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Cooperation in group-structured 
populations with two layers of 
interactions
Yanling Zhang1,4, Feng Fu2, Xiaojie Chen3, Guangming Xie4 & Long Wang4

Recently there has been a growing interest in studying multiplex networks where individuals are 
structured in multiple network layers. Previous agent-based simulations of games on multiplex 
networks reveal rich dynamics arising from interdependency of interactions along each network 
layer, yet there is little known about analytical conditions for cooperation to evolve thereof. Here we 
aim to tackle this issue by calculating the evolutionary dynamics of cooperation in group-structured 
populations with two layers of interactions. In our model, an individual is engaged in two layers 
of group interactions simultaneously and uses unrelated strategies across layers. Evolutionary 
competition of individuals is determined by the total payoffs accrued from two layers of interactions. 
We also consider migration which allows individuals to move to a new group within each layer. 
An approach combining the coalescence theory with the theory of random walks is established to 
overcome the analytical difficulty upon local migration. We obtain the exact results for all “isotropic” 
migration patterns, particularly for migration tuned with varying ranges. When the two layers use 
one game, the optimal migration ranges are proved identical across layers and become smaller as the 
migration probability grows.

The evolution of cooperation has gained increasing attention from evolutionary biologists and physicists. 
Evolutionary game theory provides a powerful mathematical setting for this problem and has led to many 
deep insights thereof. An important way of resolving the dilemma of cooperation is network reciproc-
ity1–5, which has been put into the spotlight by games in graph-structured6–19 and in group-structured 
populations20–26. In graph-structured populations, each node represents an individual and games happen 
between connected individuals. Yet in group-structured populations, each group holds a sub-population 
which is divided by geographical sites or phenotypic tags, and games generally occur between indi-
viduals of the same group. Most explorations of games in structured populations have performed on 
single-layered networks9–13,22–28, where individuals are structured in a single network layer. Recently some 
studies have shifted attention towards multiplex networks16–19, where individuals are structured in mul-
tiple network layers. In these investigations of games on multiplex networks, agent-based simulations 
reveal rich dynamics arising from interdependency of interactions along each network layer, yet there is 
little known about the exact analytical condition for cooperation to evolve thereof.

Multiplex networks explain that an individual has different kinds of ties defined by social properties, 
such as working for a particular company, living in a specific location, or going to a certain university. 
We propose a minimal model of multiplex networks by considering group-structured populations with 
two layers of interactions. In our model (Fig.  1A), each individual is located in two network layers 
simultaneously and uses unrelated strategies (cooperation or defection) across layers. In each layer, M 
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groups (geographical islands or phenotypic tags) are arranged in a regular circle and individuals can 
play games if and only if they are in one group (there occur no games in the one-player group). Across 
layers, individuals can play one game (the prisoner’s dilemma or the snowdrift game) or different games 
(the prisoner’s dilemma vs. the snowdrift game). In the prisoner’s dilemma, the benefit b >  0 is gained 
from the cooperative opponent, and the cost c >  0 is paid by the cooperator. In the snowdrift game, the 
benefit b >  0 is gained if at least one side cooperates, and the cost c >  0 is divided equally between coop-
erators. In this paper, the critical value of c/b for natural selection to favor cooperation over defection 
is our focus.

In each update, one individual is chosen randomly and equiprobably to die and one competes to 
reproduce an offspring with probability proportional to the fitness, which is determined by the sum of 
the payoffs obtained in the two layers just like the previous study17. Here we do not consider the general 
case where the fitness is determined by a weighted sum of the payoffs in the two layers18,19, but checked 
that the evolutionary outcomes are unchanged substantially for the general case. The newborn offspring 
adopts the strategies of the parent in the two layers with probability 1 −  u, otherwise mutates to one 
strategy randomly and equiprobably within each layer. Meanwhile, the newborn offspring stays in the 
groups of the parent in the two layers with probability 1 −  v, otherwise migrates to a new group within 
each layer according to the prespecified migration pattern.

To better understand the prespecified migration pattern, we show it by a two-dimensional lattice 
consisting of the integer points in [1, M]2 and satisfying the periodic boundary condition (i1 +  l1M, 
i2 +  l2M) =  (i1, i2) where l1 and l2 are integers. The abscissa and the ordinate denote the group space of 
the first layer and the one of the second, respectively. An edge exists between two points if and only if 
there is a potential single-step migration path between them. In other words, the offspring can migrate 
to one of the points connected to the point where the parent resides. The lattices which look the same 
from every point are our focus, whose corresponding migration patterns have been called “isotropic” in 
the population genetics29. For simplicity, “isotropic” migration patterns of one network layer are illus-
trated in Fig. 1B. In this paper, we obtain the exact analytic condition for cooperation to evolve under 
all “isotropic” migration patterns, and analyze the optimal migration ranges of the two layers leading to 
the largest critical cost-to-benefit ratio. When the two layers use the same game, the optimal migration 

Figure 1. Evolution in group-structured populations with two layers of interactions. (A) Each individual 
(blue diamond) participates in interactions of two network layers simultaneously. In each layer, five groups 
(yellow oval) are arranged in a regular circle and labelled from 1 to 5 in clockwise. Each group allows any 
number of individuals to reside in (including no individuals). Individuals perform two games G1 and G2 
with others who reside in the same group of the first and of the second layer, respectively. Reproduction 
of an individual depends on the total payoffs obtained in the two layers, and the offspring can migrate to a 
group within each layer according to the prespecified migration pattern. (B) “Isotropic” migration patterns 
in each network layer. Nine groups (red node) are arranged in a regular circle and labelled from 1 to 9 in 
clockwise. The edge exists between two nodes if and only if there is a potential single-step migration path 
between them. In other words, an offspring can migrate to one of the nodes connected to the node in which 
the parent is located. The distance between two groups takes on one of the values 1, 2, 3, 4. The migration 
range r means that the set of the displacements that a single-step migration leads to is Ω (r) =  {1, …, r}.
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ranges are proved identical across layers and become smaller as the migration probability grows. When 
the two layers use different games, they can be different across layers.

