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Abstract

Objective: The Accelerator program for Discovery in Brain disorders using Stem

cells (ADBS) is a longitudinal study on five cohorts of patients with major psychiatric

disorders from genetically high‐risk families, their unaffected first‐degree relatives,
and healthy subjects. We describe the ADBS protocols for acquisition, quality

assurance (QA), and quality check (QC) for multimodal magnetic resonance brain

imaging studies.

Methods: We describe the acquisition and QC protocols for structural, functional,

and diffusion images. For QA, we acquire proton density and functional images on

phantoms, along with repeated scans on human volunteer. We describe the analysis

of phantom data and test–retest reliability of volumetric and diffusion measures.

Results: Analysis of acquired phantom data shows linearity of proton density signal

with increasing proton fraction, and an overall stability of various spatial and tem-

poral QA measures. Examination of dice coefficient and statistical analyses of co-

efficient of variation in test–retest data on the human volunteer showed consistency

of volumetric and diffusivity measures at whole‐brain, regional, and voxel‐level.
Conclusion: The described acquisition and QA–QC procedures can yield consistent

and reliable quantitative measures. It is expected that this longitudinal
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neuroimaging dataset will, upon its release, serve the scientific community well and

pave the way for interesting discoveries.

K E YWORD S

ADBS, magnetic resonance imaging, longitudinal study, quality assurance, quality check

1 | INTRODUCTION

Discovery biology of neuropsychiatric syndromes is an approach that

proposes to evaluate overlapping and unique genetic, environmental,

and developmental factors across five major psychiatric disorders:

schizophrenia, bipolar disorder, obsessive‐compulsive disorder, Alz-

heimer's dementia, and alcohol dependence syndrome (Viswanath

et al., 2018). Using this approach, the Accelerator program for Dis-

covery in Brain disorders using Stem cells (ADBS) project aims to

create a dataset of patients and their first degree relatives (FDRs)

from families with high genetic loading (i.e., with at least another

affected FDR having any of the above five disorders), and socio-

demographically matched healthy subjects. This dataset will consist

of detailed clinical and neuropsychological assessments, electroen-

cephalogram (EEG)/event‐related potential (ERP), functional near‐
infrared spectroscopy (fNIRS), eye tracking, and multimodal mag-

netic resonance imaging (MRI) data, along with genomics and

stem cells, thereby allowing us to characterize the structure and

function of the brain at macroscopic and microscopic levels across

these five disorders. A longitudinal study that integrates the above

clinical, neuropsychological, neurophysiological, psychophysical,

neuroimaging, genomic, and stem cell data (Bilderbeck et al., 2019;

Clementz et al., 2015; McPhie et al., 2018; Tamminga et al., 2014;

Vasistha et al., 2019; de Vrij et al., 2019) using a systems‐based
approach (Saxe et al., 2016) has the potential to provide deeper in-

sights into the shared and unique neurodevelopmental trajectories of

these neuropsychiatric disorders (Etkin, 2019; McGorry et al., 2018)

and generate a large database for use by the scientific community.

MRI allows us to noninvasively study the structure and func-

tioning of the brain. However, quantitative variables derived from

MRI are susceptible to factors like acquisition protocol and MR

hardware (Han et al., 2006; Kruggel et al., 2010); variations in

scanner‐related factors like drift (Takao et al., 2011), ghosting

(Reeder et al., 1997), and signal‐to ‐noise ratio (SNR) and contrast‐to‐
noise ratio (CNR) (Jovicich et al., 2009); artefacts related to study

participants such as motion (Power et al., 2012; Reuter et al., 2015;

Yendiki et al., 2014); ambient temperature (Vogelbacher et al., 2018);

time of acquisition (Orban et al., 2020); and data processing workflow

(Glatard et al., 2015; Gronenschild et al., 2012; Kharabian Masouleh

et al., 2020). Therefore, to ensure the validity, precision, and reli-

ability of quantitative MRI outcome measures, it is important to set

up optimal scanning parameters (like Alzheimer's Disease Neuro-

imaging Initiative [ADNI; Jack et al., 2008; http://adni.loni.usc.edu]

and Human Connectome Project [HCP; Van Essen et al., 2013;

https://neuroscienceblueprint.nih.gov/human‐connectome/

connectome‐programs]), adhere to this acquisition protocol (Won-

derlick et al., 2009), ensure regular monitoring of scanner perfor-

mance (Friedman & Glover, 2006; Stöcker et al., 2005), and minimize

subject‐independent variances in MRI measurements (Bennett &

Miller, 2010; Gunter et al., 2009; Maclaren et al., 2014).

