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Simple Summary: Chronic inflammation of the gut is a multifactorial, incurable condition that
involves interactions between our immune cells and the cells that line the surface layer of gut, known
as the epithelium. Interleukin-10, a protein well known to be released by our immune cells, has a
protective role in countering inflammation, partly due to the fact that it can block the NFκB pathway,
a signalling pathway within cells that promotes genes involved in inflammatory responses. However,
we recently showed that laboratory cultures of gut epithelial cells can also synthesise interleukin-
10, which acts as a positive regulator of the NFκB pathway to support gut health. In this study
here, we investigated further the impact of the role of interleukin-10 on the NFκB pathway and
its targets within the gut using a whole animal approach, and confirmed that NFκB activation is
indeed positively regulated by interleukin-10, affecting the expression of downstream target genes
and their encoded proteins. This strengthens the importance of the interleukin-10/NFκB signalling
pathway axis in maintenance of gut health and response to damage, inflammation, and infection.
Understanding cell-specific biological roles of interleukin-10 and its interactions with NFκB could
prove useful for future therapeutic intervention for interleukin-10 regulated inflammatory conditions.

Abstract: Interleukin-10 (IL-10) is an anti-inflammatory cytokine that has a major protective role
against intestinal inflammation. We recently revealed that intestinal epithelial cells in vitro regulate
NFκB-driven transcriptional responses to TNF via an autocrine mechanism dependent on IL-10
secretion. Here in this study, we investigated the impact of IL-10 deficiency on the NFκB pathway
and its downstream targets in the small intestinal mucosa in vivo. We observed dysregulation of
TNF, IκBα, and A20 gene and protein expression in the small intestine of steady-state or TNF-injected
Il10−/− mice, compared to wild-type C57BL6/J counterparts. Upon TNF injection, tissue from the
small intestine showed upregulation of NFκB p65[RelA] activity, which was totally diminished in
Il10−/− mice and correlated with reduced levels of TNF, IκBα, and A20 expression. In serum, whilst
IgA levels were noted to be markedly downregulated in IL-10-deficient- mice, normal levels of
mucosal IgA were seen in intestine mucosa. Importantly, dysregulated cytokine/chemokine levels
were observed in both serum and intestinal tissue lysates from naïve, as well as TNF-injected Il10−/−

mice. These data further support the importance of the IL-10-canonical NFκB signaling pathway axis
in regulating intestinal mucosa homeostasis and response to inflammatory triggers in vivo.
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1. Introduction

Interleukin-10 (IL-10) is an anti-inflammatory cytokine that plays an important role in
mucosal homeostasis [1]. In the healthy intestinal mucosa, IL-10 is produced by a wide va-
riety of cell types, including intraepithelial lymphocytes (IEL) [2], a subdivision of type 2 in-
nate lymphoid cells found within the lamina propria [3], dendritic cells, macrophages [4,5],
intestinal fibroblasts, and intestinal epithelial cells [6,7]. IL-10, amongst other cytokines,
promotes the differentiation of immunoglobulin A (IgA) producing plasma cells within
the gut [8]. These IgA-producing plasma cells also play a key role in homeostasis and
barrier protection of the gastrointestinal mucosa [9,10]. In the absence of IL-10, mice have
been shown to develop age-related enterocolitis, which is associated with the dysregula-
tion of lymphocyte populations, including an increased frequency of B1 cells, decreased
numbers of Tregs, and an increased number of activated T cells in the intestine. [11]. Most
IL-10-producing cells also express an IL-10 receptor (IL-10R), and the importance of this
receptor in the maintenance of intestinal homeostasis and protection against develop-
ment of intestinal inflammation, is now well established by several independent studies
in macrophages [12,13] and T cells [14]. Transgenic mouse strains deficient in IL-10 or
IL-10R are susceptible to develop spontaneous colitis early in life, which can be reversed
by treatment with recombinant IL-10 [15,16]. Similarly, in humans, defective IL-10/IL-
10R signaling has been shown to correlate with inflammatory bowel disease (IBD) [17,18].
Genome-wide association studies (GWAS) have also identified polymorphisms in IL10 and
IL10R genes, both associated with an early onset of IBD, a greater severity of disease, and a
lack of response to conventional treatments, including anti-tumour necrosis factor (TNF)
biologics therapy [19,20].

