3). We incremented r0 in a subset
of 24 nodes belonging to a particular category, and compared
the results with the neuromodulation of a equal-length random
subset of nodes.

Because the categories differ in the number of nodes, a fair
comparison must considered subsets of equal size. To achieve
that, we complemented the rich club with seven randomly
selected feeder nodes, while the local nodes were complemented
with 11 randomly selected feeders. Likewise, we complemented
the S3 category with 14 randomly selected S2 nodes. From both
the feeders and S2 nodes we selected 24 nodes randomly. All
subsets consisted on 24 nodes, were generated 10 times with
different random seeds and the results averaged.

Local-scale: Nodes were sorted using one of three metrics:
node strength Kw

i , nodal efficiency Ewi , or clustering coefficient
Cw
i (Rubinov and Sporns, 2010). We neuromodulated—

increasing r0—node by node in increments of three, considering
the metric from high to low and vice-versa (Figure 3).

4.3. Simulations
Following Birn et al. (2013), we ran simulations to generate
the equivalent of 11 min real-time recordings, discarding
the first 60 s. The system of stochastic differential equations
(5) was solved with the Euler-Maruyama method, using an
integration step of 1 ms. We used 10 random seeds (realizations)
which controlled the initial conditions and the stochasticity
of the simulations. We simulated neuronal activity sweeping
the parameters α ∈ [0, 1] and r0 ∈ [0, 1], for the macro-
scale scenario. In the local- and meso-scale scenarios, we
swept r0 ∈ [0.33, 1] for a susbset of nodes, considering
a basal value of r0 = 0.33 and a fixed α = 0.65. All
the simulations were implemented in Python and the codes
are freely available at: https://github.com/vandal-uv/Structural_
Neuromod_2021.git. The graph analysis was performed using
the Brain Connectivity Toolbox for Python (https://github.com/
fiuneuro/brainconn; Rubinov and Sporns, 2010).
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4.4. Simulated fMRI-BOLD Signals
We used the firing rates ζi(t) to simulate BOLD-like signals using
a generalized hemodynamic model presented in Stephan et al.
(2007). In this model, an increment in the firing rate ζi(t) triggers
a vasodilatory response si, producing blood inflow fi, changes
in the blood volume vi and deoxyhemoglobin content qi. The
corresponding system of differential equations is

ṡi(t) =ζi(t)−
si(t)

τs
−

fi(t)− 1

τf

ḟi(t) =si(t)

v̇i(t) =
fi(t)− vi(t)1/κ

τv

q̇i(t) =
fi(t)(1−(1−E0)1/fi(t))

E0
− qi(t)vi(t)1/κ

vi(t)

τq
,

(8)

where τs = 0.65, τf = 0.41, τv = 0.98, τq = 0.98
represent the time constants for the signal decay, blood inflow,
blood volume, and deoxyhemoglobin content, respectively. The
stiffness constant (resistance of the veins to blood flow) is given
by κ , and the resting-state oxygen extraction rate by E0. We used
κ = 0.32 and E0 = 0.4. The BOLD-like signal of node i, denoted
Bi(t), is a non-linear function of qi(t) and vi(t)

Bi(t) = V0

[
k1(1− qi(t))+ k2

(
1−

qi(t)

vi(t)

)
+ k3(1− vi(t))

]
,

(9)
where V0 = 0.04 represents the fraction of venous blood
(deoxygenated) in resting-state, and k1 = 2.77, k2 = 0.2, k3 =
0.5 are kinetic constants.

The system of differential equations (8) was solved using the
Euler method with an integration step of 1 ms. The signals were
band-pass filtered between 0.01 and 0.1 Hz with a 3rd order
Bessel filter. These BOLD-like signals were used to build the
functional connectivity (FC) matrices fromwhich the subsequent
analysis of functional network properties was performed.

4.5. Structural Metrics
4.5.1. Macro-Scale

To compare different Macro-scale features of the connectome
we used four connectivity matrices (see Figure 2). The first
matrix corresponds to the original human connectome matrix
(Human, Figure 2A) (Deco et al., 2018). The second to a
degree and strength preserving randomization of the matrix
(DSPR, Figure 2B; Rubinov and Sporns, 2011). The third to a
randomization, which only preserves the weight distribution of
the original matrix (Random, Figure 2C). The fourth matrix was
built setting to 0 all entries of Mij < 0.05, and 1 otherwise
(Homogeneous, Figure 2D).

4.5.2. Meso-Scale

We identified the nodes belonging to the “rich club” sub-network
of the graph (Van Den Heuvel and Sporns, 2011). Nodes were
ranked according to degree, and then a subgraph was built using
a threshold K, retaining the nodes with a degree greater than K.