A series of recent theoretical findings paves a way for quantifying the evolutionary dynamics in 
group-structured populations22–28. These studies investigate the largest and the smallest migration range 
in the single-layered group structure, which mean that individuals can disperse from any one to any 
other group and between only groups that are nearest neighbors, respectively. In these studies, the coa-
lescence theory is used alone to deal with the largest migration range, and combined with the theory of 
a particular random walk to tackle the smallest22,24. However, none of migration patterns have been ana-
lyzed theoretically except the above two types in single-layered, let alone in multiplex networks. In this 
paper, we provide a method combining the coalescence theory with the theory of general random walks 
to overcome the analytical difficulty upon local migration in two-layered and in single-layered networks. 
The key point of our method is that we find the probability that the walker of all random walks moves 
from one to any point after t steps following the example of the previous study30, and thus the method 
holds for all migration patterns from local to global migration. Moreover in our method, the theory of 
random walks is employed to trace both the migration and the mutation process, and thus the method 
not only solves local migration, but also prepares for analyzing local mutation theoretically.

Results
The cooperative level of the whole system xC is defined as

ω ω= ( + ) + ( − )( + ). ( )( , ) ( , ) ( , ) ( , )x x x x x1 1C 1 1 1 0 1 1 0 1

( , )x d d1 2
 is the frequency of the strategy (d1, d2) where d1, d2 ∈  {0, 1} (1 for cooperation and 0 for defection) 

are the strategy of the first layer and the one of the second, respectively. The parameter ω ∈  [0, 1] specifies 
the proportion of the cooperative level of the first layer in the overall cooperative level. For ω =  0.5, xC 
is measured in the traditional way17–19, in which the cooperative behavior of each layer plays an equal 
role in measuring xC. ω =  1 or ω =  0 means that the cooperative level of only the first or of only the 
second determines xC.

Natural selection favors cooperation over defection if the cooperative level of the whole system pre-
dominates in the stationary distribution, i.e., 〈 xC〉  >  1/2 where 〈 xC〉  is the mean xC in the stationary 
distribution. Under weak selection, which means the fitness differences between individuals are small, 
the condition for cooperation to evolve can be calculated analytically. Weak selection is often used in 
population genetics31,32 and suggested in the adaptive dynamics33,34, as the mutant strategy is drawn 
from an infinitesimally small neighborhood around the resident strategy so that the fitness differences 
are very small.

General migration patterns. Cooperation is favored by natural selection if the cost-to-benefit ratio 
c/b is below the critical one (c/b)* which is obtained when 〈 xC〉  =  0.5. Larger (c/b)* means that coopera-
tion is more favored. The expression of (c/b)* for ω ∈  [0, 1] is
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The above βP, γP, ηP, βS, γS, and ηS describe the strategy-and-location distribution of multiple individuals 
in the neutral selection: when two individuals are chosen without replacement, βP (βS) is the chance that 
they reside in one group of the first layer (of the second), and γP (γS) is the probability that they have 
both the same strategies in the two layers and the same group of the first layer (of the second); when 
three individuals are chosen without replacement, ηP (ηS) is the probability that the former two have the 
same strategies in the two layers and the latter two are in one group of the first layer (of the second).

A method combining the coalescence theory with the theory of random walks in spatial lattices is 
established to calculate βP, γP, ηP, βS, γS, and ηS. The method can be divided into two steps: from the 
present (the time when multiple individuals are chosen) backwards to the time of their most recent 
common ancestor (MRCA), the coalescence theory is used to acquire the distribution about the number 
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of migration and of mutation events in the ancestral process; from the time of MRCA forwards to the 
present, the random walk is employed to trace the changing path of the strategy and of the location 
upon each lineage. Considering all possible states weighted by the corresponding probabilities, we finally 
accomplish the calculation of the strategy-and-location distribution of multiple individuals and further 
obtain
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where p(Δ 1, Δ 2) is the probability that a single-step migration results in the displacement vector (Δ 1, 
Δ 2) and i is the imaginary unit satisfying i2 =  − 1. The function f(x1, x2), which corresponds to the 
structured function of random walks on the two-dimensional lattice30, carries the full information of the 
migration pattern. It appears in βP, γP, and ηP with the form of the single variable function f(x1, M) and 
in βS, γS, and ηS with f(M, x2). Obviously, f(x1, M) and f(M, x2) characterize the displacement distribution 
in the first and in the second layer that a single-step migration leads to, respectively. Eventually, substi-
tuting Eq. (3) into (2), we obtain the concrete value of (c/b)* (shown in Methods), which applies to all 
migration patterns from local to global migration by adjusting the function f(x1, x2). Besides, there are 
no approximations in calculating (c/b)*, and thus its value holds for any population size, any mutation 
probability, any migration probability, and any group number in each layer.

In our model, an individual takes part in two layers of interactions simultaneously and the strategy 
in a given layer updates according to the total payoffs obtained in the two layers. Such model is called 
the two-layered network model accordingly. As the benchmark, the single-layered network model is 
investigated, in which an individual participates in interactions of only the first layer or of only the sec-
ond and the update of the strategy in the single layer is up to the payoff obtained from only that layer. 
Obviously, the cooperative level of the single-layered network model coincides with Eq. (1) when ω =  1 
(when ω =  0).

For ω =  1 (for ω =  0), the condition for cooperation in the two-layered network model coincides with 
the one in the single-layered. Although the cooperative levels in these two models are exactly the same 
when ω =  1 (when ω =  0), this coincidence is not seemingly obvious, as the update of the strategy in a 
given layer is different in them. This coincidence is because the payoff obtained in one layer imposes 
a vanishing effect on the evolution of the strategy in the other when ω =  1 (when ω =  0). The critical 
cost-to-benefit ratio (c/b)* of the single-layered network model is the one for ω =  1 (for ω =  0) in Eq. (2)  
when individuals participate in interactions of only the first layer (of only the second). It is proved to 
be a decreasing function of the mutation probability u, and thus cooperation is more favored for the 
smaller mutation probability.