Downstream IL-10R signaling leads to the activation of the JAK/STAT (Janus ki-
nases/signal transducer and activator of transcription proteins) pathway [21]. Importantly
however, IL-10 also affects the nuclear factor kappa B (NFκB) transcription factor pathway,
a key signaling pathway with an established role in the mediation of inflammation and
a response to tissue damage and/or infection [22]. NFκB activation is also essential for
maintenance of intestinal barrier integrity, through regulation of cellular proliferation,
differentiation, and survival, and the mediation of signaling and interaction between the
mucosal immune system and the resident gut microbiota [23]. Recent work from our
own lab, utilising murine small intestine crypt stem-cell-derived 3D enteroid cultures,
has demonstrated that NFκB activation is the predominant signal pathway response seen
within the first hour following exposure to TNF [24]. We were also able to demonstrate that
enteroids deficient in IL-10 show a defective activation of NFκB, with dysregulated gene ex-
pression of known downstream targets of NFκB, such as Tnf, and NFκB pathway inhibitor
genes Nfkbia and Tnfaip3, encoding IκBα and A20 (tumor necrosis factor, alpha-induced
protein 3, TNFAIP3), respectively [24]. Although our previous data clearly demonstrated
that endogenous IL-10 may act as a positive regulator of the canonical NFκB pathway
in vitro, we looked to provide further supporting evidence using a whole animal approach.

In this study, hence, we examined the effect of IL-10 deficiency on NFκB activation,
and NFκB-dependent gene and protein expression within the intestinal epithelium, both
in naïve mice and in animals following intraperitoneal injection with TNF. Our in vivo
data have revealed that IL-10-deficient mice are characterized by systemic defects in NFκB-
regulated serum cytokines and IgA, as well as defective NFκB p65[RelA] activity within
the small intestine, which leads to a dysregulation of key NFκB target genes Nfkbia and
Tnfaip3 and expression of their encoded proteins.

2. Materials and Methods
2.1. Mice

Interleukin 10 knockout (Il10−/−) transgenic mice, developed by Kuhn and colleagues [15],
established on C57BL/6J genetic background for several generations (B6.129P2-Il10tm1Cgn/J)
by the Jackson Laboratory (Bar Harbor ME, USA; Stock No. 002251, www.jax.org/strain/
002251; accessed on 12 August 2022), were purchased and imported via Charles River
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UK Ltd. (Margate, UK). Wild-type controls were age- and gender-matched C57BL/6J
sub-strain mice, again provided by Charles River UK Ltd. Mice were bred and/or housed
in a specific pathogen-free environment (Biomedical Services Unit; University of Liverpool,
Liverpool, UK) and maintained on a regular diurnal lighting cycle (12:12 light:dark), with
ad libitum access to irradiated CRM(P) pelleted chow (SDS Special Diet Services) and water.
Studies involving animals were reviewed and approved by the Home Office of the United
Kingdom under PPL number: PP5019347. At 10 weeks of age, the mice were treated with
recombinant mouse TNF (Peprotech Ltd.; London, UK) diluted in sterile distilled water,
administered via intra peritoneal (i.p.) injection at 0.33 mg/kg body weight. We have
shown previously that TNF induces epithelial cell apoptosis and shedding 1.0 to 1.5 h post
injection, as per [25]. We selected the 1.5 h time point to ensure induced responses within
the intestinal mucosa, i.e., NFκB activation and induction of the NFκB inhibitors. Post
injection of TNF (1.5 h), mice were euthanized by CO2, as per Schedule 1 of the Animals
(Scientific Procedures) Act 1986. Whole blood was collected by cardiac puncture from
mice of both genotypes under resting and treatment conditions. Serum was isolated to
measure levels of cytokines/chemokines and immunoglobulins by ELISA. Small intestinal
tissue was dissected and snap frozen in liquid nitrogen to support qPCR, enzyme-linked
immunosorbent assay (ELISA), and immunoblot studies. Additional tissue was fixed in
formalin for immunohistochemistry (IHC) studies.

2.2. RNA Extraction and qPCR

Dissected tissues were disrupted in RLT buffer in a TissueLyser II (Qiagen; Manchester,
UK) and total RNA was purified as per manufacturer instructions (RNeasy mini kit; Qiagen).
Purified RNA was reverse transcribed using the High-Capacity RNA-to-cDNA Kit (Applied
Biosystems; Paisley, UK), and cDNA was stored at −20 ◦C. qPCR reactions were performed
in 96-well plates, with Taqman Fast advanced master mix (Applied Biosystems; Paisley,
UK), Taqman Gene Expression Assay probes (Applied Biosystems), and 50 ng total cDNA as
per manufacturer instructions. All qPCR reactions were carried out on a Roche LightCycler
480 (Roche; Basel, Switzerland), with conditions as follows: 1 cycle of: 120 s at 50 ◦C, 20 s
at 95◦C; 40 cycles of 3 s at 95 ◦C, 30 s at 60 ◦C, and 20 s at 60 ◦C; 1 cycle at 120 s at 72 ◦C
and 30 s at 60 ◦C. Cp values were calculated from 2nd derivative analysis and relative
quantification was calculated using 2-∆∆CT method [26]. The gene expression assay probes
used were Tnf (Mm00443258_m1), Tnfaip3 (Mm00437121_m1), Nfkbia (Mm00477798_m1),
Il10 (Mm01288386_m1), Il10ra (Mm00434151_m1), Tnip1 (Mm01288484_m1), and Tnip2
(Mm00460482_m1). All results were normalized to the expression of the housekeeping
gene Gapdh (Mm99999915_g1).