For eachK value the weighted rich-club coefficient was computed
as (Opsahl et al., 2008).

φw(K) =
W>K∑E>K

l=1 wrank
l

(10)

where W>K is the sum of the weighted edges of the subgraph
of nodes with a degree greater than K, E>K represent the total
number of edges of the subgraph, andwrank

l
a vector that contains

all the weighted edges of the entire network sorted from high to
low values. If φw(K) = 1, then the sum of the weights of the
“rich nodes” is maximal. Otherwise, φw(K) < 1 indicates the
proportion of the weighted edges of network that are into the
sub-network, and then some of the stronger connections were
missed when applying the threshold K. The rich club coefficient
was normalized in relation to DSPR surrogate graphs.

φw
norm(K) =

φw(K)

φw
rand

(K)
(11)

being φw
norm(K) the normalized rich club coefficient, and φw

rand
(K)

the mean rich club coefficient for a set of 1,000 random
surrogates graphs. Values of φw

norm(K) > 1 indicates a rich-club
organization, and nodes retained at K are defined as “rich club”
nodes (Figure 6A). The nodes that do not belong to the rich
club, but are connected with these nodes are called “feeders.” The
remaining nodes correspond to “local” nodes (Figure 6B). For
a maximum φw

norm(K) = 1.367 (p < 0.002), we identified 17
“rich club” nodes, 60 feeder nodes and 13 local nodes (Figure 6B).
Because the high density of the structural matrix M (≈ 40%)
hindered the discerning of the local nodes from feeders, we
identify these nodes applying an absolute threshold of 0.05 to
M. We selected this value as the maximum threshold that,
when applied, preserves the fitting of the model to the empirical
resting-state FC matrix.

The core-periphery organization (Hagmann et al., 2008) was
analyzed performing a s-core decomposition (Garas et al., 2012;
Eidsaa and Almaas, 2013), which identifies the cores of densely
interconnected nodes in the network. The method consists in
removing recursively a shell of nodes with strength less than s
to obtain the network core nodes. The nodes were assigned to a
category that corresponded to the maximal s value at which they
are still connected to the network, defined as the critical s-core
(Figure 7A). We defined three categories for different s values: s1
with 24 nodes (s < 1.48), s2 with 56 nodes (1.48 < s < 1.54), and
s3 with 10 nodes (1.54 < s < 1.78; Figure 7B).

4.5.3. Local-Scale

We employed three different metrics to characterize individual
nodes. Node strength (weighted degree) was computed as

Kw
i =

∑

j∈N,j 6=i

wij, (12)

where N is the set of nodes and wij the weighted edge of the
matrix M (Rubinov and Sporns, 2010). We computed the nodal
efficiency as
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Ewi =
∑

j∈N,j 6=i(d
w
ij )

−1

n− 1
, (13)

where dwij is the shortest path between the nodes i and j. Shortest
paths were calculated from the sum of the inverse of the weights
of M; the shortest path between two nodes (i, j) is the path
that minimizes this sum (the distance). Using the shortest paths,
nodal efficiency Ewi was computed. Nodes with high values
of Ewi are those with high proportion of short paths to the
rest of the nodes of the network (Rubinov and Sporns, 2010).
Finally, we calculated the clustering coefficient for each node
(Rubinov and Sporns, 2010)

Cw
i =

2twi
ki(ki − 1)

, (14)

where twi is the proportion of triangles around the node i,
calculated as

twi =
1

2

∑

j,h∈N
(wijwihwjh)

1/3. (15)

A node with a high Cw
i is highly connected with adjacent

(local) nodes.

4.6. Phase Synchronization
As a measure of global synchronization, we calculated the
Kuramoto order parameter R(t) (Acebrón et al., 2005) of the
EEG-like signals ν(t) derived from the Jansen and Rit model.
First, the raw signals were filtered with a 3rd order Bessel band-
pass filter using their frequency of maximum power (usually
between 4 and 10 Hz) ±3 Hz. Then, the instantaneous phase
θ(t) was obtained using the Hilbert transform. The global phase
synchrony is computed as:

R̄ =
〈∣∣∣〈ejθi(t)〉N

∣∣∣
〉
t
, (16)

where θi(t) is the phase of the oscillator i over time, j =
√
−1 the

imaginary unit, |•| denotes the module, 〈〉N denotes the average
over all nodes, and 〈〉t the average over time.

