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Editorial

Within-host models of SARS-CoV-2: What can it teach us on the
biological factors driving virus pathogenesis and transmission?

Viral dynamics is a field of research that develops mathematical
models based on biological knowledge to characterise the
evolution of virological and immunological markers during
infection. Analogous to epidemiological models, these models
view the human body as a series of compartments composed of
different cell or virus types that evolve over time (Fig. 1, panel
‘‘within-host modelling’’).

In its most basic formulation, the model assumes three
compartments: free virus particles infect target cells, which
become productively infected cells, that are then gradually lost
as a result of viral cytopathicity and/or immune response.
Analogous to epidemiological models, one can define a ‘‘within-
host’’ basic reproductive ratio (R0) that quantifies how many
infected cells arise from a single infected cell at the beginning of
infection and depends on the balance between the processes of
virus production and elimination. When R0 > 1, the virus grows
exponentially until most target cells are depleted. Thereafter, the
virus declines rapidly at a rate that reflects the loss of infected cells
that can either be eliminated or cured of their viral content. Over
the past 30 years, many models have been developed that go
beyond this simple ‘‘target-cell limited model’’ and incorporate
more biological processes: the intracellular life cycle, the role of
the innate and adaptive immune response, virus mutation, or
pharmacological interventions [1] for a comprehensive set of
reviews for various infectious diseases. In the context of SARS-CoV-
2 infection, viral dynamic models are used for three main
purposes: (i) characterising the association of viral load with
transmission and with clinical evolution, (ii) optimising treatment
and vaccine strategies, and (iii) understanding the viral-host
interactions.

From a public health perspective, these models can quantify the

symptom onset, at least in the pre-vaccination and Omicron era
[2–4]. This means that patients may shed large amounts of virus in
the few days that precede their symptom onset, and underscores
the problem of infections occurring during the pre-symptomatic
phase of the disease. When longitudinal studies are nested within
epidemiological studies, longitudinal profiles of individuals can be
used to assess the heterogeneity of viral dynamics, and evaluate
the impact of variants of concern or vaccination [5,6], or suggest
strategies to improve testing strategies [3,5,7]. If both the index
and its high risk contacts are followed prospectively [8], modelling
can also be used to reconstruct viral load at the time of contact, and
explore the accrued risk of transmission caused by increased levels
of viral shedding and temporal changes in infectiousness [9] (Fig. 1
arrow 1).

In the past, these models have also been widely used to
optimise antiviral therapies (Fig. 1, arrow 2). By fitting frequent
nasopharyngeal viral load data, it was found that R0 was close to
10, albeit with variability across studies [10,11]. As the within-host
equivalent of the herd immunity threshold, antiviral treatment
must be above 1-1/R0 = 90% to dramatically reduce viral replica-
tion. Given the in vitro estimated drug EC50 (half maximal effective
concentration) and their pharmacological properties, we have
shown that repurposed antiviral agents (e.g., hydroxychloroquine,
lopinavir, remdesivir, favipiravir) are unlikely to achieve this
pharmacodynamic target, anticipating the negative outcome of all
trials evaluating these molecules [10]. In the new era of
monoclonal antibodies (mAbs), we still lack exhaustive analyses
of viral kinetics during treatment. Analyses in the macaque model
of COVA1-18 suggest that the efficacy of mAbs in blocking de novo

cell infection in the upper and lower respiratory tract may exceed
95% [12], which is consistent with the impressive results of several
mAbs in phase 3 clinical trials. Modelling analyses are now
urgently needed to explore the causal pathways between antiviral
effect, viral dynamics and clinical benefit. In particular, it is still
unclear whether monoclonal antibodies might also be beneficial
when administered at a later stage of infection. In an analysis of
hospitalised patients from the French COVID-19 cohort, we
showed that viral dynamics after admission was an independent
factor associated with mortality [4]. With a treatment reducing
viral production by 90%, the time to viral clearance can be
shortened by more than 2 days on average, which could lead to a
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parameters that determine the kinetics of viral load and its
distribution in the population. An important observation that has
been made is that the peak of viral load coincides with the
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ortality by 30% in patients who were seronegative at inclusion, a
arker strongly associated with high viral load. Studies such as the

andomised clinical trial Discovery (NCT 04315948) are now
ngoing to examine the extent to which antiviral treatment may be
elevant in hospitalised patients who had a high viral load at
nclusion (Fig. 1, arrow 2).