Quality assurance (QA) and quality check (QC) principles can be

used to ensure reliability of outcome measurements. Typically, QA is

done at the MRI site by acquiring phantom scans that can help in

identifying scanner related artefacts and signal fluctuation, while QC

is done by manual and/or automated inspection of the already ac-

quired human data. Having robust QA and QC protocols is critical,

especially for longitudinal studies. This is underscored by observa-

tions such as that of (Stöcker et al., 2005), where the authors show

that differences in quality measurements across groups of partici-

pants, can lead to misinterpretations of the results. The goal of this

paper is to provide an overview of the MRI acquisition and QA–QC

protocol of the ADBS project. We comprehensively describe each

step of acquisition and QA–QC protocols along with example results

which will illustrate that the data being acquired under the ADBS

project is capable of yielding consistent and reliable outcome

measures.

2 | METHODS

2.1 | Participants

The study design, short‐, and long‐term objectives, and details of

sample size calculation of the ADBS project are fully described

elsewhere (Viswanath et al., 2018). We aim to examine overlapping

and unique genetic, environmental, and developmental factors in five

disorders: schizophrenia, bipolar disorder, obsessive‐compulsive dis-
order, Alzheimer's dementia, and alcohol dependence syndrome. A

sample of 4500 individuals comprising of index probands belonging

to the above five cohorts, their unaffected FDRs and healthy com-

parison subjects undergo phenotypic assessments and blood sam-

pling. The blood sample is used for molecular genetic studies and

cellular modeling of diseases. A subset of 1500 participants (1200

from affected families and 300 healthy controls from unaffected

families) from the above sample that constitutes the neuro-

developmental endophenotype cohort, undergo biennial assessments

using structural, functional, and diffusion MRI, EEG/ERP, fNIRS, eye

movement tracking, and neuropsychological evaluation. Participants

are recruited after obtaining written informed consent duly approved

by the institutional ethical committee of the National Institute of
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Mental Health and Neurosciences (NIMHANS), Bangalore, India,

where this study is being carried out (Ethics approval number: Item

No. VII, Sl. No. 7.01, Behavioural Sciences & Item No. XI, Sl. No. 11.05,

Behavioural Sciences).

2.2 | MRI acquisition

The MRI acquisition is performed temporally as close as possible to

other clinical and endophenotype assessments (typically within 1–2

days, with a maximum of up to 1 week). All subjects are compre-

hensively screened for MR safety by the clinical team, followed by an

on‐site screening prior to MRI acquisition (see Figure S20 for MRI

screening form). The MRI session consists of two task‐based func-

tional MRI (fMRI) acquisitions using the Tool for Recognition of

Emotions in Neuropsychiatric Disorders (TRENDS; Behere

et al., 2008), and verbal fluency task (VFT; John et al., 2011). Training

of subjects for task‐based fMRI is conducted prior to the MRI

acquisition session by trained neuropsychologists. First, the primary

language (or the language most comfortable among the available

languages) of the participant is identified using a screening ques-

tionnaire (see Figure S21 for the questionnaire on determination of

primary language). Then, participants are familiarized with fMRI tasks

using a video recording. At the end of the training session, the neu-

ropsychologists ensure that the participants have understood the

task instructions.

The MRI data are acquired on a 3T Philips Ingenia CX (Philips

Healthcare) machine using a 32‐channel phased‐array coil. The initial
software version was R5.3.0.3 and the current software version being

used is R5.3.1.3. A fiducial marker (vitamin E capsule) is used for

enabling unambiguous delineation of laterality. A plastic mirror is

mounted on the head coil such that the participants can view the MR‐
compatible monitor. Stimulus presentation is done via E‐Prime
3.0.3.60 (Psychology Software Tools; https://pstnet.com/products/

e‐prime). Synchronization of fMRI stimulus presentation with the

scanner is achieved via a sync box (Nordic Neuro Lab Inc.; SyncBox S,

Type Number SB‐3.0; https://www.nordicneurolab.com/en/products)
and the stimulus is displayed on an LCD monitor (Nordic Neuro Lab

Inc). An MR‐compatible microphone with active noise cancellation

(Optoacoustics—Advanced Noise canceling Fiber Optic Microphone

for fMRI, FOMRITM – III, Optoacoustics Ltd., Moshav Mazor; http://

www.optoacoustics.com) is used to collect vocal responses from

participants.

The MRI acquisition protocols were adapted from the ADNI MRI

protocols for Philips Ingenia (software version R5). The scan session

consists of structural, functional (resting state and task‐based fMRI),

and diffusion scans. Table 1 lists the sequences and duration of each

sequence being acquired during the scan session. A brief description

of our acquisition protocol is mentioned below while additional de-

tails are presented in Tables S1–S4. A figure showing the contrast of

each type of image is shown in Figure S1. Details of post acquisition

data integrity check and data storage are mentioned in the Sup-

porting Information Materials.