Migration tuned by varying ranges. In each network layer, M groups are arranged in a circle, and 
thus the distance between two groups takes on one of the values , , , / ⌊ ⌋M1 2 2  where ⌊ ⌋x  is the largest 
integer less than or equal to x. Here, we focus on a representative type of migration patterns determined 
by the migration ranges of the two layers r1 and r2, which represent the largest displacement in the first 
and in the second layer that a single-step migration leads to, respectively. In Fig.  2B, we illustrate the 
migration pattern of each network layer characterized by the migration range r. All possible displacement 
vectors that a single-step migration leads to are assumed to form the set Ω (r1) ×  Ω (r2) where Ω (r) =  {1, 
2, ···, r}, which suggests that an individual disperses in the two layers simultaneously. In addition, all 
elements of Ω (r1) ×  Ω (r2) are assumed to be performed equiprobably. The corresponding f(x1, x2) is equal 
to f(x1; r1)f(x2; r2) where , ∈ , , , / ⌊ ⌋r r M{1 2 2 }1 2 , ( )( ) = + +π π
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reason why the terms sin(···) disappear in f(x1, x2) is the symmetry of the migration to the left and to the 
right direction. Substituting f(x1, M) =  f(x1; r1) and f(M, x2) =  f(x2; r2) into Eq. (3) and (2), we obtain (c/b)* 
when the migration ranges of the two layers are r1 and r2.
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In the following, we mean the case 0 <  ω <  1 by the two-layered network model without particular 
emphasis. In the two-layered network model, the critical cost-to-benefit ratio (c/b)* depends on migra-
tion ranges and game types of the two layers. Given the migration probability v and the mutation prob-
ability u, for two cases in which the two network layers use the same and different games, we will show 
the optimal migration ranges ⁎r1  and ⁎r2 which lead to the largest value of (c/b)* over the set Ω (r1) ×  Ω (r2).

When the two network layers use one game, it has been proved that the optimal migration ranges of 
the two layers ⁎r1  and ⁎r2 are both equal to the one of the single-layered network model, which holds for 
any ω ∈  (0, 1). Accordingly, the division of the plane (v, u) regarding ⁎r1  and ⁎r2 is in line with that of the 
single-layered network model and identical for all ω ∈  (0, 1). The results of the single-layered network 
model are in agreement with numerical simulations (Fig. 2).

In Fig. 3A–C, the case in which the two network layers use the prisoner’s dilemma is investigated. For 
small migration probabilities v or large mutation probabilities u, any migration ranges of the two layers 
can’t induce natural selection to favor cooperation over defection. For other probabilities u and v, the 
optimal migration ranges of the two layers ⁎r1  and ⁎r2 are both identical to the value of r which can be the 
largest ( = /⌊ ⌋r M 2 ), some intermediate ( ∈ , , , / − ) ⌊ ⌋r M{2 3 2 1} , or the smallest range (r =  1). As v 
grows, ⁎r1  and ⁎r2 become smaller. In Fig. 3D–F, the case in which the two layers use the snowdrift game 
is studied. The phenomenon disappears that any migration ranges of the two layers can’t lead natural 
selection to favor cooperation. The optimal migration ranges ⁎r1  and ⁎r2 are still identical and are located 
successively in the largest, some intermediate, and the smallest range as v grows, just like the case for the 
prisoner’s dilemma. The division of the plane (v, u) based on ⁎r1  and ⁎r2 is slightly affected by the popu-
lation size N and greatly affected by the group number of each layer M (Fig. S1 in Supplementary 
Information).

Figure 2. Agreement between analytic calculations and simulation results. A population of size N =  50 is 
distributed in the single-layered network consisting of M =  7 groups. Individuals play the prisoner’s dilemma 
with others in the same group. Each point indicates the frequency of cooperators averaged over around 
5 ×  109 generations. Decreasing the cost-to-benefit ratio c/b favors cooperators. The critical cost-to-benefit 
ratio (c/b)* (intersection with the horizontal line) is obtained when 〈 xC〉  =  1/2. We study three migration 
ranges r =  1, r =  2, and r =  3 for three migration probabilities v =  0.07, v =  0.12, and v =  0.2. The optimal 
migration range r* leads to the largest value of (c/b)* over the set , , , / ⌊ ⌋M{1 2 2 }. When v =  0.07, r* =  3. 
When v =  0.12, r* =  2. When v =  0.2, r* =  1. The mutation probability u =  0.01, the benefit b =  1, and the 
selection intensity δ and the cost c vary accordingly.



www.nature.com/scientificreports/

6Scientific RepoRts | 5:17446 | DOI: 10.1038/srep17446

The following is the explanation as to why the optimal migration ranges of the two layers become 
smaller as the migration probability grows. The small migration probability prevents cooperators from 
finding empty groups. In a group full of cooperators and defectors, cooperators will be overcome by 
defectors and possible to survive if they leave the current group and find empty groups. Here, the largest 
migration range provides most opportunities for a migratory cooperator to find an empty group and is 
best in promoting cooperation. Whereas the large migration probability synchronizes the population 
(makes individuals move in a more well-mixed environment), raising the likelihood all cooperators are 
overcome by defectors. In this case, the smallest migration range imposes the largest limitation on the 
exploitation of cooperators (defectors can exploit cooperators in only their own and nearest neighbor 
groups) and maximizes the cooperator frequency. When the migration probability is moderate, some 
intermediate migration range, which brings the migratory cooperators enough opportunities of finding 
empty groups and restricts the exploitation of cooperators by defectors, is the most ideal.