2.3. Immunohistochemistry

Formalin-fixed tissue was bundled using methods previously described [27]. Briefly,
bundles were processed, embedded in paraffin wax in the transverse orientation, and 4 µm
thick tissue sections were cut by microtomy and processed for immunohistochemistry
(IHC). Tissue sections were de-paraffinised and rehydrated, then treated with 1% v/v hy-
drogen peroxide in methanol to block endogenous peroxidases, followed by heat-induced
antigen retrieval in 0.01 M citrate acid buffer (pH 6.0). Sections were then blocked with
5% v/v serum supplied by respective ImmPRESS kits (Vector Laboratories, Heyford, UK),
followed by primary antibodies against TNFα (rat monoclonal antibody MP6-XT22, Abcam;
Cambridge, UK), TNFAIP3 (mouse monoclonal antibody 66695-1-Ig, Proteintech; Manch-
ester, UK), and IκBα (rabbit polyclonal antibody 9242, Cell Signaling Technology; Leiden,
The Netherlands). Secondary antibodies were from ImmPRESS polymer detector kits, and
for TNFAIP3, the use of a mouse-on-mouse ImmPRESS kit. Slides were counterstained
with haematoxylin (Vector Laboratories).
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2.4. NF-κB p65[RelA] Activity ELISA

Small intestine tissue samples were homogenized in a 300 µL ice-cold radio-
immunoprecipitation assay (RIPA) lysis buffer (Fisher Scientific; Loughborough, UK) for
20 min on ice followed by centrifugation at 10,000× g for 10 min at 4 ◦C, and supernatants
were then stored at −80 ◦C. Lysates were assayed in duplicate, using a TransAm Flexi
NF-κB ELISA kit for the activated form of p65[RelA] (Active Motif Europe; La-Hulpe,
Belgium). Data were normalized against total cellular protein as measured in RIPA lysates
by Pierce bicinchoninic acid (BCA) assay (ThermoFisher Scientific; Loughborough, UK).

2.5. ELISA for Serum and Tissue Cytokines, Chemokines and Immunoglobulins

Murine serum and RIPA-extracted small intestinal tissue lysates were analysed, as
per manufacturer instructions, using the following ELISA kits: Cxcl1/KC (dy453-05; R&D
systems; Abingdon, UK); Cxcl10/IP-10 (dy466-05, R&D Systems); IL-1β (88-7013, Ther-
moFisher Scientific); IL-12/IL-23p40 allele-specific (dy499-05, R&D systems), and TNF
(BMS607, ThermoFisher Scientific). Immunoglobulin changes in murine serum (dilution
1:1000) were screened using the Ig Isotyping mouse uncoated ELISA kit (88-50630; Ther-
moFisher Scientific), as were intestinal tissue levels of IgA (dilution 1:10). All ELISAs were
measured at optical density (OD) 450 nm using a Tecan Sunrise plate reader (Tecan Ltd;
Reading, UK).

2.6. Immunoblot Analysis of A20 and IκBα Protein in Small Intestinal Tissue Lysates

RIPA-extracted intestinal tissue lysates (N = 3 mice per group) were loaded to nitro-
cellulose (100 ug protein) using a slot blot vacuum system for immunodetection of A20
(TNFAIP3) and IκBα protein. Membranes were first blocked with 5% w/v BSA for 2 h,
followed by overnight incubation with primary antibodies in sterile PBS pH7.4 containing
0.5% BSA, 0.05% Tween 20. Primary antibodies used were anti-TNFAIP3 mouse mono-
clonal antibody, clone 59A426 at 1:200 dilution (#ab13597—Abcam; Cambridge, UK), and
an anti-IκBα polyclonal antibody at 1:1000 dilution (#9242; Cell Signaling Technology).
Secondary HRP-linked antibodies used were anti-mouse IgG1 (#7076) and anti-rabbit IgG
(#7074), each at 1:2000 (Cell Signaling Technology). Chemiluminescence detection was
performed using SuperSignal West Dura Extended Duration Substrate (ThermoFisher Sci-
entific), with imaging and densitometry analysis on a ChemiDoc XRS+ system (BioRad;
Hemel Hempstead, UK).