2.2.1 | Survey

A localizer sequence (“survey”) is initially run which captures

the position of the head by acquiring three slices in sagittal, cor-

onal, and axial views. Since the total duration of acquisition is long

(1 h 07 min), we acquire three different survey scans during

the session: one at the beginning, second before the first task‐
based (tb) fMRI (tb‐fMRI) (∼13 min 47 s into the scan), and a

third before the second tb‐fMRI (∼35 min 02 s into the scan).

An additional survey is done before the diffusion‐weighted
imaging (DWI) scan (∼53 min 50 s after the beginning of the

scan), if there is an indication that the study participant has

moved.

2.2.2 | Structural scans

We acquire a high resolution T1‐weighted single‐shot three‐
dimensional (3D) turbo field echo (TFE) image at 1 � 1 � 1 mm

voxel size, in the sagittal orientation (see Table S1 for details). The

field of view (FOV) is set to ensure full brain coverage while ensuring

that no fold‐over happens. An acceleration factor (SENSE) of 2 is

applied in the right to left (RL) direction to reduce the overall time

taken for this acquisition.

In addition to the T1‐weighted scan, we acquire a 3D multishot

TFE phase‐sensitive inversion recovery (PSIR) image at 1 � 1 � 1 mm

voxel size, in the sagittal orientation (see Table S1 for details). A

SENSE factor of 2 in the anterior–posterior (AP) and 1.75 in the RL

direction is applied for reducing the amount of time taken. The PSIR

images are reconstructed so that cerebrospinal fluid (CSF) voxels

have negative values. This can potentially lead to better contrast

between tissue types (Hou et al., 2005; Moran et al., 1986; Park

et al., 1986).

We also acquire a T2‐weighted structural scan at 1 � 1 � 1 mm

voxel size in the transverse orientation (see Table S1 for details). This

is a multishot turbo spin‐echo (SE) sequence with fat‐suppression
using SPIR technique. Apart from using this image for various

structural analyses, this image can be also used for registration and

correction of geometrical distortion in DWI.

Additionally, for each study participant, we acquire a fluid‐
attenuated inversion recovery image to visualize white matter

(WM) abnormalities.

2.2.3 | Functional scans

For functional blood oxygenation level‐dependent (BOLD) contrast,
echo‐planar imaging (EPI) method is used. We acquire and discard (at

source) five dummy scans to allow magnetization level to reach a

steady‐state. During EPI scans, brain areas such as OFC are sus-

ceptible to signal loss; to mitigate this, we employ a second‐order
pencil beam shimming (PBS) covering the entire brain which at-

tempts to homogenize the MR signal in the shim region. Further, EPI
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scans often lead to geometrical distortion. To correct for potential

geometrical distortion, we acquire fieldmap and opposite polarity

phase encoding EPI scans (Jezzard & Balaban, 1995; Jezzard &

Clare, 1999; Smith et al., 2004).

Resting state fMRI

During resting‐state fMRI (rsfMRI) scan (see Table S2 for details),

study participants are asked to keep their eyes open. Acquisition is

carried out without any stimuli, leaving the monitor screen blank.

F I GUR E 1 Analysis of proton density images acquired on the HPD phantom; (a) fiducials F01, F02, and F03 are first detected. These

locations are then used for labeling the other circles using heuristics (see Supporting Information Material). The boundaries of the circles are
eroded twice to ensure that only the signal within the circle is used for any calculation; (b) mean signal from each circle is plotted against the
proton fraction in these spheres. Since the signal is supposed to linearly increase with increasing proton fraction, we fit a linear regression
model and calculate the R2 value. A poorer fit of this linear model would indicate a problem in the acquisition

TAB L E 1 List of magnetic resonance

imaging sequences and their duration (in
minutes and seconds)

Sequence Duration (MM:SS)

Survey 00:31.5

Structural scans

T1w 05:39.2

T1w‐phase sensitive inversion recovery 08:59.2

T2w 04:48.0

Fluid‐attenuated inversion recovery 04:48.0

Functional scans

Resting state 10:20.3

Resting state (reference scans) 00:32.0 each

Verbal fluency task 07:35.9

Verbal fluency task (reference scans) 00:32.0 each

Tool for Recognition of Emotions in Neuropsychiatric Disorders (TRENDS) 05:33.9

TRENDS (reference scans) 00:32.0 each

Fieldmap 00:56.2

Diffusion scans

Multishell diffusion scan 10:35.4

Diffusion reference scans 00:32.0
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Since previous research has indicated that at least 10 min of rsfMRI

data are required for reliable characterization of various network

properties (though the timing required varied from 10 to 80 min)

(Birn et al., 2013; Gordon et al., 2017), we acquire 10 min and 20.3 s

of rsfMRI data (275 volumes, TR 2.2 s).