When the first layer uses the prisoner’s dilemma and the second the snowdrift game, the optimal 
migration ranges of the two layers ⁎r1  and ⁎r2 are not necessarily identical and the division of the plane (v, 
u) regarding ⁎r1  and ⁎r2 relies on ω (Fig. 4). As the migration probability v grows, ⁎r1  becomes smaller, and 
the appearance sequence of ⁎r2 is related with the mutation probability u. This indicates the prisoner’s 
dilemma plays a predominant role in the evolution relative to the snowdrift game. As the population size 
N or ω increases, or as the group number of each layer M decreases (Fig. S2 in Supplementary 
Information), the area for =⁎r 12  expands and even occupies the whole plane (v, u). This shows that the 
impact of the prisoner’s dilemma on the evolution becomes stronger compared to the one of the snow-
drift game.

Discussion
We provide a minimal model of multiplex networks, where an individual takes part in group interactions 
of two network layers simultaneously. The exact analytic condition for cooperation is calculated for two 
cases in which the two layers use one game (the prisoner’s dilemma or the snowdrift game) and different 
games (the prisoner’s dilemma vs. the snowdrift game), and holds for all “isotropic” migration patterns 
from local to global migration. In particular, a type of migration tuned with varying ranges is investigated 
to obtain the migration ranges of the two layers which are best in promoting cooperation.

Our study is similar to the previous17, as both assume that an individual takes part in interactions of 
more than one network layer simultaneously. There are, however, three obvious differences between these 
two studies. Our model assumes the more realistic group rather than graph structure in the previous17. 
Unlike the previous study17, where the cooperative behaviors of all network layers play the equal role 
in measuring the overall cooperative level, we introduce a parameter ω ∈  [0, 1] so that the cooperative 

Figure 3. When the two network layers use the same game, the division of the plane (v, u) based on the 
optimal migration ranges of the two layers ⁎r1  and ⁎r2 , which lead to the largest value of the critical cost-to-
benefit ratio (c/b)* over the set {1, 2, ⋯, ⌊M⧸2⌋} × {1, 2, ⋯, ⌊M⧸2⌋}. A population of size N =  100, 
N =  500, or N =  1000 is distributed in two network layers, each of which assumes M =  9 groups. The 
proportion of the cooperative level of the first layer in the overall cooperative level ω =  0.5. The two layers 
use the prisoner’s dilemma (PD) in (A–C) and the snowdrift game (SN) in (D–F).
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behaviors of the two layers can be unequal. The parameter ω acts as a bridge between the two-layered 
and the single-layered network model in the sense that the conditions for cooperation in them are the 
same when ω =  1 or when ω =  0. Migration, as the central feature of ecosystems in reality, is drawing 
increasing interest in solving the dilemma of cooperation9–13,20–22. It is completely ignored in the previous 
study17, but introduced into the evolutionary dynamics in our study.

We provide an approach combining the coalescence theory with the theory of random walks in spatial 
lattices to overcome the analytic difficulty upon local migration in the two-layered group structure. As a 
byproduct, local migration in the single-layered group structure is analyzed theoretically by our method. 
In the previous theoretical work22,24, only migration of the smallest range, as an extreme case of local 
migration, has been examined in the single-layered group structure. Our method is similar to the previ-
ous22,24 in that both of them use the coalescence theory and the theory of random walks, whereas there 
are four significant differences between them. The previous method22,24 is mainly based on a particular 
random walk which has an explicit expression of the probability that the walker moves from one to any 
point after t steps, and thus holds for only migration of the smallest range. In contrast, the highlight of 
ours is that we find the unified expression of such probability for any random walk, and thus ours can 
deal with all migration patterns. Unlike the previous method22,24, which adopts the continuous-time 
approximation of the discrete coalescent process and the one of the discrete random walk, we make no 
approximations in using the coalescence theory and the theory of random walks, and thus our method 
holds for any population size, any mutation probability, any migration probability, and any group number 
of each layer. The analyses in the previous method22,24 are the same for the Moran and the Wright-Fisher 
process by assuming large population limit. Yet in our method, the analyses for the Moran process are 
more complicate than those for the Wright-Fisher by assuming any population size, and ours is applied to 
the Moran process in this paper. In contrast to the previous method22,24, in which the theory of random 
walks is used to follow only the migration process, we employ the theory of random walks to trace both 

Figure 4. When the first layer uses the prisoner’s dilemma and the second the snowdrift game, the division of 
the plane (v, u) based on the optimal migration ranges of the two layers ⁎r1  and ⁎r2 , which lead to the largest 
value of the critical cost-to-benefit ratio (c/b)* over the set {1, 2, ⋯, ⌊M⧸2⌋} × {1, 2, ⋯, ⌊M⧸2⌋}. A 
population of size N =  100, N =  500, or N =  1000 is distributed in two network layers, each of which assumes 
M =  9 groups. We study three cases ω =  0.2, ω =  0.5, and ω =  0.8, where ω is the proportion of the 
cooperative level of the first layer in the overall cooperative level. The insets show the division of the plain 
(v, u) more clearly when v and u are both small.
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the migration and the mutation process, and thus our method not only deals with local migration, but 
also paves a way for investigating local mutation theoretically.

The exact analytic condition for cooperation is illustrated by a type of migration tuned by varying 
ranges. When the two network layers use one game, the optimal migration ranges of the two layers have 
been proved to be both identical to the one of the single-layered network model and become smaller as 
the migration probability grows. When the two layers use different games, they can be different. In the 
single-layered network model, our analyses consider all possible migration ranges together and are more 
comprehensive than the previous22, which compare only the largest and the smallest migration range. 
Besides, we find a new result that some intermediate migration range is best in promoting cooperation 
for some moderate migration probability. Moreover, our method can also be used to study the evolution 
of cooperation based on tag24, where the group is viewed as the tag that helps cooperators to make the 
strategy, and can further extend such study for all patterns of tag mutation.

