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Abstract: Identifying the ecological evolution trends and vegetation driving mechanisms of giant
panda national parks can help to improve the protection of giant panda habitats. Based on the
research background of different geomorphological zoning, we selected the MODIS NDVI data from
2000 to 2020 to analyze the NDVI trends using a univariate linear model. A partial correlation analysis
and multiple correlation analysis were used to reveal the influence of temperature and precipitation
on NDVI trends. Fourteen factors related to meteorological factors, topographic factors, geological
activities, and human activities were selected, and the Geographically Weighted Regression model
was used to study the mechanisms driving NDVI change. The results were as follows: (1) The
NDVI value of Giant Panda National Park has fluctuated and increased in the past 21 years, with
an annual growth rate of 4.7%/yr. Affected by the Wenchuan earthquake in 2008, the NDVI value
fluctuated greatly from 2008 to 2012, and reached its peak in 2018. (2) The NDVI in 94% of the
study area improved, and the most significant improvement areas were mainly distributed in the
northern and southern regions of Southwest Subalpine and Middle Mountain and the Xiaoxiangling
area. Affected by the distribution of fault zones and their local activities, vegetation degradation
was concentrated in the Dujiangyan–Anzhou area of Hengduan Mountain Alpine Canyon. (3) The
Geographically Weighted Regression analysis showed that natural factors were dominant, with
climate and elevation having a double-factor enhancement effect, the peak acceleration of ground
motion and fault zone having a superimposed effect, and river density and slope having a double
effect, all of which had a significant impact on the NDVI value of the surrounding area. To optimize
the ecological security pattern of the Giant Panda National Park, we recommended strengthening the
construction of ecological security projects through monitoring meteorological changes, preventing,
and controlling geo-hazards, and optimizing the layout and intensity of human activities.

Keywords: vegetation; geographically weighted regression; climate change; Wenchuan earthquake;
ecological security

1. Introduction

The giant panda is an important national protected animal in China, and changes in
its habitat quality have received extensive attention from researchers. Affected by urban
and rural construction activities, the fragmentation of giant panda habitats is serious, and
the natural and anthropogenic threats to the habitat quality continue to intensify [1–3].
National parks are key areas for strictly protecting biodiversity in various countries [4], with
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the purpose of achieving effective ecological protection, rational utilization of resources
and sustainable social and economic development [5,6]. In order to adapt to the multi-
departmental collaborative management of giant panda reserves, the Chinese government
proposed the establishment of the China Giant Panda National Park (CGPNP) in 2017
and announced its formal establishment in 2021 [7]; this balances the needs of regional
ecological protection and socio-economic development and continuously improves the
ability of biodiversity protection to balance the needs of regional ecological protection
and socio-economic conservation [8,9]. Vegetation in CGPNP is affected by the complex
interaction of ecological elements such as soil, atmosphere, and water, and is also an
important medium for natural ecosystems and human production activities [10]. Among
many types of remote sensing data, the Normalized Difference Vegetation Index (NDVI)
is a sensitive parameter of surface vegetation coverage and vegetation growth which
reflects the difference between the radiation absorption in the red spectral region caused by
chlorophyll and the reflectivity of canopy structure caused by the NIR spectral region, and
it can effectively characterize the vegetation environment and its changes and effects [11,12].
The NDVI generated from remote sensing data have the advantage of a long time series,
wide coverage, and high spatial resolution [13], and there are many cases of NDVI being
used to monitor national park vegetation, ecological environments and their changes all
over the world, including passive monitoring over a long time series [14], vegetation
and climate coupling characteristics research [15], vegetation phenology characteristics
research [16], and so on.

Many studies have been conducted on vegetation changes in CGPNP reserves in
China [17], but these study areas consisted mainly of independent reserves in CGPNP,
and the data used are mostly SAR images [18–20]. Although the use of SAR image improves
the accuracy of image recognition, the coverage area of SAR images is small and the period is
limited, so it is not suitable for long-term dynamic monitoring of vegetation. The Moderate
Resolution Imaging Spectroradiometer (MODIS) can better solve this problem and can be
used for monitoring the vegetation environment and its changes in CGPNP. The research on
the trends of changes in vegetation environments is the key component of dynamic moni-
toring, and the methods involved include the linear regression analysis [21], Mann–Kendall
test [22,23], BFAST trend analysis and Theil–Sen median slope trend analysis [24]. Among
these, the linear regression analysis is a more effective method in this kind of research.

The driving mechanisms of climate and other factors based on the trends of changes
in NDVI form the basis for the formulation of national park protection strategies. Studying
the response mechanism of climate change to NDVI changes is of great significance in
predicting vegetation dynamics [25]. In the global research on the relationship between veg-
etation and climate, the climate-driving mechanisms in different regions show significant
geographical differentiation [26–29]. The CGPNP is located in a climate transition zone,
and climate drives NDVI with great complexity and uncertainty. Most previous studies on
NDVI drivers in this region have only considered climatic factors. For example, Lin et al.
focused on the two factors of temperature and precipitation in their research on NDVI-
driving forces in North China [30], and Liu et al. also only considered the spatial charac-
teristics of climate factors in the study of vegetation change in China [31]. The impact of
geological activities, topography, and human activities was not considered sufficiently [32].
Affected by the 12 May 2008 Wenchuan earthquake and its triggered geo-hazards, the local
NDVI decreased rapidly and the habitat quality deteriorated seriously [33,34]. In the more
than 10 years since the earthquake, the ecological geological environment has undergone
great changes, which has increased the spatial instability and complexity of the analysis of
the driving forces of NDVI changes [35]. At present, there are many research methods on
NDVI’s driving forces, such as the enhanced regression tree model [36], the Geographically
Weighted Regression (GWR) model [37], the correlation analysis method [38] and residual
trend analysis [39], most of which are only used for unilateral aspects such as climate
factors, ignoring the correlation and coupling between multiple factors and failing to take
into account the spatial difference of the action of driving factors. To study the driving
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mechanisms of NDVI changes, the GWR model is a suitable choice because it enables
one to change the parameter settings on the local scale, facilitates the determination of
local coefficients, and can solve the problems of spatial instability and scale dependence
to a certain extent in the analysis [40,41]. The GWR model can reveal the spatiotemporal
variability between each driving factor and vegetation activity by studying the spatial
non-stationary relationship between each driving factor and NDVI change value.

Aiming at the complex eco-geological environment of CGPNP, the MODIS NDVI data
products were selected, and the Savitzky–Golay filter was used to construct NDVI serial
data from 2000 to 2020. In this study, the univariate linear model was used to monitor
the interannual NDVI trends in the study area based on geomorphological zoning. The
GWR model was used to identify the driving mechanisms of NDVI trends by integrating
the effects of natural and human factors. Finally, combined with the temporal and spatial
differentiation characteristics and driving mechanisms of NDVI change, eco-geological
environmental protection countermeasures were proposed according to the local conditions.

2. Study Area and Data Processing
2.1. Study Area

The CGPNP is located in the ecological barrier area of the Sichuan–Yunnan Loess
Plateau in the “two screens and three belts” ecological barrier area in China’s ecological
security strategy [42] with the largest population, protected area type and quantity in
China [43]. The establishment of CGPNP brings together various nature reserves and
increases the connectivity of giant panda habitats [44–46]. From northeast to southwest,
the Sichuan Area of China Giant Panda National Park (SCOCGPNP) consists of seven
cities (prefectures), including 19 counties (cities and districts). It spans five areas: Qin-
ling Mountains, Baishui River, Minshan Mountain, Qionglai Mountain–Daxiangling, and
Xiaoxiangling (Figure 1a). The SCOCGPNP ranges from 102◦27′ to 105◦57′ E and 29◦42′

to 33◦34′ N, covering an area of 20,177 km2. As the study area is located in the transition
area from a subtropical zone to a warm temperate zone (Figure 1b) [47], the average annual
precipitation is 830 mm, and the average temperature is 10–17 ◦C. In the study area, the
altitude decreases from northwest to southeast, and the vertical distribution of vegetation is
obvious: subtropical evergreen deciduous forest, evergreen deciduous broad-leaved mixed
forest, temperate coniferous forest, cold temperate coniferous forest, shrub, and meadow.