2.7. Data Analyses

Results are expressed as mean ± standard error of mean (SEM). Independent sample
groups were first assessed for normality and equality of variances, and then as appropriate
using either a one-way ANOVA or non-parametric Kruskal–Wallis test followed by pairwise
comparisons of treatments. Statistical analyses of datasets utilized Prism GraphPad v9.1.0
(GraphPad Software, San Diego, CA, USA) and StatsDirect v3.0.171 (StatsDirect Ltd.;
Birkenhead, UK). Differences were considered statistically significant when p < 0.05.

3. Results
3.1. TNF-Induced NFκB-Dependent Serum Cytokine/Chemokine Responses Were Attenuated in
IL-10-Deficient Mice

In this study, we used a well-established experimental model of systemic inflamma-
tion induced by TNF, which results in an increased intestinal damage. Intra-peritoneal
injection of C57BL/6J mice (N = 3) with TNF (0.33 mg/kg body weight, for 1.5 h) resulted
in markedly elevated serum levels of NFκB-dependent inflammatory mediators Cxcl1/KC
(68.3-fold), Cxcl10/IP-10 (27.1-fold), and IL-12p40 (16.5-fold) above those resting levels
detected in naïve C57BL/6J mice (N = 5); all p < 0.05 ANOVA (Figure 1). No signifi-
cant differences in resting levels of all three cytokines were seen in naive Il10−/− mice
(N = 8). However, a significantly attenuated TNF-induced response was observed for both
Cxcl1/KC (9.3-fold change) and Cxcl10/IP-10 (2.2-fold) in serum of IL-10 deficient mice
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(N = 3), as compared to TNF-treated C57BL/6J mice (N = 3; both p < 0.0001 ANOVA).
IL-12p40 levels in serum in response to TNF were not seen to be significantly attenuated in
IL-10-deficient mice (Figure 1).
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Figure 1. Attenuated serum levels of Cxcl1/KC and Cxcl10/IP-10 seen in IL-10-deficient mice
following intra-peritoneal injection with TNF. Levels of (A) Cxcl1/KC, (B) Cxcl10/IP-10, and
(C) IL-12p40 in serum of C57BL/6J (N = 5) and Il10−/− mice (N = 8) at resting levels, and those
receiving i.p. injection of 0.33 mg TNF/kg body weight for 1.5 h (both genotypes N = 3). Serum
was obtained from whole blood collected by cardiac puncture, with cytokines/chemokines (pg/mL)
measured by ELISA. Significant differences compared to C57BL/6J control mice at rest, * p < 0.05,
**** p < 0.0001; and significant differences from TNF-treated C57BL/6J mice, #### p < 0.0001 (ANOVA).

We also examined for any differences in serum levels of immunoglobulins, as well
as for specific changes in κ and λ light chains. At rest, there was a significant impairment
noted for IgA and the κ light chain in IL-10-deficient mice (both p < 0.01 ANOVA); Supple-
mentary Information—Figure S1. Upon TNF treatment, no significant induction of serum
immunoglobulins or light chains was observed in wild-type mice, but there was a noted
absence of IgA (p < 0.01). Serum from TNF-induced IL-10-deficient mice was found to
have significantly elevated levels of IgG1, and likewise, levels of both κ and λ light chains
were both raised compared to untreated genotype controls (all p < 0.05); Supplementary
information—Figure S1.

3.2. Dysregulated Expression of TNF in the Resting Small Intestine of IL-10-Deficient Mice

Basal levels of Tnf mRNA transcript were measured in total RNA isolated from
small intestinal tissue of C57BL/6J and Il10−/− mice under resting conditions. Tnf gene
expression was seen to be elevated by approximately two-fold in the small intestine of
Il10−/− mice, compared to wild-type controls (N = 3 mice; p < 0.05, Kruskal–Wallis test);
see Figure 2A. To further investigate this observation, immunohistochemistry on tissue
sections was performed (N = 6; three males and three females from each genotype). The
intestinal epithelial cells in both strains did not show any staining, but TNF-positive
cells were apparent in higher numbers within the lamina propria of Il10−/− mice, likely
lymphoid and myeloid cells (Figure 2B). TNF levels within serum were observed to be
significantly lower in IL-10-deficient mice under resting conditions (p < 0.05, Kruskal–Wallis
test; Figure 2C).
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Figure 2. Dysregulated expression of TNF in resting small intestine of IL-10-deficient mice. C57BL/6J
and Il10−/− mice under resting conditions were sacrificed, their sera collected, and tissue processed
to assess for an abundance of mRNA and protein. (A) Enhanced Tnf mRNA levels were detected by
qPCR in the small intestine of resting Il10−/− mice relative to C57BL/6J wild-type mice (both N = 3).
(B) The C57BL/6J and Il10−/− small intestine was fixed in 4% w/v paraformaldehyde, with 4 µm
sections processed and stained using antibodies against TNF. TNF staining appears only in lamina
propria cells from Il10-deficient mice, but not in wild-type. Figures representative of N = 6 mice;
three males and three females from each genotype; bar = 100 µm. (C) TNF levels in serum (pg/mL)
were measured by ELISA, with lower levels being observed in IL-10-deficient mice under resting
conditions (N = 8) compared to C57BL/6J (N = 5). Significant differences compared to C57BL/6J,
* p < 0.05, Mann–Whitney U test.