Methods
The condition for cooperation. In a finite population of size N, individual i endowed with the 
strategy vector ( , )s si

P
i
S  adopts ∈ ,s {0 1}i

P  in the first layer and ∈ ,s {0 1}i
S  in the second (1 for coopera-

tion and 0 for defection). Assuming that an individual interacts with any others in the same group of 
each layer, the payoff of individual i obtained in the first layer is denoted by pi

P and the one in the second 
pi

S. The fitness of individual i is ( )δ= + +f p p1i i
P

i
S , where δ is the selection intensity.

The mean frequency of the strategy (1, 1) in the stationary distribution is calculated by the 
Mutation-Selection analysis as follows. In a single-step update, the frequency of the strategy (1, 1) 
denoted by x(1,1) is increased in two ways: an existing individual with the strategy (1, 1) reproduces, and 
the offspring does not mutate to other strategies; an existing individual with other strategies reproduces, 
and the offspring mutates to the strategy (1, 1). Yet in a single-step update, there is only one way to 
decrease x(1,1): an existing individual with the strategy (1, 1) dies. Thus, the expected change of x(1,1) in a 
single-step update is ( )( )∆ = − + − −( , ) ( , )

( , ) ( , )x x1 1u F

F
u F

F1 1
3
4 4 1 1

1 1 1 1  where F(1,1) and F are the total 
fitness of individuals with the strategy (1, 1) and of the population, respectively. Since the mean Δ x(1,1) 
in the stationary distribution is zero, then = + −

δ δ
( , )

−
( , )

( , )x xu
u

F

F1 1
1
4

1
1 1

1 1  where 〈 X〉  denotes the 

mean X in the stationary distribution and the subscript of 〈 〉  is the selection intensity. Performing the 
perturbation theory in the limit of δ →  0, we have

δ= +
−

− ( )δ( , )
→

( , ) ( , )x u
Nu

P x P1
4

1
51 1 0 1 1 1 1 0

where P(1,1) and P are the total payoffs of individuals with the strategy (1, 1) and of the population, 
respectively. Similarly under weak selection, the mean frequency of (1, 0) and of (0, 1) in the stationary 
distribution is 〈 x(1,0)〉 δ→0 and 〈 x(0,1)〉 δ→0 respectively:

δ δ= +
−

− , = +
−

− ( )δ δ( , )
→

( , ) ( , ) ( , )
→

( , ) ( , )x u
Nu

P x P x u
Nu

P x P1
4

1 1
4

1
61 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0

where P(1,0) and P(0,1) are the total payoffs of individuals with (1, 0) and with (0, 1), respectively. Eventually, 
the evolutionary dynamics under weak selection can be calculated on the basis of the neutral selection 
δ =  0, which assumes no fitness differences between individuals.

According to Eq. (1), (5), and (6), the mean xC in the stationary distribution is

( ) ( )

( ) ( )

∑ ∑

∑ ∑
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ω
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.
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,
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Therefore, the condition for natural selection to favor cooperation over defection is
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This condition in Eq. (8) reduces to (for detailed reduction process please refer to Supplementary 
Information)

∑ ∑ ∑ ∑ω ω− + ( − ) − > .
( ), ,

s p
N

s p s p
N

s p1 1 1 0
9i

i
P

i
P

l i
l
P

i
P

i
i
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i
S

l i
l
S

i
S

0 0

The detailed transformation of ω ω∑ − ∑ + ( − ) ∑ − ∑, ,s p s p s p s p1i i
P

i
P

N l i l
P

i
P

i i
S

i
S

N l i l
S

i
S1

0

1

0
 is 

shown in Supplementary Information. By letting it be 0, i.e., 〈 xC〉  =  0.5, the corresponding c/b is 
denoted by (c/b)*:
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The above βP, γP, ηP, βS, γS, and ηS describe the strategy-and-location distribution of multiple individuals 
in the neutral selection.

A method combining the coalescence theory with the theory of random walks. In each 
update, there is a single newborn offspring who was reproduced and a single parent who reproduced in 
the immediately previous generation. Imagine that k individuals labelled by I1, I2, ···, Ik are chosen ran-
domly and without replacement from the population to form a sample: with probability 

N
1

2
, Ix and Iy of 

the sample are the newborn offspring and the parent, respectively (for detailed analysis please refer to 
Supplementary Information); with probability − +N k

N
1

2
, Ix of the sample is the newborn offspring and the 

rest are not the parent; with probability −N k
N

, none of the sample is the newborn offspring. Obviously 
with probability 1/N2, the ancestor of Ix and the one of Iy are the newborn offspring and the parent 
respectively when the first coalescence of the sample happens. Given the first coalescence happens upon 
the lineages of Ix and Iy at the moment T by looking backwards from the present generation 0. During 
the former T −  1 moments between two generations 0 and T −  2, the probability of ∩ ∩ ∩A A Ak1 2  
where Ai means that there appear ki newborn offspring on the lineage of Ii is
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Based on Eq. (11), the probability of ∩ ∩ ∩ ∩B C C Ck1 2  where B represents that the first coales-
cence of the sample happens upon the lineage of Ix and of Iy at the time T and Ci denotes that until the 
time T the lineage of Ii has ki newborn offspring is

( ( , − , , , ) + ( , , , − , )).
( )

     

N
P T k k P T k k1 ; 1 ; 1 12x y x y2

Considering the independence of migration and mutation upon a newborn offspring and the independ-
ence of migration or the independence of mutation in different generations, the probability of 

∩ ∩ ∩D D Dk1 2  where Di denotes that gi migrate and hi mutate among ki newborn offspring is

∏( , , , , , , ) =




















( − ) ( − ) .
( )=

− −
 M g g g h h h

k
g

k
h

v v u u; 1 1
13k k

x

k
x

x

x

x

g k g h k h
1 2 1 2

1

x x x x x x

It is noteworthy that there are no approximations in the above coalescence theory and our results hold 
for any population size, any migration probability, and any mutation probability.