Task‐based fMRI
Abnormalities in emotion recognition (Castellano et al., 2015; Daros

et al., 2014; Elferink et al., 2015; Homorogan et al., 2017; Kohler

et al., 2010) andverbal fluency (Cardenas et al., 2016;Clark et al., 2009,

2016; Liang et al., 2016; Snyder et al., 2015; Weiner et al., 2015) have

been reported in all the disorders being studied in this project. We use

tasks that were previously developed at NIMHANS for tb‐fMRI

acquisitions: TRENDS (Behere et al., 2008), which is a standardized

validated tool for studying emotion recognition deficits in the Indian

context, and VFT (John et al., 2011), which is a semantic category overt

word generation task that is implemented as a blocked design. A brief

description of these tasks including the acquisition parameters

(Table S2), as well as the acquisition parameters for reverse polarity

phase encoded reference scans (Table S3) are provided in the Sup-

porting Information Material. The task design for VFT was exactly the

same as described in (John et al., 2011; with a different set of acquisi-

tion parameters, as summarized in Table S2); for TRENDS, the original

paradigm had six emotions: happy, sad, fear, anger, surprise, and

disgust, alongwith neutral expression. Patientswith severe psychiatric

disorders like schizophrenia have been shown to have intact recogni-

tion of positive expressions (i.e., happiness; Bediou et al., 2005; Kohler

et al., 2010). In order to shorten the length of the paradigm given the

time constraints, wedid not include happy facial expression trials in the

paradigm since recognition of happy faces may not differentiate pa-

tient groups from healthy subjects.

To prevent any carry over effect of one task to another, task

scans are separated by the PSIR scan (described above) which lasts

for about 9 min. The tasks are further spaced by the preceding two

reverse polarity phase‐encoded reference scans (for EPI distortion

correction) before the beginning of the actual task (32 s each). The

tasks are administered in a counterbalanced manner (i.e., the task

order is alternated across subjects) to avoid order effects across

participants.

2.2.4 | Diffusion‐weighted imaging

The DWI scan (see Table S4 for details) is preceded by reference

images which can be used for correction of EPI‐induced geometrical

distortions. These are SE images acquired in opposite phase encoding

directions (posterior–anterior and AP), two volumes in each direc-

tion. The main scan is acquired with a multi‐shell sampling protocol,
optimized to provide uniform coverage on each shell, and a global

uniform angular coverage (Caruyer et al., 2013). Three high b‐value
shells corresponding to 1000, 2000, and 3000 (smm−2) with 25, 24,

and 24 gradient directions respectively and seven interspersed vol-

umes without diffusion weighting (b‐value = 0) are acquired using a

second‐order PBS covering whole brain to homogenize the signal in

regions susceptible to signal loss.

2.3 | Quality Assurance

2.3.1 | MRI phantoms

Acquisition of data on MRI phantoms is a way to ensure that the

scanner stability is maintained over a period of time. Since there are

no sources of variation in a phantom, if acquisition protocol and

related factors are kept constant, the scan‐to‐scan change seen in

phantom data should be minimal. Depending on the type of phantom

and the data being acquired, a variety of parameters targeting spe-

cific scanner or image properties can be studied. In this study, we use

two kinds of phantoms: an agar gel phantom for ensuring temporal

stability of EPI data, and a geometric phantom for ensuring the sta-

bility of acquired MR signal.

Agar gel phantom

We use an agar gel phantom (http://pro‐project.pl/pro‐mri_agar) to
quantify the temporal stability of EPI BOLD signal. The phantom is

placed as centrally as possible in the 32‐channel head coil as shown in
Figure S2a with appropriate paddings. The phantom is placed in the

horizontal direction and is corrected for any misalignment based on

the localizer scan as shown in Figure S3.

Since the goal of the QA procedure is to examine scanner sta-

bility under similar conditions as an fMRI experiment (Friedman &

Glover, 2006), we acquire EPI BOLD images on the phantom with the

same protocol as human subjects (summarized in Table S2), except

that only 140 volumes are acquired and dummy scans are not ac-

quired. The shim volume is adjusted so that it covers the entire

phantom as shown in Figure S3.

To examine the properties of EPI images acquired on the phan-

tom, we followed the methods detailed earlier (Vogelbacher

et al., 2018). The implementation is adapted from the MATLAB

scripts for the gel phantom implemented in LAB‐QA2GO (Vogel-

bacher et al., 2019; see Supporting Information Material for details

on the modifications to the code for adapting to our data). We

quantified the SNR, the percent integral uniformity (PIU), percent

signal ghosting (PSG), signal to fluctuation noise ratio (SFNR), drift,

percent fluctuation, and percent signal change (PSC) for the acquired

data (see Table 2).