In order to fully describe the influence of geomorphology on the basement of NDVI and
its changes, the study area was divided into five geomorphological areas (Figure 1c) [48],
including the Baishui River–Minshan Area of Southwest Subalpine and Middle Mountain
(BSMS), the Minshan Area of Hengduan Mountain Alpine Canyon (MS), the Dujiangyan–
Anzhou Area of Hengduan Mountain Alpine Canyon (DA), the Daxiangling Area of
Hengduan Mountain Alpine Canyon (DXL), and the Daxiangling-Xiaoxiangling Area of
Southwest Subalpine and Middle Mountain (DXLXXL).

2.2. Data Sources
2.2.1. MODIS NDVI Data

In this research, the Moderate-resolution Imaging Spectroradiometer (MODIS) spectral
imager on the EOS/Terra satellite was used to obtain MOD13A1 products, among which
MODIS VI products can be used to monitor the terrestrial photosynthetic vegetation
activities of the earth and support the phenology and change monitoring of vegetation
in national parks. The NDVI data from 2000 to 2020 in this research were downloaded
from the official website of NASA (https://earthdata.nasa.gov/, accessed on 20 February
2021). The product used in this research was the collection 6 data set. Compared with the
collection V data set, the 8-day surface reflection data (pre-synthesized based on the Terra
and Aqua data) were used, the CV-MVC synthesis method was modified, and the necessary
SDS was adjusted to reflect the new input data flow, which improves the change-detection
ability of the product [49]. We selected the best available pixel value from the data set

https://earthdata.nasa.gov/
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collected in 16 days with a resolution of 500 m, resulting in NDVI values with low cloud
cover and low viewing angles [50].
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2.2.2. Driving Factors

The GWR model was selected to explore the driving mechanism of various factors
influencing NDVI trends, and five categories and 14 variables were selected (Table 1).

As the main controlling factor of vegetation structure, composition, and distribution,
there is a strong correlation between precipitation and NDVI [51]. Since temperature can
regulate the photosynthesis of vegetation [52], annual mean temperature and variability
were used as analytical indicators (Figure 2a–d).

Located in a geomorphological boundary area, the study area has complex geomor-
phology. Among the topographic factors, elevation often determines the temperature
and CO2 content of vegetation growth (Figure 2e), slope represents soil moisture and
sunlight exposure for vegetation growth (Figure 2f), and aspect also has a certain impact
on vegetation lighting conditions [53] (Figure 2g).

Located near the Longmenshan fault zone, the crustal activity in the study area affects
the growth of vegetation, the looseness of soil, and the stability of its growth state. The
Euclidean distance from fault (Figure 2h) and the peak acceleration of ground motion
(Figure 2i) were used to characterize the activity of the geological activities [54].
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Table 1. Data sources.

Variable Class Variable
Name Definition and Units Data Sources Spatial

Resolution

Climatic

TEM_MN Annual mean precipitation
2000–2020 (mm/yr)

National Qinghai
Tibet Plateau
scientific data

center a

1 km

PRE_MN Annual mean temperature
2000–2020 (◦C/yr) 1 km

TEM_BT

t-test grading of precipitation
trends (OLS)

during the growing season
2000–2020

1 km

PRE_BT
t-test grading of temperature

trends (OLS) during the growing
season 2000–2020

1 km

Geomorphological

ELEVATION Elevation represents macroscopic
geomorphology (m)

Geospatial data
cloud b

30 mSLOPE Slope represents groundcutting
condition (◦)

ASPECT Aspect represents
ground orientation

Geological activities

ED_FAULT Euclidean distance from fault (m) China Geological
Survey c Vector

PGA Peak ground acceleration (g) China earthquake
administration d Vector

Human activity
ED_BLAND Euclidean distance from

built-up land (m)
Data Sharing and
Service Portal e 30 m

DEN_ROAD Road density (km/km2)
National Geomatics

Center of China f Vector

Others

DEN_RIVER River density (km/km2)
National Geomatics

Center of China f Vector

LUCC Land-use change index European Space
Agency g 300 m

a http://data.tpdc.ac.cn/zh-hans/ (accessed on 25 February 2021); b http://www.gscloud.cn/ (accessed on 5
May 2021); c https://www.cgs.gov.cn/ (accessed on 20 May 2021); d https://www.cea.gov.cn/ (accessed on 20
May 2021); e http://data.casearth.cn/en/ (accessed on 16 April 2021); f http://www.ngcc.cn/ngcc/ (accessed on
18 April 2021); g https://www.esa.int/ (accessed on 25 April 2021).

Human activities around construction land, such as logging, grazing, fire, etc., which
disturb the original structure of the vegetation landscape, are closely related to changes in
the NDVI [55]. In addition, most of the study area is mountainous. Therefore, compared
with nighttime light data and POI data, choosing the Euclidean distance for construction
land can more intuitively characterize the intensity of human activities, and can exclude er-
rors caused by terrain fluctuations and weak human activities (Figure 2j). The construction
and use of roads have a devastating impact on the ecological environment, and the towns
and villages connected by them imply the impact of human activities. The denser the road
distribution (Figure 2k), the more serious the damage to the vegetation [31]; so the road
density was selected as one influencing factor. Due to the large proportion of forest land
and mountainous terrain in the study area, the dynamic change in human activities was
small, so the static data of 2020 were selected to characterize the impact of human activities.

http://data.tpdc.ac.cn/zh-hans/
http://www.gscloud.cn/
https://www.cgs.gov.cn/
https://www.cea.gov.cn/
http://data.casearth.cn/en/
http://www.ngcc.cn/ngcc/
https://www.esa.int/
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Figure 2. Driving factors used for GWR Model. (a) Temperature mean value; (b) temperature slope;
(c) precipitation mean value; (d) precipitation slope; (e) elevation; (f) slope; (g) aspect; (h) Euclidean
distance from fault; (i) seismic peak acceleration; (j) Euclidean distance from built-up land; (k) road
density; (l) river density; (m) land-use change index; (n) NDVI in 2000.

The distribution of rivers affects the stability of regional NDVI and controls ecological
changes and landscape dynamics [56]; therefore, the river density was chosen to charac-
terize its impact (Figure 2l). Different land-use types represent different NDVI values and
different NDVI change possibilities. For example, the conversion of construction land or
cultivated land to grassland or forest land is beneficial to the improvement of NDVI [57].
In the same geographical environment, the order of NDVI values from high to low is
forest land > cultivated land > grassland [58]; whereas a negative value of NDVI usually
represents water [59]. Referring to this law, the forest land, cultivated land, grassland,
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construction land, water bodies, and other land types in the initial and final years were
designated as 25, 15, 10, 0, −5, and 0, respectively (Figure 2m). A measure of the transfor-
mation of land-use types was obtained by subtracting the initial year from the final year.
The NDVI value of the starting year in 2000 was used to characterize the vegetation trends
and to assess whether the regional vegetation had reached a saturated state [60] (Figure 2n).

Different driving factors have spatial differences in different partitions (Table A1)
and applying this fact to the GWR model is conducive to the discussion of the driving
mechanisms of NDVI.

2.3. Method
2.3.1. Data Preprocessing

We selected the annual data synthesized from monthly data from 2000 to 2020 as the
research data of long time series. There are various synthesis methods available for NDVI
data, such as the average value method (AVM), maximum value composite (MVC), time
series reconstruction method, and so on. To remove the NDVI outliers in multi-temporal
images to a certain extent [61], the MVC method was selected to synthesize the data with a
period of 16 days to obtain the monthly NDVI value from 2000 to 2020, so as to eliminate
the deviation caused by atmospheric interference, solar elevation, cloud coverage, etc. To
eliminate the noise caused by sensor error or cloud cover in data acquisition, Savitzky–
Golay filtering was carried out on the NDVI value of continuous time series, and the NDVI
value images of 21 consecutive years from 2000 to 2020 were obtained (Figure A1).