In our model, the location space is characterized by a two-dimensional lattice satisfying the periodic 
boundary condition (a1 +  j1M, a2 +  j2M) =  (a1, a2) where j1 and j2 are integers. Given that the ancestor 
of Ix at the time T is located in ηx and until then gx migration events occur upon the lineage of Ix, the 
migration process along the lineage of Ix becomes a discrete random walk on the two-dimensional lattice. 
One-step migration paths and the corresponding probabilities describe the displacement distribution 
that a single step of the random walker leads to. Consequently, the probability that Ix is located in γx is

( ) ∑ ∑η γ π π γ η→ =





(∆) ( ∆ ⋅ / )





(− ⋅ ( − )/ )
( )

−

∆

Pr M p i r M ir Mexp 2 exp 2
14

M x

g
x

r

g

x x
2x

x

where p(Δ ) is the probability that a single-step migration results in the location displacement Δ  and i 
is the imaginary unit satisfying i2 =  − 1. The function π( ) = ∑ (∆) ( ∆ ⋅ / )∆f r p i r Mexp 2 , which corre-
sponds to the structured function on the two-dimensional lattice with period M30, carries the full infor-
mation of the migration pattern. Eq. (14) describes essentially the probability that a random walker 
moves from one to any point after t steps, and holds for all migration patterns. This equality is not given 
directly in the previous study, but can be derived following the example of the previous30. There are no 
approximations in the above calculations, and thus our result holds for any group number of each layer. 
Similarly, the strategy space is described as a one-dimensional lattice satisfying b1 +  j1S =  b1 where j1 is 
an integer. Given that the ancestor of Ix at the time T uses the strategy θx and until then hx mutation 
events occur upon the lineage of Ix, the mutation process along the lineage of Ix can be traced by a dis-
crete random walk on such one-dimensional lattice. Eventually, the probability that Ix uses the strategy 
δx is

( ) ∑ ∑θ δ π π δ θ→ =





(∆) ( ∆ ⋅ / )





(− ⋅ ( − )/ )
( )

−

∆

Pr S h i r S ir Sexp 2 exp 2
15

S x
h

x
r

h

x x
1x

x

where h(Δ ) is the probability that a single-step mutation results in the strategy change Δ . The function 
π( ) = ∑ (∆) ( ∆ ⋅ / )∆g r h i r Sexp 2  describes the full information of the mutation pattern. Note that our 

method paves the way for studying local mutation by adjusting g(r).
At the time of the first coalescence, the sample of k individuals have k −  1 ancestors and two of them 

have the same ancestor. The probability that the k −  1 individuals (ancestors) are located in η1, η2, ···, ηk−1 
respectively and use strategies θ1, θ2, ···, θk−1 respectively is denoted by

θ θ θ η η η( = , = , , = = , = , , = ). ( )− − − − P s s s m m m; 16k k k k1 1 2 2 1 1 1 1 2 2 1 1

In our model, η1, η2, ···, ηk−1 are points on the two-dimensional lattice with period M and θ1, θ2, ···, θk−1 
are points on the one-dimensional lattice with period 4. There are k(k −  1)/2 possible pairs of lineages 
for the sample to first coalesce into a common ancestor, and we assume that the first coalescence of the 
sample happens upon the lineage of Ix and the one of Iy in the following. T, which is the time that it 
takes the sample to reach their first coalescence, takes on one of the values 1, 2, ···. Meanwhile, k1, k2, ···, 
kk, where ki is the number of newborn offspring along the ancestral lineage of Ii, range from 0 to T and 
satisfy k1 +  k2 +  ··· kk ≤  T. Moreover, g1 (g2, ···, gk) and h1 (h2, ···, hk), where gi and hi are the number of 
migration and of mutation events among ki newborn offspring respectively, take on one value between 0 
and k1 (k2, ···, kk). For simplicity, the common ancestor of Ix and Iy at the time T is assumed to be located 
in η1 and to use the strategy θ1, and the ancestors of the other k −  2 individuals of the sample at the time 
T are assumed to be located in η2, η3, ···, ηk−1 respectively and to use strategies θ2, θ3, ···, θk−1 respectively. 
Given the above conditions, according to Eq. (14) and (15), the probability that the k individuals are 
located in γ1, γ2, ···, γk respectively and use strategies δ1,δ2, ···,δk respectively is



www.nature.com/scientificreports/

1 1Scientific RepoRts | 5:17446 | DOI: 10.1038/srep17446

( )( )η γ η γ θ δ θ δ→
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 →
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 Pr Pr Pr Pr
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By considering all possible strategies and locations of k −  1 ancestors at the first coalescence in Eq. (16), 
all possible first coalescence pairs in Eq. (17), all possible values of T and of k1, k2, ···, kk in Eq. (12), all 
possible values of g1, g2, ···, gk and of h1, h2, ···, hk in Eq. (13), and weighting the system in those states by 
the stationary probabilities, we obtain a recurrence relation between the strategy-and-location distribu-
tion of k individuals and the one of k −  1 individuals, whose initial condition is the known distribution 
of one individual’s strategy and location.

The calculation of βP, γP, ηP, βS, γS, and ηS. Since the strategy-and-location distribution of an 
individual is known, we can obtain the values of βP, γP, βS, and γS by considering the case k =  2 in the 
above analyses (for detailed calculation please refer to Supplementary Information):

∑ ∑

∑ ∑

β γ

β γ

= Ψ ( ( , )), = (Ψ ( ( , )) + Ψ ( ( , ))),
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= =
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where Ψ ( ) = − +
+ ( − ) ( − )

f v vf
N v f1
1

1 1 1
 and Ψ ( ) = ( − )( − + )

+ ( − ) + ( − )( − ) ( − )
f u v vf

N u N u v f2
1 1

1 1 1 1 1
. Meanwhile, we can obtain 

the values of ηP and ηS by considering the cases k =  3 and k =  2 in the above analyses (for detailed cal-
culation please refer to Supplementary Information):

∑
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η α
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2 1N u N u v2 2
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2 2
3

 It is noteworthy that our method prepares for investigating 

three-person games by considering the cases k =  4, k =  3, and k =  2 in the above analyses.
Substituting Eq. (18) and (19) into Eq. (10), we have

Note that the functions Ψ 1, Ψ 2, Φ 1, Φ 2, and Φ 3 omit (f(x1, M)) under ∑ =x
M

11
 and (f(M, x2)) under ∑ =x

M
12
 

for simplicity.