High precision devices phantom

The second phantom which we use is the quantitative MRI system

phantom from high precision devices (HPD; http://hpd‐online.com/
system‐phantom.php). The phantom is placed as centrally as possible

within the head coil and a notch in the mounting plate is used for

further alignment (see Figure S2b). A single coronal slice covering the

proton density (PD) array, consisting of 14 spheres with differing

proton fractions (5–40 incrementing by 5% and 40–100 incrementing

by 10%), is acquired using a SE sequence (slice thickness 6 mm,
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TR = 5000 ms, TE = 10 ms, flip angle = 90°). The acquisition protocol

is based on the manufacturer guidelines. Since the PD signal is ex-

pected to linearly increase with proton fraction; this property can be

used as a proxy for scanner stability.

For each PD image, we detect PD circles (since the image is a 2D

slice) using the MATLAB (https://www.mathworks.com/) image pro-

cessing toolbox (currently used version R2019b). First, we detect the

three fiducial markers on the 2D image and label them. Then, the

detected PD circles are labeled based on their proximity to the fi-

ducials. The detected boundary is eroded twice to ensure that only

intensities within the circles are considered. An example of the

detected circles is shown in Figure 1a and a stepwise depiction of the

procedure is shown in Figure S5. Finally, we calculate the mean in-

tensity within the circles and fit a linear regression model, explaining

the mean PD signal as a function of proton fraction percentages.

The percentage variance explained by the model, percentage R2, is

then a summary measure of the linear increase of signal with

increasing proton fraction (see Figure 1b).

2.3.2 | Schedule of QA runs

Till June 2019, HPD and agar gel phantom scans were being acquired

approximately once per week. From July 2019, we started to acquire

EPI data on agar gel phantom daily (8–9 a.m.; Table S6), and the PD

acquisition on HPD phantom on a weekly basis (9–10 a.m.; Table S8).

Therefore, an increased number of time points was available from

July 2019 onwards for phantom data analyses (Figures 2 and 3). This

decision to increase the number of phantom scans was made in

accordance with the observations by Vogelbacher et al. (2018), in

order to more closely monitor scanner performance and quality of

data acquisition.

2.3.3 | Test–retest reliability analysis

Unlike phantom data, outcome measures on human data can

vary based on factors like (but not limited to) scanner variations,

physiological conditions, circadian variations, and so forth.

Establishing the validity of outcome measures is challenging

given the lack of ground truth; however, reliability of these

measures can be established by repeated measurements on the

same subject.

Since, we are interested in ensuring reliability of outcome

measurements over time, we perform repeated scans on two vol-

unteers who are scanned on three consecutive days approximately

in the middle of each month (henceforth referred as acquisition

series). These series of scans can be used to establish the variation

in quantitative outcome measures (such as brain volumes) in a

short span of time (such as within an acquisition series) and over

relatively longer span of time (such as across acquisition series).

We would expect that even though outcome measures may change

over time, the variation seen in them would remain comparable. As

proof of concept, we present reliability analysis on T1‐weighted
and DWI scans on data from one volunteer (male, right‐handed,
29 years old) for the time between July 2019 and December 2019

(three acquisitions per month, 18 total scans; see Table S9 for scan

schedule). Between July and September, the volunteer was on oral

medication for a medical condition; medication details are

mentioned in Table S10. Specifically, we have examined whole

brain, regional, and voxel‐level reliability of various quantitative

measurements across two acquisition series: July–September

(acquisition series 1, nine scans) and October–December (acquisi-

tion series 2, nine scans).

T1‐weighted scans
For quantifying the reliability of T1‐weighted scans, we performed

segmentation of T1‐weighted images using SPM12 (v7487; https://

www.fil.ion.ucl.ac.uk/spm/) running on MATLAB R2019b. Using the

normalized, modulated gray matter (GM), WM, and CSF tissue class

segmentation images, we performed test–retest reliability at whole

brain, regional, and voxel‐level.