2.3.2. NDVI Change Detection

The univariate linear regression analysis model monitors the NDVI time series through
the regression time function. The model can calculate the interannual variability of vegeta-
tion, which is the slope of the linear regression equation [62]. The calculation formula is
as follows:

θslope =
n×∑n

i=1 i×NDVIi −∑n
i=1 i ∑n

i=1 NDVIi

n×∑n
i=1 i2 − (∑n

i=1 i)2 (1)

where n represents the time span and i represents the NDVI value in the ith year; when
θslope > 0, it indicates that NDVI is in an improved state, and when θslope < 0, it indicates
that NDVI is degraded.

The t-test was used to obtain the significance of the temporal trend of NDVI:

t =
x1 − x2

s×
√

1
n1

+ 1
n2

(2)

s =

√
n1S2

1 + n2S2
2

n1 + n2 − 2
(3)

where x1 and x2 represent the mean of the two subsamples, n1 and n2 represent the
number of the two subsamples and S1 and S2 represent the standard deviation of the
two subsamples.

Through the above process, the change in slope of NDVI and t-test results were
obtained. The θslope was divided into improvement and degradation, with the value of
0 as the boundary. Two confidence levels of 0.01 and 0.05 were selected in the t-test to
evaluate the significance of the change in NDVI. A p-value of 0.01 < p < 0.05 was considered
significant, p < 0.01 was extremely significant, and p > 0.05 was considered insignificant. The
combination of the two can be used to divide the NDVI trend into six categories: extremely
significant degradation, significant degradation, insignificant degradation, insignificant
improvement, significant improvement, and extremely significant improvement (Table 2).
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Table 2. Significance classification criteria.

θslope p Significance Test Classification

θslope< 0
p ≤ 0.01 Extremely significant degradation

0.01 < p ≤ 0.05 Significant degradation
p > 0.05 Insignificant degradation

θslope> 0
p > 0.05 No significant improvement

0.01 < p ≤ 0.05 Significant improvement
p ≤ 0.01 Extremely significant improvement

2.3.3. NDVI Climate-Driven Analysis

In order to describe the correlation between NDVI, precipitation, and temperature,
the partial correlation coefficient and multiple correlation coefficient were selected as
quantitative indicators to test significance, and the study area was divided into different
climate-driving types according to the test results.

A partial correlation analysis can measure the correlation between two factors under
the exclusion of other factors [63]. The formula for calculating the partial correlation
coefficient between temperature, precipitation, and NDVI is as follows:

r123 =
r12 − r13 ∗ r23√

(1− r13
2) ∗ (1− r232)

(4)

rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 ∗∑n
i=1(yi − y)2

(5)

where r12, r13, and r23 are the correlation coefficients between NDVI and temperature,
NDVI and precipitation, and temperature and precipitation; r123 is the partial correlation
coefficient between the two parameters based on the third parameter.

A statistically significant confidence level of 0.05 was selected, and a t-test was per-
formed on the results of partial correlation analysis to obtain the significance between
climate-driving factors.

t =
r123√

1− r123
2

√
n−m− 1 (6)

where n is the number of samples and m is the independent variable.
A multiple correlation analysis was used to study the degree of correlation between

NDVI and precipitation and temperature, thereby revealing the driving mechanism of
climate on NDVI changes.

rx,yz =
√

1−
(
1− r2xy

)(
1− r2xz,y

)
(7)

A significant F-test was performed on the results of the multiple correlation analysis:

F =
r2

x,yz

1− r2x,yz
× n− k− 1

k
(8)

where n is the number of samples and k is the number of independent variables.
Based on the existing precipitation, temperature, and NDVI data, a partial correlation

and multiple correlation analysis were carried out to test the correlation of the two coef-
ficients. In the partial correlation analysis, the t-test with a confidence level of 0.05 was
used to divide the precipitation-driving type and temperature-driving type pixel by pixel.
In the multiple correlation analysis, the F-test with a confidence level of 0.01 was used to
determine whether it was a climate-driven region. The combination of the two can be used
to obtain the climate-driven zoning map in the study area (Table 3).
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Table 3. Zoning criteria for climate-driving factors.

Driven Type
Zoning Criteria

r NDVI P, T *a r NDVI T, P *b r NDVI P, T *c

Precipitation-driven t ≥ t0.05 *1 F ≥ F0.01 *2

Temperature-driven t ≥ t0.05 F ≥ F0.01
Temperature- and precipitation-driven t ≥ t0.05 t ≥ t0.05 F ≥ F0.01

Other driving modes F ≤ F0.01

*a Partial correlation coefficient between NDVI and temperature. *b Partial correlation coefficient between NDVI
and precipitation. *c Multiple correlation coefficient between precipitation and temperature. *1 Confidence t-test
significance level of 0.05. *2 Confidence F-test significance level of 0.01.

2.3.4. NDVI-Driving Force Analysis Based on the GWR Model

The GWR model, which is a spatial decomposition of traditional regression models,
can be extended via the estimation of local parameters. The parameters of each spatial
point in the entire model are independently quantified, which is often used to test the
existence of spatial non-stationarity in the relationship between dependent variables and
independent variables [64]. The model can be used to characterize the effects of geology,
meteorology, and human activities on vegetation coverage at different spatial locations.
The GWR technique extends the traditional global regression by adding a geolocation
parameter, and the formula is as follows:

yi = βo (µi, vi) +
p

∑
k=1

βk(µi, vi)xik + εi, i = 1, 2, . . . n (9)

where yi is the dependent variable, x is the independent variable of the explanatory factor,
β0(µi, vi) represents the intercept at position i, βk(µi, vi) represents the local parameter
estimation of the explanatory variable xik at position i, and εi is the random error term at
point i.

The estimated coefficients of GWR are weighted according to the observations and
the spatial proximity of a particular point i. The parameters can be estimated using the
rectangular equation:

β̂(µ, v) =
(

XTW(µi, vi)X
)−1

XTW(µi, vi) Y (10)

where β̂(µ, v) represents the unbiased estimate of the regression coefficient β, W(µi, vi)
is the weighting matrix, and X and Y are the matrices of independent and dependent
variables. W(µi, vi) ensures that observations close to a specific location have greater
weight, expressed using a Gaussian weighted kernel function:

wij = exp
(
−

dij

b2

)
(11)

where wij represents the weight of observation j at position i, dij represents the Euclidean
distance between regression point i and adjacent observation j, and b represents the basic
width of the kernel function.

Stationarity exists when the variable xik does not vary with position i, and the GWR-
based stationarity index is used to estimate spatial stationarity [65]:

SI =
βGWR_iqr

2× GLM_se
(12)

where SI is the stationarity index, βGWR_iqr is the standard error interquartile range of the
GWR coefficient and GLM_se is the standard error of the global regression analysis. When
SI < 1, the explanatory variable y and the dependent variable x achieve spatial stationarity.
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AIC can be used to determine the significance of the coefficients to compare relative
measures of model performance, the smaller the AIC, the more reliable the model is, and
AICc represents the limited sample size correction result of the AIC [66].

AICc = 2nIn(σ̂) + nln(2π) + n
(

n + tr(S)
n− 2− tr(S)

)
(13)

where n is the number of samples, σ̂ is the estimated value of the residual standard
deviation, tr(S) represents the trajectory of the hat matrix, and when the AICc value is lower
than three, the model performs better.

To study the driving mechanisms of NDVI in this study we used the local regression
method in the GWR Model, taking 14 driving factors related to climate factors, terrain
factors and geology and geomorphology as independent variables. In addition, the sig-
nificance grading result of the NDVI value was used as the dependent variable. Among
them, insignificant degradation, insignificant improvement, significant improvement, and
extremely significant improvement were assigned as −1, 1, 2, and 3 respectively to repre-
sent the change in NDVI. Thus, the estimation coefficients of different factors on NDVI at
more than 20,000 sampling points were obtained. To control the accuracy of the estimated
coefficients, the outliers of the estimated coefficients of each driving factor were deleted,
and the distribution map of the estimated coefficients was obtained through interpolation.