3.3. Impaired NFκB Activation and Inducible TNF Expression in the Small Intestine of
IL-10-Deficient Mice

Following i.p. injection of mice with TNF, we examined the activation profile of
the NFκB canonical pathway. Using small intestinal tissue lysates from naïve and TNF-
injected mice, an ELISA was performed to assess p65[RelA] transcription factor activation.
No significant difference in DNA-binding activity of p65 was observed under resting
conditions in the Il10−/− small intestine compared to wild-type tissue (Figure 3A). Upon
i.p. injection of TNF, p65 activation was increased approximately two-fold in the wild-type
small intestine (p < 0.01 Kruskal–Wallis test, N = 3 mice), but this increase in p65 activation
was not observed in the TNF-treated, IL-10-deficient small intestine (p < 0.001, compared
to TNF-injected, wild-type mice; N = 3); see Figure 3A. A significant upregulation of Tnf
mRNA was observed in the C57BL/6J small intestine (13.3 ± 4.4-fold increase; Figure 3B)
compared to non-injected controls (Figure 2A); p < 0.05 Kruskal–Wallis test; N = 3 mice).
In contrast, there was an attenuated TNF-induced Tnf response observed in Il10−/− mice
(1.9 ± 0.36-fold increase compared to the TNF-injected C57BL/6J response; p < 0.01);
see Figure 3B. The same defect was observed for TNF at the protein level, as measured
by ELISA, in small intestine tissue lysates. Post i.p. injection of TNF, the level of TNF
protein measured in the C57BL/6J wild-type small intestine was 0.29 ± 0.02 ng/mg total
protein (compared to 0.17 ± 0.04 ng/mg total protein in untreated C57BL/6J controls;
p < 0.001 ANOVA), with significantly attenuated levels seen in intestinal tissue lysates
of TNF-induced, IL-10-deficient mice (0.17 ± 0.03 ng/mg total protein (N = 3, p < 0.01
ANOVA); Figure 3C.
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Figure 3. Aberrant NFκB activation and inducible TNF expression in the small intestine of Il10-
deficient mice. C57BL/6J and Il10−/− mice were either kept at resting conditions or following
intraperitoneal injection with recombinant murine TNF (0.33 mg/kg body weight). Mice were
sacrificed after 1.5 h and tissue processed to assess for NFκB signal pathway activation and for
abundance of Tnf mRNA and TNF protein. (A) NFκB ELISA of small intestine tissue lysates revealed
TNF-induced p65[RelA] transcriptional activation in wild-type mice, which was impaired in the
tissue of IL-10-deficient mice. (B) TNF-induced Tnf transcript levels were observed to be significantly
diminished in Il10−/− mice. (C) Similarly, tissue levels of TNF protein were not induced in intestinal
mucosa of Il10−/− mice 1.5 h post TNF injection. All data are presented as mean ± SEM, N = 3
mice. Significant differences for TNF-injected versus resting levels in C57BL/6J mice, * p < 0.05,
** p < 0.01, and *** p < 0.001; and TNF-injected Il10−/− versus TNF-injected C57BL/6J, ## p < 0.01 and
### p < 0.001 (Kruskal–Wallis test or ANOVA).

We also observed that TNF induced significant proinflammatory IL-1β and Cxcl1/KC
responses in wild-type C57BL6/J intestinal tissue (both p < 0.01 ANOVA, N = 3) when
compared to non-injected controls (N = 5); see Figure 4. Cxcl1/KC levels in naïve Il10−/−

mouse intestine (N = 9 mice) were significantly lower compared to those seen in wild-type
intestine at rest (p < 0.05), and the response to TNF was markedly attenuated (p < 0.0001,
N = 3); Figure 4A. TNF-induced IL-1β production was notably lower in IL-10-deficient
intestine compared to TNF-injected wild-type controls but did not reach significance
(Figure 4B).