Whole brain reliability. Using the normalized, modulated, GM, WM,

and CSF tissue class segmentation images, we calculated whole brain

GM, WM, CSF, and total intracranial volumes (TIVs); the TIV was

defined as the sum of GM, WM, and CSF volumes. For each of the

volumes, we calculated the percentage coefficient of variation (CV),

defined as the ratio of standard deviation of tissue volume to the

mean tissue volume, for each acquisition series. We then tested

TAB L E 2 Summary of quality measures from (Vogelbacher et al., 2018)

Measure Significance

Signal‐to‐noise ratio (SNR) Quantification of dominance of meaningful signal over noise in the image

Percent integral uniformity Describes uniformity of an image

Percent signal ghosting Assessment of the amount of ghosting in the image

Signal‐to‐fluctuation‐noise‐ratio Measure of relative temporal noise

Percent fluctuation Assessment of signal variance

Drift

Percent signal change Assessment of homogeneity of SNR
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F I GUR E 2 Variation of EPI quality measures on agar gel phantom (see Table S5 for a breakup of number of scans per month and Table S6
for scan schedule); the average value within each measurement is shown by a dashed orange line while mean ± twice the standard deviation of
the measurement is shown by a dashed purple line; outlier values are measurements beyond this range and are marked with orange colored

circles; note that the lower mean ± twice the standard deviation limit is not shown for PSG (volume) and drift as there were no values beyond
this range. PIU, percent integral uniformity; PSC, percent signal change; PSG, percent signal ghosting; SFNR, signal‐to‐fluctuation‐noise‐ratio;
SNR, signal‐to‐noise ratio
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whether the CVs were significantly different between the two

acquisition series (see below).

Region of interest‐level reliability. Using the GM segmentation image

(from above), we calculated the GM volumes of various regions of

interest, for each acquisition series. These region of interests (ROIs)

were defined using the Hammers Atlas (Faillenot et al., 2017; Gousias

et al., 2008; Hammers et al., 2003); we excluded the following non‐
GM ROIs from this calculation: brainstem, corpus callosum, lateral

ventricles (and its temporal horn), and the third ventricles. We then

calculated the regional GM CVs and tested whether they were

significantly different between the two acquisition series (see below).

Voxel‐level reliability. Similar to whole brain and regional reliability,

we calculated voxel‐wise CV for GM segmentation images. We used

the GM segmentation images and restricted the CV calculation to

only GM voxels by applying a threshold of 0.1 (i.e., any voxel with a

value less than or equal to 0.1 was not considered). This threshold is

commonly used in voxel‐based morphometry analyses; additionally,

we wanted to be as inclusive of the GM voxels as possible. We then

used the resulting CV images to test whether the voxel‐wise CVs

were significantly different between the acquisition series (see

below).

Hypothesis testing of CVs. Asmentioned before, the goal of test–retest

reliability is to test that the variation seen in quantitative variables

across the two acquisition series remains the same. Therefore, we

tested the hypothesis that there was no difference in CVs of quanti-

tative variables across the two acquisition series. First, we quantified

the absolute difference in CVs between the two series (CVdiff). Then,

we randomized the series labels. The maximum number of ways that

this can be done is 48,620 (including the original series membership).

For each of these arrangements of permuted series labels, we

computed the new CV. The two‐sided p‐value was calculated as the

fraction of times the absolute difference in permutedCVbecame equal

to or exceeded the originally observed difference CVdiff. We then

rejected the null hypothesis at α < 0:05 at whole brain level,

α < 0:05=76 at regional level (Bonferroni adjusted for number of ROIs,

n¼ 76), and α < 0:001 at voxel‐level.

Segmentation consistency. In addition to examining the variability in

quantitative estimates, we were interested in examining the consis-

tency of voxels being classified as a particular tissue type. Since the

data is from the same volunteer, all tissue specific segmentation

images should have a high degree of overlap with each other. To

quantify this overlap, we calculated the pairwise dice coefficient (DC)

between the segmentation images (for each tissue class), which

would reveal the consistency of segmentation within and across

acquisition series. Since the goal is to measure the whole brain

overlap in segmentation (for each tissue class; e.g., overlap of GM

segmentation of one scan with GM segmentation of another), we

binarized (i.e., converted the intensities above the threshold to one

and set the rest of them to zero) the GM, WM, and CSF segmentation

using a liberal threshold of 0.1; then for each pair of images (18 total

images, 153 pairwise combinations), we calculated DC for each tissue

class.

Diffusion scans

For quantifying the reliability of diffusion scans, we used FSL 6.0.1

(fsl.fmrib.ox.ac.uk/) to perform distortion, eddy current, and motion

correction as described in QC section (see below). We then fit a

weighted least squares (WLS) tensor model and obtained fractional

anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD), and

mean diffusivity (MD) maps for each image, followed by tract‐based
spatial statistics (TBSS) pipeline (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

TBSS) to obtain the mean and skeleton image which was used for

further calculations. Specifically, we used TBSS steps 1 and 2 to

nonlinearly register the FA images into standard space (using FSL's

nonlinear registration tool FNIRT (Andersson et al., 2007a, 2007b)),

followed by TBSS step 3 to create mean and skeletonized FA images,

and then used TBSS step 4 to project all FA images onto the mean

skeleton image. We then used the non‐FA pipeline of TBSS to apply

the nonlinear transforms and projection to RD, AD, and MD images.