3. Results
3.1. Spatiotemporal Characteristics of NDVI Trends
3.1.1. Temporal Characteristics of NDVI Trends

The average value of NDVI in the whole region from 2000 to 2020 generally displayed
an upward trend (Figure 3). The NDVI value changed from 0.40 to 0.51 over 21 years,
roughly increasing by about 0.11, but the R2 value was smaller, at 0.486. The variation in
the mean value of NDVI had a small amount of fluctuation, and the fluctuation period was
about 3 years, reaching a minimum value in 2012 and a maximum value in 2018. Affected
by the Wenchuan earthquake and secondary geo-hazards, the NDVI value of the whole
region was in a continuous downward trend from 2009 to 2012, and gradually increased in
the following years. Although the NDVI of the whole region was generally on the rise, the
variation characteristics of NDVI in each subregion were different. Among these, the NDVI
value in DA generally showed a downward trend, with a serious and continuous decline
from 2007 to 2012 and reached the lowest value of 0.3136 in 2012. In the past 21 years,
NDVI values in other regions have been rising, but due to the influence of temperature, the
NDVI values in the whole region decreased significantly in 2012.
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To obtain the correlation of the NDVI trends and average values between different
zones, we conducted a Pearson analysis on the variations in the average NDVI values
between different zones from 2000 to 2020 (Figure 4). Except for DA, the correlation
coefficient between NDVI trends in the whole area and each area reached more than 0.85.



Int. J. Environ. Res. Public Health 2022, 19, 6722 11 of 31

Affected by the surrounding crustal movement, the variation in the NDVI value in DA was
unstable, and the correlation coefficient with other areas was low, ranging from 0.27 to 0.59.
Due to the low altitude, suitable temperature and sufficient precipitation, the correlation
coefficients of BSMS and DXLXXL with the whole region reached 0.96 and 0.97, respectively,
which can better represent the NDVI trends in the whole region.
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3.1.2. Spatial Characteristic of NDVI Trends

There were few human activities in the SCOCGPNP, and construction land accounted
for only 0.6%, so the distribution of NDVI was mainly affected by natural factors. In the
study area, the high NDVI values were mainly distributed in the BS, the eastern part of
BSMS, the eastern part of DXL and other places with lower altitudes (Figure 5a). Affected
by high altitude, the western region has barren vegetation, covered glaciers and low annual
precipitation, with an annual precipitation level below 1000 mm all year. The average
temperature in some areas was lower than 0 ◦C, and the basic conditions for vegetation
growth were not met. Therefore, the grassland area accounted for more and the woodland
accounted for less growth. The overall value of NDVI showed a decreasing trend from
northwest to southeast.
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To analyze the spatial improvement and degradation of NDVI values in the study
area, in this study we calculated the NDVI variability (Figure 5b), and then divided
the calculated NDVI variability per pixel into four levels according to the significance
classification standards (Figure 5c) to obtain the spatial heterogeneity of the NDVI trends
over 21 years. During the period from 2000 to 2020, the NDVI trends showed an overall
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trend of improvement, and a vegetation coverage rate of 94% of the study area also showed
a trend of improvement with an annual growth rate of about 4.7%/yr. The proportion
of non-significantly degraded areas was 6%, mainly distributed in DA. The land-use
types consisted mainly of shrubs and grasslands, and these were close to the Wenchuan
earthquake-generating fault zone, which is prone to secondary geo-hazards. The extremely
significant improvement area accounted for 47% of the whole area, mainly distributed in
the north of BSMS, the southwest of DXLXXL, and the XXL area, which had high NDVI
values, abundant precipitation, and high temperature. The significant improvement area
accounted for 47% of the whole area, with scattered areas of non-significant improvement
and extremely significant improvement, and most of the land-use types were classed as
forest land. The SCOCGPNP, from northwest to southeast, is located in a transition zone
from a subtropical zone to a warm temperate zone and a transition zone from the Qinghai
Tibet Plateau to the Sichuan Basin. Therefore, the NDVI trends can be roughly divided into
the northwest region and southeast region, and the temperature in the southwest region is
low all year, which is not conducive to the growth of vegetation, whereas the temperature
in the southeast region is high all year, especially in the south.

3.1.3. Verification of NDVI Trends

To test the accuracy of the NDVI trend analysis, we selected five verification areas in
different nature reserves for accuracy verification (Figures 5c and A2). Figures show that
the Landsat Image of each verification area is consistent with the change trend of vegetation
coverage calculated by MODIS NDVI data. In addition, due to the significant degradation
of DA, the images of 2000, 2007, 2008, 2009, and 2020 were selected to verify the vegetation
changes before and after the Wenchuan earthquake of 12 May 2008. The selected images are
Landsat 5 images synthesized by bands 3, 2, and 1 in 2000, 2007, 2008, 2009 and Landsat 8
images synthesized by bands 4, 3, and 2 in 2020 (https://earthengine.google.com/, accessed
on 10 May 2022). In DA, the NDVI value changed greatly from 2007 to 2009 (Figure 6).
Due to the influence of the Wenchuan earthquake, the relatively strong vibration around
the fault caused varying degrees of vegetation damage [67]. Secondary disasters such as
landslides and collapses caused by the earthquake in this area gradually transformed the
forest land into grassland or bare land [68,69].
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3.2. NDVI Driver Analysis
3.2.1. NDVI Climate Driver Analysis

From 2000 to 2020, the average value of NDVI, annual precipitation, and annual
temperature all showed an upward trend (Figure 7). The average range of NDVI was
mainly between 0.4 and 0.5, showing a downward trend from 2009 to 2012, but there was
a slight increase in the past 21 years. The average annual temperature range was mainly
between 5.6 ◦C and 6.6 ◦C, reaching the highest value in 2006 and 2016 and the lowest value
in 2000. The annual precipitation ranged from 700 mm to 900 mm, reaching the highest
value in 2013 and the lowest value in 2006. The precipitation fluctuated greatly from 2000
to 2006, and the range of fluctuation in temperature was similar to that of NDVI.
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Temperature and precipitation are two factors that directly affect the spatial distribu-
tion of vegetation. In this study, we calculated the partial correlation coefficient between
NDVI, precipitation and temperature from 2000 to 2020 pixel by pixel. In general, there was
a strong positive correlation between temperature and precipitation and NDVI. The partial
correlation coefficient between temperature and NDVI was greater than zero in more than
90% of the regions (Figure 8a), indicating that temperature and NDVI had a basically posi-
tive correlation. The high values of the partial correlation coefficient between temperature
and NDVI were mainly distributed in the BSMS and DXLXXL regions, which have a low
altitude and high temperature. The partial correlation coefficient between precipitation
and NDVI was greater than zero in more than 30% of the regions (Figure 8b). The places
with a high correlation between precipitation and NDVI were mainly distributed near the
boundaries of three geomorphological divisions in MS, the Wolong Nature Reserve, and
the eastern part of XXL.

In this study, a t-test with a confidence level of 0.05 was carried out on the analysis
results. In the partial correlation t-test between NDVI and temperature and precipitation the
proportions of results passing the 0.05 confidence test were 51.02% and 9.14%, respectively
(Figure 8c,d). After the complex correlation analysis between precipitation and temperature
(Figure 8e) the analysis results were tested with a confidence level of 0.05 (Figure 8f), and
the value of NDVI in 34.22% of the region was driven by climate factors, which was mainly
distributed in the north and south of Southwest Subalpine and Middle Mountain. The
average temperature in this region was approximately more than 12 ◦C, the average annual
precipitation was more than 1000 mm, and the variability of precipitation and temperature
was large, providing sufficient water and light for vegetation.