4.7. Functional Integration and Segregation
Functional Connectivity (FC) matrices were built from Pearson
correlations of the entire BOLD-like time series. Instead
of employing an absolute or proportional thresholding, we
thresholded the FC matrices using Fourier transform (FT)
surrogate data (Lancaster et al., 2018) to avoid the problem of
introducing spurious correlations (Fornito et al., 2013). The FT
algorithm uses a phase randomization process to destroy pairwise
correlations, preserving the spectral properties of the signals (the
surrogates have the same power spectrum as the original data).
We generated 500 surrogate time series of the original set of
BOLD-like signals, to obtain the surrogate sFCs matrices. For
each one of the (n2 − n)/2 possible connectivity pairs (with
n = 90) we fitted a normal distribution of the surrogate values.
Using these distributions, we tested the hypothesis that a pairwise
correlation is higher than chance (that is, the value is at the right
of the surrogate distribution).

To reject the null hypothesis, we selected a p-value equal
to 0.05, and corrected for multiple comparisons with the
FDR Benjamini-Hochberg procedure (Benjamini and Hochberg,
1995) to decrease the probability of making type I errors (false
positives). The entries of the sFC matrix associated with a p >

0.05 were set to 0. The result is a thresholded, undirected, and
weighted (with only positive values) sFC matrix.

Integration was evaluated over the thresholded FC matrices.
We employed the weighted version of the global efficiency
(Latora and Marchiori, 2001). This measure of integration is
based on paths over the graph: it is defined as the inverse of the
average shortest path length. This metric is computed as

Ew =
1

n

∑

i∈N

∑
j∈N,j 6=i(d

w
ij )

−1

n− 1
, (17)

being N the set of all nodes, n number of nodes, and dwij the
shortest path between the nodes i and j.

Segregation was quantified using modularity Qw, a metric for
the detection of the network’s communities (Rubinov and Sporns,
2010). The detection of so-called communities or network
modules in the thresholded FC matrix, was based on the
Louvain’s algorithm (Newman, 2006; Blondel et al., 2008). We
used the weighted version of the modularity (Newman, 2004)
defined as

Qw =
1

lw

∑

i,j∈N

[
wij −

kwi k
w
j

lw

]
δmi ,mj (18)

where wij is the weight of the link between the nodes i and j, lw

is the total number of weighted links of the network, mi (mj) the
module of the node i (j), and kwi (mj) the weighted degree (named
also strength) of i (j). The algorithm assigns a module to each
node in a way thatmaximizes themodularity (18). The Kronecker
delta δmi ,mj is equal to 1 when mi = mj (that is, when two nodes
belongs to the same module), and 0 otherwise.

Because the Louvain’s algorithm is stochastic, we employed
the consensus-clustering algorithm (Lancichinetti and
Fortunato, 2012). We ran the Louvain’s algorithm 200 times
with the resolution parameter set to 1.0 (this parameter controls
the size of the detected modules; larger values of this parameter
allows the detection of smaller modules). Then, we built an
agreement matrix G, whose entries Gij ∈ [0, 1] indicates the
proportion of partitions in which the pairs of nodes (i, j) share
the same module. Then, we applied an absolute threshold of 0.5
to the matrix G, and ran the Louvain’s algorithm again 200 times
using G as input, producing a new consensus matrix G′. This last
step was repeated until convergence to a unique partition.

4.8. Functional Connectivity Dynamics
The FCD matrix captures the evolution of FC patterns and,
consequently, the dynamical richness of the network (Hansen
et al., 2015; Cabral et al., 2017). We used the sliding window
approach (Hansen et al., 2015; Orio et al., 2018), with windows
of 100 s length and a displacement of 2 s between consecutive
windows. The length was chosen on the basis of the lower limit
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of the band-pass filter (0.01 Hz), in order to minimize spurious
correlations (Leonardi and VanDeVille, 2015). For each window,
a FC matrix was calculated from the Pearson correlation of
BOLD-like signals.We obtained 251 weighted and undirected FC
matrices from the 600 s simulated BOLD-like signals. The upper
triangular of each FC matrix is unfolded to make a vector, and
the FCD is built by calculating the Clarkson distance λ(x, y) =
1√
2

∣∣∣
∣∣∣ x
||x|| −

y
||y||

∣∣∣
∣∣∣ between each pair of FCs (Clarkson, 1936).

FCDij = λ(FC(ti), FC(tj)) (19)

4.9. Gene Expression Maps
To quantify the expression of some noradrenergic receptor
genes in brain regions, we used the microarray expression
data of the Allen Human Brain Atlas (Shen et al., 2012). The
dataset was processed and normalized employing the Abagen
library for Python (https://github.com/rmarkello/abagen/tree/0.
1; Arnatkevicute et al., 2019), and then parcellated using the AAL
atlas (Tzourio-Mazoyer et al., 2002).We compared the expression
of the ADRA2A, ADRA2C, and ADRB1 genes in rich club,
feeders and local nodes. Statistical comparison was performed
with a Student’s t-test for independent samples.
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