Given observed changes in serum (monomeric) IgA in IL-10-deficient mice, and in
response to i.p. injection of TNF, we measured mucosal (polymeric) IgA in intestinal
tissue lysates but observed that levels were not significantly different in treatment groups
(Figure 4C).

3.4. Altered A20 and IκBα Synthesis Observed in the Small Intestine of Il10−/− Mice

The defect we observed in RelA activation in response to TNF in IL-10-deficient mice
prompted us to check further downstream targets of the NFκB pathway, including Tnfaip3
and Nfkbia, encoding key inhibitory regulators of NFκB, i.e., A20 and IκBα, respectively.
The basal transcription of Tnfaip3 and Nfkbia genes from total RNA isolated from small
intestinal mucosa was similar in both genotypes (Figure 5A). We also examined expression
levels of Tnip1 and Tnip2 genes encoding the A20-binding inhibitor of NFκB proteins
ABIN1 and ABIN2 known to suppress NFκB signaling [28]. At rest, only Tnip1 showed
higher levels of expression in the small intestinal mucosa of IL-10-deficient mice (2.1-fold
increase) relative to wild-type tissue (p < 0.05; Kruskal–Wallis test, N = 3 mice); Figure 5A.
This was followed by immunohistochemistry of 4% paraformaldehyde-fixed, paraffin-wax-
embedded tissue sections from the small intestine of both strains using specific antibodies
targeting A20 and IκBα (Figure 5B). Whilst A20 staining appeared to be unaffected in
lamina propria cells of IL10-deficient intestinal mucosa compared to wild-type tissue, it was
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notable that staining was markedly reduced in Il10−/− intestinal epithelial cells. Similarly,
IκBα staining was almost undetectable in lamina propria of both strains, but it was severely
reduced in Il10−/− intestinal epithelial cells under resting conditions; see Figure 5B.
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Figure 4. Attenuated intestinal tissue levels of NFκB-regulated pro-inflammatory cytokines, but not
mucosal IgA, seen in IL-10-deficient mice following intra-peritoneal injection with TNF. Levels of
(A) CXCL1/KC, (B) IL-1β, and (C) IgA in small intestinal tissue lysates of C57BL/6J (N = 5) and
Il10−/− mice (N = 9) at resting levels, and those who received an i.p. injection of 0.33 mg TNF per kg
body weight for 1.5 h (both genotypes N = 3). Cytokine/chemokine levels were measured by ELISA.
Mucosal IgA was measured using the Ig Isotyping mouse uncoated ELISA. There were significant
differences compared to C57BL/6J control mice at rest, * p < 0.05, ** p < 0.01, and **** p < 0.0001; and
significant differences from TNF-treated C57BL/6J mice, #### p < 0.0001 (ANOVA).

Post i.p. injection of TNF in wild-type C57BL/6J mice, we observed a significant up-
regulation in Tnfaip3 and Nfkbia expression in the small intestine (6.5-and 6.2-fold increases
in mRNA abundance, respectively; both p < 0.01 Kruskal–Wallis test). In contrast, TNF in-
duction of Tnfaip3 and Nfkbia in the intestinal tissue of Il10−/− mice was defective (1.2- and
2.0-fold, respectively; both p < 0.05, compared to injected wild-type mice); Figure 5C. No
such changes in Tnip1 and Tnip2 expression in the small intestine were observed in response
to TNF injection of wild-type mice, with no differences observed in Il10 knockout mice
(Figure 5C). Immuno-detection of IκBα protein levels in intestinal tissue lysates revealed
elevated endogenous levels present in response to the TNF treatment of C57BL6/J mice
(21.1 ± 4.7-fold increase) relative to untreated C57BL/6J controls loaded and quantified
to the same slot blot (1.0 ± 0.65; p < 0.01 ANOVA, N = 3); Figure 5D. A total absence of
response to TNF was observed in the IL-10-deficient small intestine (p < 0.001 ANOVA,
N = 3); see Figure 5D. A similar pattern was seen for A20 protein levels, although data did
not achieve significance (all groups N = 3); Figure 5E.