Depending on the data collected, models may also provide
nsights into the role of the immune response on viral clearance.
everal models have challenged the hypothesis of peak viral load
eing primarily caused by cell depletion, and have proposed
odels in which the innate [3] or adaptive immune response [4,11]

lays a key role in viral clearance. These models can also be used to
eproduce patterns observed in some patients, such as bimodal
eak in viral load. However, these models are often limited by the
ifficulty of collecting frequent viral load and immunological data,
hich poses problems in parameter identifiability and leads to

arge uncertainty in parameter estimates.
For this reason, characterisation of the adaptive immune

esponse within the host is often considered a separate problem.
irst, integrative analyses of multiple immunological markers can
elp understand the hyper inflammation and cytokine storm
ssociated with clinical complications [13]. For instance, markers
uch as CD177 have been shown to be associated with disease
rogression and predict the course of patient hospitalisation
rajectory [14]. Then, modelling the cellular and molecular

natural infection. Of note, natural immunity confers at least similar
[16] or longer-lasting and stronger protection against infection
[17]. Binding and neutralising antibodies are clearly associated with
protection against infection [18,19]. This means that the effect of
vaccines on disease transmission and/or severity could be captured
by these immunological markers, called correlates of protection
(CoP). Defining such markers is critical to accelerate the develop-
ment of new vaccines and vaccination strategies [20]. The use of
within-host mathematical models can help in this investigation to
define mechanistic CoP, which is directly related to the protective
mechanism triggered by the vaccine, and thus causally responsible
[21]. Therefore, within-host models help quantifying the effect of
vaccines on the infection of new cells by SARS-CoV-2 through
neutralisation [22]. Recent studies have also shown that neutralisa-
tion measured in vitro or in vivo is a reasonable mechanistic correlate
of protection [19,23]. Finding good correlates of protection is
particularly challenging in the context of an ever-evolving virus,
where variants of concern (VoC) frequently emerge. Indeed, for each
VoC, vaccine protection against transmission and hospitalisation
needs to be rapidly assessed [24]. In addition, multiple mechanisms,
and thus multiple biomarkers, could contribute to the protective
efficacy of a vaccine. In the case of SARS-CoV-2, the role of T-cell
responses has also been highlighted [25]. Therefore, expanding the
framework for within-host modelling to integrate high-dimensional
data generated in current immunological studies is promising

ig. 1. Within-host models during the dynamics of an acute viral infection.

odels are used to understand the evolution of the viro-immunological response during an infection. As such, they can be used to disentangle the factors associated with (1)

nhanced infectiousness during acute infection (2) progression towards a severe disease, and how to prevent it via pharmacological interventions (3) protection against

fection via previous infection or vaccination.
eterminants of the duration of antibody response is key to realistic
rediction of epidemic dynamics, taking into account waning

mmunity (Fig. 1 arrow 3). Hence, the within-host modelling of
bola vaccine response based on early phase 1 trial data has revealed
he long-term duration of the response [15]. In what follows, we will
ocus on vaccination, but similar considerations can be applied to
2

research.
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[10] Gonçalves A, Bertrand J, Ke R, Comets E, de Lamballerie X, Malvy D, et al.
Timing of antiviral treatment initiation is critical to reduce SARS-CoV-2 viral
load. CPT Pharmacometrics Syst Pharmacol 2020;9:509–14. http://dx.doi.org/
10.1002/psp4.12543.

[11] Goyal A, Cardozo-Ojeda EF, Schiffer JT. Potency and timing of antiviral therapy
as determinants of duration of SARS-CoV-2 shedding and intensity of inflam-
matory response. Sci Adv 2020;6eabc7112. http://dx.doi.org/10.1126/sciad-
v.abc7112.

[12] Maisonnasse P, Aldon Y, Marc A, Marlin R, Dereuddre-Bosquet N, Kuzmina NA,
et al. COVA1-18 neutralizing antibody protects against SARS-CoV-2 in three
preclinical models. Nat Commun 2021;126097. http://dx.doi.org/10.1038/
s41467-021-26354-0.

[13] Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immuno-
logical features of severe and moderate coronavirus disease 2019. J Clin Invest
2020;130:2620–9. http://dx.doi.org/10.1172/JCI137244.
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