Single-layered network model. Following the example of the Mutation-Selection analysis and 
the perturbation theory used in the two-layered network model, the condition for cooperation in the 
single-layered network model is
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when only the second. Eq. (21) or (22) happens to be the condition for cooperation in the two-layered 
network model when ω =  1 or when ω =  0 (see Eq. (9)). Without loss of generality, we assume individuals 
participate in interactions of only the first layer. By letting ω in Eq. (20) be 1, we obtain the (c/b)* of the 
single-layered network model,

α

α

α

α
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Note that the functions Ψ 1, Ψ 2, Φ 1, Φ 2, and Φ 3 omit (f(x, M)). Since Δ 2 and Δ 4 are increasing functions 
with respect to u and equal to zero when u =  0, they are positive for all u ∈  (0, 1]. Then two values of 
(c/b)* in Eq. (23) are decreasing functions with respect to u since − Ψ 1 +  Ψ 2 decreases as u grows.

Migration tuned by varying ranges. When the two network layers use the prisoner’s dilemma, the 
optimal migration ranges of the two layers are both equal to the one of the single-layered network model. 
The proof is as follows. Based on Eq. (20), (c/b)* for ω =  1 (for ω =  0) varies with the migration range 
of only the first layer (of only the second) and is independent of the one of the other layer. When the 
migration ranges of the two layers are r1 and r2, (c/b)* for ω =  1 (for ω =  0) is denoted by P(r1) (by P(r2)) 
and (c/b)* for 0 <  ω <  1 is P(r1, r2). According to Eq. (20), when r1 =  r2, or when r1 ≠  r2 and P(r1) =  P(r2),

( , ) = ( ). ( )P r r P r 241 2 1

As (c/b)* for 0 <  ω <  1 is between (c/b)* for ω =  1 and the one for ω =  0, when r1 =  r2 and P(r1) =  P(r2),

( ) < ( , ) < ( ) ( ) < ( , ) < ( ). ( )P r P r r P r P r P r r P ror 251 1 2 2 2 1 2 1

Let P(r*) be the maximum of P(r) over the set , , , / ⌊ ⌋M{1 2 2 }, i.e., ( ) = ( )⁎P r P rmaxr , and let 
( , )⁎ ⁎P r r1 2  be the maximum of P(r1, r2) over the set , , , / × , , , / ⌊ ⌋ ⌊ ⌋M M{1 2 2 } {1 2 2 }, i.e., 
( , ) = ( , )( , )

⁎ ⁎P r r P r rmax r r1 2 1 21 2
. Eq. (24) shows when r1 =  r2 =  r*, P(r1, r2) reaches P(r*). Eq. (24) and (25) 

show when r1 ≠  r2, P(r1, r2) can not exceed P(r*). In summary, ( , )⁎ ⁎P r r1 2  is equal to P(r*) and the optimal 
migration ranges of the two layers ⁎r1  and ⁎r2 can be the same and equal to r*. Since the (c/b)* for ω =  1 
(for ω =  0) is equal to the (c/b)* of the single-layered network model, the optimal migration ranges of 
the two layers are both equal to the one of the single-layered network model. When the two layers use 
the snowdrift game, the same conclusion can be obtained similarly. Note that the above proof does not 
specify the value of ω and holds for any ω ∈  (0, 1).

References
1. Nowak, M. A. Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006).
2. Szabó, G. & Fáth, G. Evolutionary games on graphs. Phys. Rep. 446, 97–216 (2007).
3. Nowak, M. A., Tarnita, C. E. & Antal, T. Evolutionary dynamics in structured populations. Philos. Trans. R. Soc. B 365, 19–30 

(2010).
4. Perc, M. & Szolnoki, A. Coevolutionary games - a mini review. BioSystems 99, 109–125 (2010).
5. Masuda, N. & Ohtsuki, H. Evolutionary dynamics and fixation probabilities in directed networks. New J. Phys. 11, 033012 (2009).
6. Szabó, G. & Hauert, C. Phase transitions and volunteering in spatial public goods games. Phys. Rev. Lett. 89, 118101 (2002).
7. Masuda, N. Opinion control in complex networks. New J. Phys. 17, 033031 (2015).
8. Perc, M. & Szolnoki, A. Self-organization of punishment in structured populations. New J. Phys. 14, 043013 (2012).
9. Helbing, D. & Yu, W. The outbreak of cooperation among success-driven individuals under noisy conditions. Proc. Natl. Acad. 

Sci. USA 106, 3680–3685 (2009).



www.nature.com/scientificreports/

13Scientific RepoRts | 5:17446 | DOI: 10.1038/srep17446

10. Jiang, L. L., Wang, W. X., Lai, Y. C. & Wang, B. H. Role of adaptive migration in promoting cooperation in spatial games. Phys. 
Rev. E 81, 036108 (2010).

11. Wu, T., Fu, F., Zhang, Y. & Wang, L. Expectation-driven migration promotes cooperation by group interactions. Phys. Rev. E 85, 
066104 (2012).

12. Chen, X., Szolnoki, A. & Perc, M. Risk-driven migration and the collective-risk social dilemma. Phys. Rev. E 86, 036101 (2012).
13. Ichinose, G., Saito, M., Sayama, H. & Wilson, D. S. Adaptive long-range migration promotes cooperation under tempting 

conditions. Sci. Rep. 3, 2509 (2013).
14. Rand, D. G., Nowak, M. A., Fowler, J. H. & Christakis, N. A. Static network structure can stabilize human cooperation. Proc. 