According to certain climate-driving factor zoning principles, the climate-driving
factors of the whole region were divided into four types: temperature-driven, precipitation-
driven, temperature- and precipitation-driven, and other driving modes (Figure 9). The
precipitation-driven area accounted for 1.32% of the whole area, which was distributed in
the middle of the Xuebaoding Nature Reserve and the Wolong Nature Reserve. The area
driven by temperature accounted for 27.46% of the whole region, which was distributed in
the west of MS and DXLXXL. The area driven by other driving modes accounted for 65.77%
of the whole region; the elevation was higher in this region, and the land-use type was
mainly bare land or grassland. Most climate-driven regions had higher NDVI values, higher
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temperatures, and higher average annual precipitation, which had a significant positive
effect on NDVI. Other driving mode areas were generally located at higher altitudes, with
lower NDVI values. In these areas, the vegetation was dominated by grasses, lichens,
and mosses; the air pressure was low and the carbon dioxide content was much lower, so
the driving effects of precipitation and temperature were weak. The driving mechanism
in this region is very complex, so it is necessary to use the GWR model to identify the
comprehensive driving mechanism of NDVI changes including climate factors based on
the analysis of the correlation between climate and NDVI changes.
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3.2.2. NDVI Driver Analysis Based on the GWR Model

In this study we used the inverse distance weight to interpolate the spatial distribution
relationship of the continuous estimated coefficients between each driving factor and NDVI
(Figure 10). The average values of the estimated coefficients of each factor were sorted as
follows: TEM_MN > TEM_BT > PRE_MN > PRE_BT > DEN_RIVER > PGA > LUCC >
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ED_FAULT > NDVI2000 > ED_ROAD > Aspect > Elevation > ED_BLAND > Slope. This
indicates that natural factors occupied a dominant position, the variability-driving effect of
climate factors was strong, and the correlation between Euclidean distance from built-up
land and slope was low.
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(1) Driving Effect of Climate Factors

The driving effect of climate factors on NDVI is obvious, and the climate in most areas
played a driving role. High temperature and more precipitation were conducive to the
growth of vegetation. The positive-driving area of the average temperature accounted for
91.95%, mainly in DA. The negative-driving effect of the area was small, and the absolute
value of the estimated coefficient was only 0.66. In areas with higher altitudes, due to
the limitation of the growth environment, temperature mostly drove NDVI negatively,
and had no obvious promoting effect on vegetation growth. The estimation coefficient of
temperature variability was mainly positive-driven and concentrated in MS, whereas the
region with a large increase in temperature had less of a negative-driving effect on NDVI.

The positive-driving effect of precipitation-related factors on NDVI was smaller than
that of temperature-related factors. The positive-driving area accounted for 25.91% of
the estimated coefficient of the average precipitation and was mainly located in DXLXXL.
The negative-driving area accounted for a large proportion, but the absolute value of the
estimation coefficient was small, and was concentrated in MS.

(2) Driving Effect of Geomorphological Factors

In areas where the altitude was higher, the reduction in temperature and oxygen was
not conducive to the growth of vegetation, and the driving effect of slope and NDVI was
weak. The negative values of altitude estimation coefficients were mainly concentrated in
high-altitude mountainous areas in BSMS and MS. The driving effect of slope on NDVI
values was generally small, and the negative-driving area was mainly concentrated in
Wolong Nature Reserve where (compared with the surrounding areas) the slope was
relatively large. Most of the aspect estimation coefficients were positive, accounting for
87.44%, mainly concentrated in the middle of the study area.

(3) Driving Effect of Geological Activities Factors

In this study, we selected the Euclidean distance from the fault and the peak accel-
eration of the ground motion as the driving factors related to the geological and geo-
morphology, and the driving effects of the two on the NDVI were mainly positive. The
positive-driving area in terms of the Euclidean distance from the fault accounted for 46.46%.
It was mainly concentrated in the large area near the Longmenshan fault zone, which is
sensitive to the activity of the fault zone. The negative-driving area accounted for 53.54%,
which was mainly concentrated in the south and north of the study area. The positive-
driving area of seismic peak acceleration accounted for 64.74%. It was mainly concentrated
in DA, which was seriously affected by the secondary disaster of the earthquake. In the
northeast of BSMS, the Xuebaoding nature reserve, and the southwest of DXL, the stratum
was not active, so its driving effect was weak.

(4) Driving Effect of Human Activity

Human activities have a certain blocking effect on vegetation, in which the high density
of roads is not conducive to vegetation growth, and the distance from construction land
also has a negative impact on vegetation growth. The negative-driving area of road density
exceeded 60%, mainly concentrated in the north of BSMS and DA. The positive value of
Euclidean distance from built-up land accounted for 52.52%, and it was concentrated in
Da and DXL. The area was close to the construction land, and the NDVI value was low,
reflecting the restrictive effect of human activities on vegetation growth.

(5) Driving Effect of Other Factors

The distribution of rivers and the change in land-use types can represent the distribu-
tion of NDVI values, and the NDVI value in the initial year can indicate whether the NDVI
values in some areas have reached saturation. The river density mainly had a negative
impact on the NDVI trend, accounting for 76.44%, mainly in the south of DXL. The change
in land-use types reflected the changes in vegetation from a dynamic point of view. The
land-use change index was highly consistent with the change trends of NDVI, and the
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positive-driving area accounted for 85.47%, mainly concentrated in DA and DXL. The
negative distribution of the estimated coefficient of NDVI in 2000 was closely related to
the elevation. In the southeast of the study area and other low-altitude areas, the positive-
driving area of NDVI value in 2000 accounted for 52.43%. The regions with higher altitude
were limited by the environment, and the NDVI value reached a certain degree of saturation
and no longer had growth potential.

(6) Gradient Variation in Each Driving Factor

To study the gradient variation in each driving factor in SCOCGPNP from northeast
to southwest, the study area was divided into five areas, and the numerical distribution of
each driving factor estimation coefficient in each area was counted to obtain the histogram
shown in Figure A3. The estimated coefficients of the average values of temperature and
precipitation tended to increase from northeast to southwest, and most of the estimated
coefficients of the average values of temperature were positively correlated, especially
in DXL and DXLXXL, most of which were concentrated between 2 and 3. Among the
topographic factors, the elevation of BSMS in the Sichuan Basin mainly had a negative
correlation with the NDVI value, and the estimation coefficient was distributed between
−4 and 1; whereas the estimation coefficient in DXLXXL was mainly concentrated between
zero and three, with an obvious positive-driving effect. The road density had a great impact
on the NDVI trends in DA, with the slope around the road being large and close to the fault
zone. In DXLXXL, the negative impact of river density on vegetation was more obvious,
and the area had high annual precipitation and a large river flow. The Euclidean distance
to construction land had a great impact on the vegetation growth in DA, as this area is
adjacent to the urban area of Chengdu in the southeast and close to the urban area of
Wenchuan in the northwest and is thus greatly affected by the development of urbanization.
The low-altitude areas of DA and DXLXXL were greatly affected by human activities, and
the positive-driving effect of the land-use change index on the change in the NDVI value
was more obvious.

4. Discussion
4.1. Analysis of NDVI Trends

In the past two decades, mechanisms such as natural forest protection, ecological
compensation, ecological protection, and regional sustainable development in the study
area have all played positive roles in improving the vegetation environment. The Chinese
government implemented the project of returning farmland to forest in 2002, and the area
of farmland being returned to forest in Sichuan Province reached 77.6 × 104 hm2 [70,71].
From 2000 to 2020, the NDVI trends, precipitation, and temperature showed upward
trends. The years with a decreasing trend in NDVI change were similar to the years with
low values of temperature. With the decreases in temperature in the study area in 2008,
2012, 2014, and 2018, the NDVI value was affected to varying degrees. Affected by the
2008 Wenchuan earthquake and its secondary disasters, the NDVI value in DA showed a
continuous downward trend from 2009 to 2012. As the precipitation in the study area in
2011 was lower than that in previous years [72] due to drought events, the NDVI value of
the whole area showed an obvious downward trend in 2012.