Whole brain reliability. From the skeletonized images (from above),

we calculated the average FA, AD, MD, and RD values across the

entire skeleton. For each acquisition series, we then calculated the

CV of FA, AD, MD, and RD and tested the hypothesis whether the

CVs of any of these whole brain average values were significantly

different between the two acquisition series (see below).

Region of interest‐level reliability. We defined 48 WM ROIs using the

Johns Hopkins University (JHU) WM labels Atlas (Mori et al., 2008;

Oishi et al., 2008) shipped with FSL. From each of these ROIs, we

summarized the average FA, AD, MD, and RD values by masking with

the skeletonized image from the TBSS pipeline. The averages were

F I GUR E 3 Percentage R2 value from proton density images
acquired on HPD phantom between April 2018 and December
2019 (see Table S6 for a breakup of number of scans per month and

Table S7 for scan schedule); the average percentage R2 is shown by
a dashed orange line while mean ± twice the standard deviation of
the percentage R2 is shown by a dashed purple line; outlier values

beyond this range and are marked with orange‐colored circles; note
that the upper mean ± twice the standard deviation limit is not
shown. HPD, high precision devices
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calculated only from voxels which belonged to the skeleton. For both

the acquisition series, we then calculated the CV of each of the

diffusion measures for each ROI. We tested the hypothesis whether

these ROI measures were significantly different between the two

acquisition series (see below).

Voxel‐level reliability. To quantify voxel‐level reliability, we calculated
the voxel‐level CVs for FA, AD, MD, and RD skeletonized images for

both acquisition series. Then, we tested the hypothesis whether these

CVs were significantly different between the two series for any of the

voxels (see below).

Hypothesis testing of CVs. To hypothesis testing procedure for diffu-

sion images was similar to the one described for T1‐weighted scans.

We rejected the null hypothesis at α < 0:05 at whole brain level,

α < 0:05=48 at regional level (Bonferroni adjusted for number of

ROIs, n¼ 48), and α < 0:001 at voxel‐level.

2.4 | Quality check

The following section describes the QC pipeline for structural,

functional, and diffusion images; the software versions used to

implement these pipelines are noted at the end of this section.

2.4.1 | Structural pipeline

Each structural image is reviewed by a neuroradiologist and a

report is generated. If any significant structural abnormality is

found, the study participant is flagged for further clinical evalua-

tion. Following this, we set the origin of the images to the anterior

commissure (AC). This step is done using acpcdetect v2 (Arde-

kani, 2018; Ardekani & Bachman, 2009; Ardekani et al., 1997)

(part of Automatic Registration Toolbox) (https://www.nitrc.org/

projects/art). In case this step fails, we manually set the origin

using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/) running on

MATLAB.

Computational anatomy toolbox and MRIQC

All T1‐weighted images (with origin set to the AC) are segmented

using the Computational Anatomy Toolbox (CAT) (http://www.

neuro.uni‐jena.de/cat/) (running on MATLAB). The QC module of

CAT returns an image quality grade (A+, A, A‐, to F). Any image

receiving a rating of “C” or below is flagged. We also use auto-

mated quality prediction and visual reporting of MRI scans by

running the docker version of MRIQC (Esteban et al., 2017) on

structural scans which generates a detailed visual and quantitative

report for each image. Any image which is an outlier (examined by

box‐plot) in any of the quality measurement is visually examined

for suitability for further analysis. Additionally, we use the pre-

trained random forest classifier of MRIQC to predict if a T1‐
weighted image is of good quality or not.

2.4.2 | Functional pipeline

Minimal preprocessing

The minimal preprocessing pipeline for functional images is imple-

mented in SPM running on MATLAB and consists of motion correc-

tion (realign and unwarp), followed by slice timing correction. Then,

the functional images are AC–posterior commissure (PC) aligned

(using the transforms from the T1‐weighted AC–PC detection step).

The mean functional image is then coregistered to the AC–PC aligned

T1‐weighted image and the estimated transforms are applied to all

functional volumes. Then, the T1‐weighted scan is segmented, and a

deformation field is estimated which nonlinearly warps the brain

from native space to the Montreal Neurological Institute (MNI)

space. This forward deformation field is applied to the coregistered

functional scans to warp functional images to the MNI space. The

bounding box during normalization step is calculated to allow full

brain coverage (rather than using SPM's default bounding box).

Additionally, a smoothing of 6 mm full‐width at half‐maximum
(FWHM) is applied to the normalized functional images.