Given that IL-10 receptor levels are important for IL-10 signaling, we also measured
the expression of Il10ra in the small intestine in both genotypes under resting conditions
and post i.p. injection of TNF (Supplementary information—Figure S2). Basal expression
of Il10ra was 2.1-fold higher in the small intestine of Il10−/− mice; p < 0.05 (N = 3, Kruskal–
Wallis test). Post-TNF injection, both Il10 and Il10ra were significantly upregulated in
C57BL/6J mouse intestinal tissue, with significantly lower levels of TNF-induced Il10ra
transcript detected in Il10−/− mice; p < 0.05 (Kruskal–Wallis test).
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Figure 5. Dysregulated expression of key NFκB-targets in the small intestine of naïve and TNF-
injected mice. C57BL/6J and Il10−/− mice were sacrificed at rest or following i.p. injection with
recombinant murine TNF (0.33 mg/kg body weight). Tissue was dissected and processed for gene
and protein expression analyses. (A) Expression of NFκB-target genes at rest in Il10−/− intestinal
tissue (white bars) as assessed by qPCR. Data are presented as mean ± SEM, expressed as fold
change to C57BL/6J (both N = 3 mice; significant difference compared to C57BL/6J, * p < 0.05
Kruskal–Wallis test). (B) Dysregulated A20 and IκBα protein expression in resting small intestine of
Il10-deficient mice (as assessed by immunohistochemistry of 4% w/v paraformaldehyde-fixed, 4 µm
microtomy tissue sections). Representative images from N = 6 mice; bar =100µm). (C) NFκB-target
gene expression 1.5 h post-TNF injection of Il10−/− (white bars) compared to injected C57BL/6J
mice (black bars); each N = 3 mice, with significant differences compared to non-injected controls
** p < 0.01, and to TNF-injected C57BL6/J # p < 0.01 (Kruskal–Wallis test). Intestinal tissue levels of
(D) IκBα and (E) A20, expressed as relative fold change to respective genotype controls (N = 3 for
all groups). There are significant differences compared to C57BL/6J * p < 0.05 and ** p < 0.01; and
TNF-injected controls, ### p < 0.001 (ANOVA).

4. Discussion

Interleukin-10 is considered a classical anti-inflammatory cytokine that downregu-
lates pro-inflammatory pathways, including activation of NFκB in immune cells such as
macrophages and dendritic cells [29]. We recently showed that epithelium-derived IL-10
appears to be a positive regulator of NFκB in vitro, supporting its role as a major regulator
of intestinal homeostasis [24]. Here, in the current study, we utilized IL-10-deficient mice to
evaluate further the role of IL-10 within the intestinal epithelium in a TNF-induced in vivo
model of inflammation that impacts on intestinal homeostasis [30,31].
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Naïve IL-10-deficient mice looked healthy and did not show any signs of inflammation,
although they had lower TNF serum levels than the wild-type C57BL/6J controls. Tnf
mRNA was higher in small intestine from resting Il10−/− mice, but immunohistochemistry
on fixed tissue revealed that this was mainly due to a small increase in TNF-expressing cells
localized within the lamina propria, possibly activated T cells or myeloid cells [32]. This is
in agreement with previous reports that showed that Il10–/– mice reared in germ-free con-
ditions remained disease-free [33], and only inoculation with specific commensal bacterial
strains induced colitis via an antigen-driven Th1 response [34,35]. Upon i.p. injection of
TNF, wild-type mice responded with observed increases in serum levels of inflammatory
chemokines, Cxcl1/KC and Cxcl10 and interleukin 12, the latter reflected by raised levels
of the p40 subunit (IL-12p40). TNF has been reported to induce Cxcl10 production within
epithelium via the canonical NFκB pathway, as well as in the endothelium, again via activa-
tion of the same pathway [36]. The Il10-deficient mice showed a defective increase of serum
Cxcl10 in response to TNF injection, implying that the source of the chemokine is probably
from epithelial cells, and not from immune cells where IL-10 is observed to be a negative
regulator of Cxcl10 [37]. Similarly, serum Cxcl1/KC levels were extremely low in samples
obtained from TNF-treated, IL-10-deficient mice. In contrast, IL-12p40 serum levels were
comparable between the two genotypes, ruling out IL-12p40 regulation by IL-10 that had
previously been suggested in lipopolysaccharide-induced macrophages [38].

IL-10 is also known to regulate growth and differentiation of B lymphocytes [39,40]
and induce class switch recombination (CSR) in both mice and humans [41–44]. We
therefore examined the levels of immunoglobulins present within the serum, pre- and
post-intraperitoneal injection of TNF. In naïve mice, amongst all the immunoglobulins
examined, only serum IgA showed dramatic reduction in levels within IL-10-deficient
mice, compared to wild-type C57BL6/J controls. We speculate that this is likely due to a
loss of peritoneal B1-a subclass of B lymphocytes, a feature reported previously in Il10−/−

mice [45]. Normal IgA levels were observed in the intestinal mucosa and this is possibly
due to the fact that within the intestine, TGF-β, and not IL-10, is the major critical switch
factor that controls IgA class CSR [46,47].