The univariate linear regression model was able to accurately and intuitively analyze
the past NDVI trends and obtain the variation in vegetation characteristics of SCOCGPNP
in time and space. The results showed that the variations in vegetation in the study area
were mainly affected by elevation and the fault zone, with spatial heterogeneity. Affected by
external forces such as crustal instability near the fault zone, the insignificant degradation
areas were relatively concentrated, mainly distributed in DA. This area is located in the
core area of the Longmenshan fault zone, with a basic earthquake intensity of VIII and the
Wenchuan earthquake intensity of XI. In addition, this area is located in the core area of the
rain screen district on the eastern edge of the Qinghai Tibet Plateau, and there are problems
relating to remaining mining sites. The stability of slopes in the area has decreased sharply,
and collapses, landslides, and debris flows are relatively common [73,74]. Therefore, in the



Int. J. Environ. Res. Public Health 2022, 19, 6722 18 of 31

past two decades, the NDVI value in this area has shown no significant degradation. On
the contrary, the crust in DXL is not active, the temperature is appropriate, the precipitation
is sufficient, and the vegetation growth is relatively stable, so it was found to be in a
state of extremely significant improvement. In addition to the geological activities and
climatic factors, NDVI is also limited by topographic factors to a certain extent [75], and the
boundary between significant improvement and non-significant improvement is roughly
the same as the snow line. In high-altitude areas, due to perennial snow, thin oxygen, low
temperature, insufficient sunshine, and other environmental factors, vegetation generally
does not improve significantly.

4.2. Driving Force Analysis of NDVI Trends
4.2.1. Climatic Factors

Climate affects vegetation types and spatial distribution [76]. Temperature and precip-
itation affect plant growth and distribution by affecting effective accumulated temperature
and the amount of water available to regulate plant photosynthesis, respiration, and soil
organic carbon decomposition. The climate conditions in the study area are diverse. From
northwest to southeast, there are plateau temperate humid areas, northern subtropical
humid areas, and middle subtropical humid areas [77]. With the increase in tempera-
ture, the annual precipitation increases to the level of more than 800 mm, and the water
demands of vegetation gradually tend to be saturated, which shows that the sensitivity
driven by temperature is higher than that driven by precipitation. In plateau temperate
humid regions, such as DA and the Wolong Nature Reserve, due to the limitation of tem-
perature, when NDVI reached saturation, the influence of other driving modes increases.
In areas with abundant precipitation, such as the southern DXLXXL and XXL, the area
of temperature-driven areas accounts for a larger proportion, because when the precipi-
tation reaches saturation, the increase in temperature enhances the fertilization effect of
CO2, and the photosynthesis of vegetation is enhanced under high CO2 concentration and
water stress [78].

Affected by the complex topography of the study area and the transition from a sub-
tropical zone to a warm temperate zone, there was spatial heterogeneity in the distribution
of NDVI trends and climate factor regression coefficients obtained via GWR analysis. In
the study area, affected by the superposition effect of climate factors, low-altitude areas
are positively correlated with NDVI trends, and high-altitude areas are mostly negatively
correlated [79]. In BS and the west of MS, the driving effect of average temperature on
NDVI trends was mainly negative. In high-altitude, low-temperature, and relatively arid
areas affected by the alpine climate the vegetation types are mainly grassland and alpine
meadow [80]; the transpiration of vegetation becomes weaker and the improvement effect
of temperature rise on vegetation is not significant [81,82]. The negative-driving force of
annual precipitation variability on NDVI trends in the study area was mainly distributed in
DXL. Because the surface of this area is deeply cut, coupled with frequent seismic activities,
the increase in precipitation is accompanied by the occurrence of geo-hazards. At the same
time, the presence of complex landforms and a cloudy and rainy environment can also
reduce the accuracy of remote sensing results in vegetation monitoring [83].

4.2.2. Geomorphological Factors

Under natural conditions, plant growth and changes are closely related to regional-
scale topographic conditions [84] and elevation, cutting depth, and aspect affect soil mois-
ture and the solar radiation distribution. The northwest of the study area is dominated
by the Hengduan Mountain Alpine Canyon, which forms a deep elevation difference
with the basin in the southeast. The positive and negative-driving effect of elevation on
NDVI was about 2500 m, showing vertical zoning. From low altitude to high altitude, the
driving effect of elevation on NDVI gradually decreased. The Ya’an area of the subalpine
basin in southwestern Sichuan Province and central Yunnan, due to its low altitude, small
slope, and sufficient light and heat conditions is conducive to returning farmland to forests.
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Thanks to the relatively stable geological environment, relatively balanced soil nutrients,
and sufficient water conservation, the proportion of vegetation improvement in this area
was relatively large [85].

Slope has an important impact on surface runoff and soil properties, and affects the
intensity of human activities, so there are differences in vegetation growth conditions in
areas with different slopes. In MS and DXL, some areas were affected by slope changes, and
soil moisture increased [86], which is beneficial for vegetation to absorb water, and the slope
had an obvious positive-driving effect on the NDVI trends. At the same time, ecological
projects such as returning farmland to forests and closing mountains for afforestation since
1999 strengthened the protection of forest land [87], and the areas with significant impact
were mainly concentrated in low-altitude areas such as the Zhonglongxi-Hongkou area
and the Jiudingshan Nature Reserve in Aba Prefecture where there are more transitions of
cultivated land to forests, and vegetation coverage increases with the increase in slope.

Aspect indicates the intensity of solar radiation received by the slope and the value
and degree of changes in ground water, which affects the sunshine hours and light intensity
of vegetation [88]. Compared with topographic factors such as elevation, the driving effect
of aspect on NDVI was relatively small. Variations in vegetation were more positively
affected by sunlight on sunny slopes. In the southern part of DXL, due to high precipitation,
cloud cover and less solar radiation, and relatively wet conditions, the humidity change
caused by aspect had little impact on vegetation growth, so the driving force of sunny
slopes was small.

4.2.3. Geological Activities Factors

The peak acceleration of ground motion represents the differential movement of
crustal fault blocks, and crustal movement is often accompanied by secondary disasters
such as landslide and collapse, which affects the stability of the vegetation growth envi-
ronment [89]. The terrain around DA in the Sichuan Basin is relatively large, and they
are mainly considered part of the Longmenshan–Minshan strike-slip thrust seismic zones.
When the crustal in situ stress caused by the earthquake exceeds the ultimate strength of
the crustal rocks, the rocks fracture and cause surface damage. At the junction of mountains
and basins in MS and DXL, the slope is high. Strong earthquakes not only cause a large
number of co-seismic landslides, but also exacerbate slope instability for a long time after
the earthquake, resulting in drastic changes in land cover in forest or shrubland areas [90],
and the vegetation around the Wenchuan earthquake was affected to a certain extent.

Around the fault zone, crustal movement seriously damages the original vegetation
and topsoil, forming a large area of secondary bare land [91]. The study area is pushed
eastward by the western Qinghai Tibet Plateau [92], resulting in a thrust nappe structure
with a sharp difference in altitude. Near the fault zone, the 2008 Wenchuan earthquake
triggered rock faults and water and soil losses, which significantly reduced the species
richness of woodlands and shrubs, destroyed tree roots, and reduced the density of forest
crowns in the Longxi–Hongkou and the Caopo Nature Reserves near Wenchuan in the
study area [61]. On the contrary, in the Wolong Nature Reserve, the NDVI showed an
improving trend, indicating that after the 2008 Wenchuan earthquake, the vegetation
near the fault zone was seriously damaged, resulting in a forest gap [93]. Affected by
the amplification effect of slope-secondary geo-hazards after the earthquake, disasters
secondary to the Wenchuan earthquake were relatively common in the middle and low
mountainous areas. On the contrary, the geological environment of vegetation growth in
alpine areas is relatively stable [94]. In XXL, the precipitation level is mostly more than
1000 mm. Affected by the superposition effect of secondary disasters, a large number of
collapses and landslides caused by the Wenchuan earthquake provide rich loose solid
materials for debris flow activities and also cause a large amount of slope instability
and rock mass damage, which greatly reduces the precipitation threshold of debris flow
outbreaks in earthquake-stricken areas [95].
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4.2.4. Human Activity

The occupation of forest land by road construction for human activities is considered
to be an important instigator of habitat fragmentation and biodiversity loss [96]. Road
construction has mostly negative effects in areas with large topographic relief, especially
in the north of BSMJ and DA. Road construction leads to a change in land use in the
places the road passes, which can easily lead to the expansion of cultivated land and the
increase in construction land, directly leading to habitat fragmentation and habitat loss,
which is the most important and urgent factor threatening the habitat safety of wildlife [97].
In addition, in the south of Wolong Nature Reserve, the G317 national highway passes
through areas with deep valleys and large slopes. The construction and use of roads affect
the regeneration ability of vegetation to a certain extent, destroying the integrity of forest
landscape, and affecting the richness and diversity of vegetation [98].