Natl. Acad. Sci. USA 111, 17093–17098 (2014).
15. Szabó, G., Vukov, J. & Szolnoki, A. Phase diagrams for an evolutionary prisoners dilemma game on two-dimensional lattices. 

Phys. Rev. E 72, 047107 (2005).
16. Gómez-Gardeñes, J., Gracia-Lázaro, C., Floría, L. M. & Moreno, Y. Evolutionary dynamics on interdependent populations. Phys. 

Rev. E 86, 056113 (2012).
17. Gómez-Gardeñes, J., Reinares, I., Arenas, A. & Floría, L. M. Evolution of cooperation in multiplex networks. Sci. Rep. 2, 620 

(2012).
18. Wang, Z., Szolnoki, A. & Perc, M. Interdependent network reciprocity in evolutionary games. Sci. Rep. 3, 1183 (2013).
19. Wang, Z., Szolnoki, A. & Perc, M. Optimal interdependence between networks for the evolution of cooperation. Sci. Rep. 3, 2470 

(2013).
20. Traulsen, A. & Nowak, M. A. Evolution of cooperation by multilevel selection. Proc. Natl Acad. Sci. USA 103, 10952–10955 

(2006).
21. Kerr, B., Neuhauser, C., Bohannan, B. J. M. & Dean, A. M. Local migration promotes competitive restraint in a host-pathogen 

‘tragedy of the commons’. Nature 442, 75–78 (2006).
22. Fu, F & Nowak, N. A. Global migration can lead to stronger spatial selection than local migration. J. Stat. Phys. 151, 637–653 

(2013).
23. Fu, F. et al. Evolution of in-group favoritism. Sci. Rep. 2, 460 (2012).
24. Antal, T., Ohtsuki, H., Wakeley, J., Taylor, P. D. & Nowak, M. A. Evolution of cooperation by phenotypic similarity. Proc. Natl. 

Acad. Sci. USA 106, 8597–8600 (2009).
25. Tarnita, C. E., Antal, T., Ohtsuki, H. & Nowak, M. A. Evolutionary dynamics in set structured populations. Proc. Natl. Acad. Sci. 

USA 106, 8601–8604 (2009).
26. Tarnita, C. E., Wage, N. & Nowak, M. A. Multiple strategies in structured populations. Proc. Natl. Acad. Sci. USA 108, 2334–2337 

(2011).
27. Tarnita, C. E., Ohtsuki, H., Antal, T., Fu, F. & Nowak, M. A. Strategy selection in structured populations. J. Theor. Biol. 259, 

570–581 (2009).
28. Nathanson, C. G., Tarnita, C. E. & Nowak, M. A. Calculating evolutionary dynamics in structured populations. PLoS Comput. 

Biol. 5, e1000615 (2009).
29. Strobeck, C. Average number of nucleotide differences in a sample from a single subpopulation: a test for population subdivision. 

Genetics 117, 149–153 (1987).
30. Montroll, E. W. & Weiss, G. H. Random Walks on Lattices. II J. Math. Phys. 6, 167–181 (1965).
31. Kimura, M. Evolutionary rate at the molecular level. Nature 217, 624–626 (1968).
32. Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge University Press, 1983).
33. Zhang, Y., Fu, F., Wu, T., Xie, G. & Wang, L. A tale of two contribution mechanisms for nonlinear public goods. Sci. Rep. 3, 2021 

(2013).
34. Zhang, Y., Wu, T., Chen, X., Xie, G. & Wang, L. Mixed strategy under generalized public goods games. J. Theor. Biol. 334, 52–60 

(2013).

Acknowledgements
We are grateful for support from National Natural Science Foundation of China (No. 61520106009, No. 
61533008, No. 61125306, No. 61473324, No. 61503062).

Author Contributions
Y.Z. and F.F. conceived the model, Y.Z. performed analyses and wrote the paper, F.F., X.C., G.X. and L.W. 
discussed the results and revised the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Zhang, Y. et al. Cooperation in group-structured populations with two layers 
of interactions. Sci. Rep. 5, 17446; doi: 10.1038/srep17446 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Cooperation in group-structured populations with two layers of interactions
	Results
	General migration patterns. 
	Migration tuned by varying ranges. 

	Discussion
	Methods
	The condition for cooperation. 
	A method combining the coalescence theory with the theory of random walks. 
	The calculation of βP, γP, ηP, βS, γS, and ηS. 
	Single-layered network model. 
	Migration tuned by varying ranges. 

	Acknowledgements
	Author Contributions
	Figure 1.  Evolution in group-structured populations with two layers of interactions.
	Figure 2.  Agreement between analytic calculations and simulation results.
	Figure 3.  When the two network layers use the same game, the division of the plane (v, u) based on the optimal migration ranges of the two layers and , which lead to the largest value of the critical cost-to-benefit ratio (c/b)* over the set {1, 2,
	Figure 4.  When the first layer uses the prisoner’s dilemma and the second the snowdrift game, the division of the plane (v, u) based on the optimal migration ranges of the two layers and , which lead to the largest value of the critical cost-to-ben



 
    
       
          application/pdf
          
             
                Cooperation in group-structured populations with two layers of interactions
            
         
          
             
                srep ,  (2015). doi:10.1038/srep17446
            
         
          
             
                Yanling Zhang
                Feng Fu
                Xiaojie Chen
                Guangming Xie
                Long Wang
            
         
          doi:10.1038/srep17446
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep17446
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep17446
            
         
      
       
          
          
          
             
                doi:10.1038/srep17446
            
         
          
             
                srep ,  (2015). doi:10.1038/srep17446
            
         
          
          
      
       
       
          True
      
   