TNF injection induced the transcription of Tnf in the intestinal epithelium of wild-type
mice, a result similar to that which others, and our group, have reported previously [24,31,48].
There was clear impairment of Tnf mRNA induction in Il10−/− small intestinal tissue,
supporting our earlier in vitro studies where we clearly showed defective TNF-induced
transcriptional activation of the Tnf gene in IL-10-deficient intestinal epithelium [24]. Real-
time qPCR results were further validated by the measurement of TNF protein levels,
which showed a 50% reduction in intestinal tissue lysates taken from IL-10-deficient mice
compared to the wild-type controls. These lysates were also utilized for measurement of
RelA/NFκB activity, since the RelA/p50 complex is the most-studied heterodimer in the
canonical pathway [49,50] and the RelA subunit contains a key transactivation domain
responsible for its cellular function [51]. In small intestinal tissue from naïve C57BL/6J mice,
RelA DNA-binding activity was detected at basal levels and induced by i.p. injection of
TNF in vivo. Whilst RelA/NFκB activity did not appear to be significantly reduced in tissue
from resting Il10−/− mice, its further activation in this transgenic model was completely
abolished upon TNF injection. These results indicate that IL-10 deficiency has a clear
in vivo effect on the canonical NFκB pathway activation in intestinal tissue, supporting
earlier data obtained under in vitro culture conditions, as we reported previously [24]. We
speculate that TNF induces intestinal epithelium IL-10 synthesis, which has an autocrine
effect, and activates NFκB signaling via its own receptor. This prompted us to further
examine the expression of known downstream targets and inhibitors of the NFκB pathway
within intestinal tissue, and whether there is any clear IL-10 dependency. At rest, there was
no significant difference seen in Tnfaip3 and Nfkbia mRNA levels, but within the Il10−/−

small intestinal epithelial cells at rest, A20 and IκBα protein levels, encoded by Tnfaip3 and
Nfkbia, respectively, were observed to be extremely low in this transgenic strain compared
to C57BL/6J mice. When challenged via i.p. with TNF, lower levels of Tnfaip3 and Nfkbia
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mRNA transcripts were observed within the small intestine of Il10−/− mice compared to
intestinal tissue taken from TNF- injected C57BL/6J mice. This defective response was
further confirmed by examining the protein levels of the related proteins, A20 and IκBα,
respectively. These results agree with our previous observations in which both of these
genes were similarly affected by endogenous IL-10 deficiency in resting and TNF-induced
enteroid cultures [24]. A20 has been shown to be upregulated by TNF, acting in synergy
with Abin1 to prevent intestinal inflammation by restricting intestinal epithelial death
and preserving tissue integrity [52]. Therefore, its defective expression in gastrointestinal
mucosa could contribute to the natural inclination of the Il10−/− mice towards intestinal
inflammation. Expression of Tnip1 and Tnip2, encoding for A20-binding-1 (Abin1) and A20-
binding-2 regulators of NFκB (Abin2), were not substantially affected in this experimental
model. TNF-induced upregulation of Il10ra was also impaired in the small intestine of
Il10−/− mice and this is important since the IL-10Rα subunit is responsible for binding and
assembly of the receptor, and therefore can affect downstream signal transduction [53].

5. Conclusions

In summary, our study has shown that RelA/NFκB activation within the intestinal
mucosa is positively regulated by IL-10 in vivo, affecting the expression of downstream
target genes and their encoded proteins important for tissue homeostasis. Spatial infor-
mation on NFκB activation would be a useful future approach, i.e., to establish in which
epithelial cell and/or immune cell types within intestinal tissue these events occur. Two of
the downstream targets observed to be affected were known inhibitors of the classical NFκB
signaling pathway, IκBα and A20 (TNFAIP3). This was a key finding we had previously
demonstrated in vitro, using small intestine crypt stem-cell-derived enteroids deficient in
IL-10 [24], highlighting clearly that endogenous IL-10 can act as a positive regulator of the
canonical NFκB pathway. The data here, using a whole animal approach, further support
the importance of the IL-10-canonical NFκB signaling pathway axis in regulating intestinal
mucosa homeostasis and in response to inflammatory triggers. Importantly, defective
classical NFκB activation in the absence of IL-10 could be responsible for the dysregulated
cytokine/chemokine levels observed in both serum and intestine, at rest, and in response
to inflammatory triggers, such as TNF. Further in vivo experiments utilizing recombinant
stable IL-10 dimers [54] would prove useful to support future therapeutic intervention for
IL-10-regulated inflammatory conditions.
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www.mdpi.com/article/10.3390/biology11101377/s1. Figure S1: Serum levels of immunoglobulins
seen in C57BL/6J and IL-10-deficient mice, at rest and following intraperitoneal injection of TNF.
Figure S2: Aberrant IL-10 receptor alpha gene expression in the small intestine of mice following
intraperitoneal injection of TNF.
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