With the development of urbanization, the expansion of construction land has intensi-
fied the impact of human activities on vegetation, and human activities have brought about
different degrees of ecosystem degradation. In DA, the area close to the construction land is
affected by human activities, which has a high negative effect on NDVI [99], and there are
residual problems of mineral development and a decline in the ecological restoration ability
of giant panda habitats, which accelerates the fragmentation of protected areas [100]. For
example, in the northwest of MS, the construction of the Jiuzhaigou–Mianyang expressway
has affected the NDVI value since 2017. In addition, engineering construction activities
related to the expansion and development of human society, such as road construction,
mining, scenic spots, and water conservancy facilities, are threatening the habitats of gi-
ant pandas [101], and the contradiction between ecological environment protection and
resource development and utilization is becoming more and more obvious. For example,
the opening of the Jiuzhaigou–Chengdu tourism link in the north of the study area and the
large-scale local hydropower development have seriously damaged the habitats of giant
pandas [102]. However, China entered the scientific development stage of environmental
protection in 2002 and then announced a new era of ecological civilization in 2012. During
this period, policies for returning farmland to forest and grassland have been initiated
as part of ecological immigration policy in extremely important areas of environmental
protection [103]. Due to the large distribution of giant pandas in DXL, such as Wanglang,
Wolong, and other nature reserves, the ecological migration policy of the nature reserve
regulations coordinates the relationship between the community and the ecological envi-
ronment [104], reducing the adverse impact of human activities. Especially around the
Wolong Nature Reserve, construction land has an effect on improving the growth of the
NDVI value, affected mainly by tourism, which has transformed the economic structure of
the local community [105] and effectively achieved the purpose of sustainable development
of the nature reserve.

4.2.5. Other Factors

The distribution of rivers has a regulating effect on the scope of human activities,
and the development of agriculture and the construction of water conservancy projects
are inseparable from the rivers, which have corresponding effects on the distribution and
changes in vegetation. In protected areas such as Wolong in DXL, the positive-driving force
of river density on NDVI changes is more obvious; benefiting from the higher elevations in
these areas are the development of low-grade rivers, less human disturbance, and better
vegetation preservation. However, Ya’an and other areas in DXLXXL were found to have
steep slopes, long rainy seasons and concentrated rainfall, fast river velocity, frequent
disasters such as floods and debris flows, and severe soil and water losses, resulting in
low vegetation development. In addition, human activities around rivers in low-altitude
areas are more frequent, and areas close to rivers are prone to the transformation of
natural vegetation to farmland, which has a certain inhibitory effect on the improvement
of NDVI [106].
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Transformation between woodlands, shrubs, swamp wetlands and meadows, and
built-up land imply changes in NDVI, resulting in changes in the temporal and spatial
patterns of NDVI [58]. In the study area, land-use change mainly has a positive-driving
effect on NDVI, which was concentrated in DA. The distribution of plant communities
depends on the type of land use, and indirectly affects the vegetation coverage [107]. The
transition from the main grassland in the study area to bare land or construction land
shows an obvious trend of NDVI degradation. However, the study area was dominated by
forest land, and the area of land-use type transformation was small, so the overall driving
force of land-use change on NDVI changes was low.

The initial NDVI in the year 2000 can be used to represent the direction of variations,
the degree of transition, and the spatial distribution characteristics of NDVI during the
21-year study period. The results show that the initial NDVI and the improvement of NDVI
in DA showed an obvious negative correlation because the vegetation cover in this area
significantly degraded from 2000 to 2020. The other negative correlations were concentrated
in the northwest of BSMS, which was high in elevation and low in temperature, and was
covered by ice, snow, and sparse vegetation all year, and the vegetation growth was limited
and easily reached extreme values [108]. When the estimated coefficient of NDVI trends
for the initial year was at a negative value, this usually indicated a constant or degrading
trend in the GWR analysis.

4.3. Implications and Limitations

In this research we studied the change trends and driving mechanisms of NDVI in
SCOCGPNP using univariate linear regression and the GWR model and obtained effective
results, but there were some deficiencies. Due to the limitation of the spatial resolution
of the NDVI data, the changes in vegetation growth at the slope scale caused by terrain
factors such as surface relief, slope position, and slope may not be fully described. The
Savitzky–Golay filtering was regarded as representative of annual data, and the different
synthesis methods of data from multiple months in this study area are worth studying. In
the GWR model, although the driving analysis considered the impact of land-use changes
on NDVI changes, the main body of the study area consisted of forest land and the impact
of different forest land types on NDVI changes was not subdivided.

With the continuous improvement of people’s awareness of ecological protection, most
of the vegetation in the study area is in a state of improvement through the implementation
of measures such as ecological protection zones and artificial afforestation. In key areas
of concern, ecological restoration will be gradually achieved through the combination of
geological engineering and ecological engineering. At the same time, zoning management
should be carried out according to the differences in different natural and human envi-
ronments. In the Mianyang area of MS, the Ya’an area of DXL and XXL, precipitation is
abundant, and the increase in temperature can stimulate the photosynthesis of vegetation
which can further improve the vegetation coverage in these areas. To achieve the ecolog-
ically sustainable development of GPNP, the government should mobilize surrounding
communities to participate in ecological protection projects and build a natural reserve
system with national parks as the main body, nature reserves as the foundation, and vari-
ous natural parks as supplements. During the operation of the national park, a long-term
ecological public welfare forest compensation plan and monitoring mechanism should be
added, so that residents can actively participate in ecological work. In ecological resource
management, attention should be paid to the development of ecotourism, which is an
important means of developing natural resource management by the community. At the
same time, the construction of GPNP should take the impact of human activities as one of
the monitoring indicators of the ecological environment, actively monitor climate change,
reduce the risk of geo-hazards, optimize the layout and intensity of human activities, and
actively implement measures such as ecological protection and ecological restoration.
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5. Conclusions

In this study, we not only used the univariate linear model to visualize the trends of
vegetation variations in the SCOCGPNP from 2000 to 2020, but also added driving factors
such as topography and human activities on the basis of previous studies limited to the
driving mechanisms of climate factors in GWR Model, so as to more comprehensively
explain the variations in NDVI values. The main conclusions were as follows:

(1) During 2000–2020, the NDVI value showed an upward trend as a whole, with a small
amount of fluctuation. Affected by the Wenchuan earthquake of 12 May 2008 and its
secondary disasters, the NDVI value in DA showed a continuous downward trend
from 2009 to 2012. As the precipitation in the study area in 2011 was lower than that in
previous years, affected by drought events, the NDVI value of the whole area showed
an obvious downward trend in 2012;

(2) The NDVI values of the study area showed an overall upward trend from 2000 to
2020, of which 94% of the areas were in an improved state, and the annual growth rate
was about 4.7%/yr. The degraded area accounted for 7.94% of the total area, which
was mainly concentrated in DA. This area was mainly affected by the Wenchuan
earthquake, and the vegetation degradation caused by secondary geo-hazards was
more serious;

(3) As the study area is located on the geomorphic boundary and climate transition zone,
the NDVI trends were mainly affected by the natural environment, in which climate
factors were dominant. Moreover, due to the saturation of precipitation in most areas,
the driving effect of temperature was more obvious than that of precipitation, mainly
concentrated in DXL and DXLXL. The superposition effect of rainfall and topographic
factors means the slope had a strong influence on vegetation change, and the areas
affected by this were concentrated mainly in BSMS and DA;

(4) In the protection of the ecological security patterns of the SCOCGPNP, we should
closely monitor regional climate change, prevent, and control geo-hazards, optimize
the vegetation growth environment, develop an ecological economy in combination
with the current situation of human communities, reduce human interference in the
reserve and finally realize sustainable development of the SCOCGPNP.
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Abbreviations
The following abbreviations are used in this manuscript:

CGPNP China Giant Panda National Park
SCOCGPNP Sichuan Area of China Giant Panda National Park
BS Baishui River
DXL Daxiangling Area
XXL Xiaoxiangling Area
MS Minshan Area
DA Dujiangyan–Anzhou Area
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BSMS −5.0829 15.7139 7.3521 70.1019 39.5631 
MS −9.9736 13.1671 2.3445 59.9676 44.4253 
DA −4.7338 15.3926 7.0619 61.6296 40.9538 
DXL −12.6181 15.4079 2.2980 51.3102 46.4041 

DXLXXL −5.7426 16.7042 8.9454 66.6759 39.5315 

Temperature 
slope (/yr) 

BSMS −0.0001 0.0004 0.0001 0.0001 0.0001 
MS 0.0000 0.0003 0.0002 0.0001 0.0001 
DA −0.0001 0.0002 0.0000 0.0001 0.0001 
DXL 0.0001 0.0005 0.0003 0.0002 0.0001 

Figure A2. Remote sensing image of verification area.
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Table A1. Statistics of driving factors in different geomorphological zones.

Driving Factors Zone MIN MAX MEAN MEDIAN STD

Temperature mean value (◦C)

BSMS −5.0829 15.7139 7.3521 70.1019 39.5631
MS −9.9736 13.1671 2.3445 59.9676 44.4253
DA −4.7338 15.3926 7.0619 61.6296 40.9538

DXL −12.6181 15.4079 2.2980 51.3102 46.4041
DXLXXL −5.7426 16.7042 8.9454 66.6759 39.5315

Temperature slope (/yr)

BSMS −0.0001 0.0004 0.0001 0.0001 0.0001
MS 0.0000 0.0003 0.0002 0.0001 0.0001
DA −0.0001 0.0002 0.0000 0.0001 0.0001

DXL 0.0001 0.0005 0.0003 0.0002 0.0001
DXLXXL 0.0003 0.0007 0.0005 0.0003 0.0001

Precipitation mean value (mm)

BSMS 658.9722 859.2167 782.2140 784.7940 33.5782
MS 695.4556 873.4445 782.7805 784.2000 29.3065
DA 773.9556 1026.3611 849.5633 793.4415 37.9322

DXL 693.8834 1003.3723 789.6579 791.6530 31.8794
DXLXXL 733.5555 1406.8611 897.0535 805.3220 98.8965

Precipitation slope (mm/yr)

BSMS 0.0025 0.0066 0.0045 0.0046 0.0009
MS 0.0027 0.0066 0.0047 0.0046 0.0010
DA 0.0056 0.0076 0.0066 0.0049 0.0004

DXL −0.0011 0.0062 0.0039 0.0048 0.0017
DXLXXL −0.0011 0.0094 0.0032 0.0045 0.0022

Elevation (m)

BSMS 540.0000 4925.0000 2384.1665 2417.0000 763.3032
MS 1480.0000 5573.0000 3392.9168 2724.0000 692.7943
DA 798.0000 6679.0000 2738.7173 2726.0000 784.6719

DXL 1306.0000 6049.0000 3617.0638 3006.0000 756.6816
DXLXXL 828.0000 5280.0000 2559.0178 2807.0000 742.5512

Slope (◦)

BSMS 0.0000 87.6306 30.8077 31.2169 11.0657
MS 0.0000 86.9273 31.7692 31.4441 11.4606
DA 0.0000 89.2268 34.3517 31.7632 14.6286

DXL 0.0000 85.5856 30.6938 31.5075 11.0960
DXLXXL 0.0000 80.6044 29.6035 31.0237 11.4317

Aspect

BSMS −1.0000 359.9654 174.0972 167.7350 99.2573
MS −1.0000 359.8953 172.5753 165.9640 99.2998
DA −1.0000 359.9691 182.2276 168.8225 106.1093

DXL −1.0000 359.8900 180.2346 169.4465 101.4384
DXLXXL −1.0000 359.8964 177.7604 168.6900 103.1578

Euclidean distance from fault (m)

BSMS 7964.65 57,340.76 33,154.21 29,525.50 13,556.48
MS 0.00 58,590.46 30,462.28 28,367.10 17,789.54
DA 3125.00 14,950.59 10,578.60 24,974.55 2270.77

DXL 3334.18 44,026.04 20,923.41 22,911.85 9067.17
DXLXXL 412.31 59,519.36 17,369.14 18,596.30 13,259.30

Peak ground acceleration (g)

BSMS 0.1500 0.2000 0.1972 0.2000 0.0116
MS 0.2000 0.2000 0.2000 0.2000 0.0000
DA 0.1500 0.2000 0.2000 0.2000 0.0013

DXL 0.1000 0.2000 0.1664 0.2000 0.0277
DXLXXL 0.1500 0.3000 0.1791 0.2000 0.0248

Road density (km/km2)

BSMS 0.0000 0.2720 0.0179 0.0000 0.0352
MS 0.0000 0.1675 0.0036 0.0000 0.0149
DA 0.0000 0.5618 0.0150 0.0000 0.0474

DXL 0.0000 0.5000 0.0173 0.0000 0.0580
DXLXXL 0.0000 0.3815 0.0207 0.0000 0.0443
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Table A1. Cont.

Driving Factors Zone MIN MAX MEAN MEDIAN STD

River density (km/km2)

BSMS 0.0000 0.1821 0.0135 0.0000 0.0295
MS 0.0000 0.2451 0.0166 0.0000 0.0402
DA 0.0000 0.2138 0.0122 0.0000 0.0333

DXL 0.0000 0.2285 0.0102 0.0000 0.0265
DXLXXL 0.0000 0.1656 0.0099 0.0000 0.0260

Euclidean distance from built-up land
(m)

BSMS 0.00 22,410.94 8355.13 7905.69 4923.44
MS 0.00 28,517.54 12,538.66 8746.43 6845.54
DA 0.00 12,379.42 5563.95 7632.17 2819.50

DXL 0.00 26,504.72 11,982.42 9013.88 5840.43
DXLXXL 0.00 41,330.98 11,434.65 9219.54 7630.49

Land-use change index

BSMS −25.0000 20.0000 −0.1732 0.0000 2.3752
MS −20.0000 20.0000 −0.2752 0.0000 3.4373
DA −25.0000 20.0000 −1.1994 0.0000 4.7261

DXL −25.0000 20.0000 −0.2004 0.0000 4.2528
DXLXXL −25.0000 20.0000 −0.3407 0.0000 3.6004

NDVI in 2000

BSMS −0.0564 0.7470 0.4519 0.4870 0.1651
MS −0.0655 0.7716 0.2638 0.4457 0.2133
DA −0.0373 0.7750 0.4454 0.4550 0.1594

DXL −0.0701 0.8263 0.3059 0.4326 0.2331
DXLXXL −0.0594 0.7764 0.4500 0.4488 0.1652
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Figure A3. Histogram of estimated coefficients for each factor in different partitions. (a) 
Temperature mean value; (b) temperature slope value; (c) precipitation mean value; (d) 
precipitation slope value; (e) elevation; (f) slope; (g) aspect; (h) Euclidean distance from fault; (i) 
peak ground acceleration; (j) road density; (k) river density; (l) Euclidean distance from built-up 
land; (m) land-use change index; (n) NDVI in 2000. 
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