Motion profile

At each stage of preprocessing of functional data, we estimate the

number of time points that can be considered asmotion outliers. This is

done using a modification of the DVARS (D referring to temporal de-

rivative of time courses, VARS referring to root‐mean‐squared vari-

ance over voxels) approach (Afyouni & Nichols, 2018). A DVARS

p‐value is computed which can be used for declaring a pair of time

points as outliers. Additionally, a liberal user‐defined threshold is also
applied to detect outliers. An example plot is shown in Figure S18.

Brainmask profile

Brain regions such as the orbitofrontal cortex (OFC) are susceptible to

signal loss. To quantify signal loss, we eliminate all voxels which have a

mean signal less than 80% of global signal (GS; similar to an approach

used by SPM). We calculate this using spm_global function which first

eliminates voxels which have signal less than 80% of the whole brain

mean signal; then returns the mean signal from the remaining voxels.

This operation is performed on smoothed functional images (from the

minimal preprocessing step). We create a binary mask of the voxels

which survive this threshold and examine them visually to identify

subjects inwhich themask is of poor quality.We create thismask using

spm_mask function by passing the smoothed images and a whole brain

mask as inputs, along with the previously estimated GS. An example of

these brain mask profiles are shown in Figure S19b. Additionally, we

calculate the ratio of voxels remaining in the mask and the template

mask (shippedwith SPM). Subjectswith drastically reduced proportion

of voxels can then be flagged using a box‐plot method.

Signal profile and left–right correlation

To flag images with severe signal loss, we derive mean time series

from regions that are susceptible to signal loss, regions not suscep-

tible to signal loss, GS from left hemisphere, right hemisphere, and

average GS. These regions are defined using the Hammers Atlas
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(Faillenot et al., 2017; Gousias et al., 2008; Hammers et al., 2003) and

comprise of bilateral orbitofrontal gyri, gyrus rectus, superior tem-

poral gyrus, and the lateral occipital lobe. The mean percentage dif-

ference can be calculated from each region with respect to the GS.

Any subject with a significant reduction in signal with this reference

signal will be flagged and eliminated. Additionally, looking at GS

independently from left and right hemispheres can be useful in

diagnosing any hemispheric signal abnormalities which might happen

during acquisition (such as a bad channel in the head coil). We further

quantify the correlation between left and right hemispheres and

outliers are detected using a box‐plot method. An example of this

signal profile is shown in Figure S19a.

MRIQC

Apart from the above‐mentioned methods of assessing the quality of
functional images, we also run the docker version of MRIQC for all

functional images. For each functional scan, we look at the distribu-

tion of various quality measurements and flag any images which are

potential outliers (using a box‐plot method), especially in terms of

number of functional time points identified as outliers for each image.

2.4.3 | Diffusion pipeline

The diffusion pipeline is implemented in FSL (https://fsl.fmrib.ox.ac.

uk). Briefly, the pipeline consists of distortion correction, eddy cur-

rent and motion correction, subject and group‐level quality assess-

ment, and tensor fitting operation.

Distortion correction

We correct EPI‐induced distortions by using opposite phase encoding
directions reference scans. These non‐diffusion scans are passed as

an input to FSL's topup (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup) to

estimate susceptibility‐induced off‐resonance field using a method

similar to that described in Andersson et al. (2003) as implemented in

FSL (Smith et al., 2004) and the two images are combined into a

single corrected one. Once the images are distortion corrected, we

derive a binary brain mask using the FSL brain extraction toolbox

(BET). We have noticed that a fractional intensity threshold of 0.35

with robust BET usually results in brain extraction but this threshold

can vary depending on the input image.

Eddy current and motion correction

We employ FSL's eddy (Andersson & Sotiropoulos, 2016) to simul-

taneously correct eddy current and motion. The previously calculated

brain mask is passed to eddy along with information on which di-

rection distortion is expected, the b‐vector and b‐value files, and the
estimated field from topup. Additionally, we use the “repol” option

(Andersson et al., 2016) to replace volumes or slices with partial or

complete signal loss (due to movement) with their Gaussian process

predictions. Finally, we also use the “mporder” option (Andersson

et al., 2017) to find and replace those slices (within a volume) which

are corrupted by motion. We are using the following eddy settings:

niter = 8 (number of iterations to run), fwhm = 10,8,4,2,0,0,0,0, (full

width at half maximum of the Gaussian filter used during estimation

of distortion), ol_type = both (slice and group wise outlier detection),

mporder = 6 (slice‐to‐volume motion correction parameter); the

remaining parameters are default settings. These parameters are

based on the recommendations on FSL's eddy wiki (https://fsl.fmrib.

ox.ac.uk/fsl/fslwiki/eddy).

Subject and group level quality assessment

Once the data is distortion‐, eddy current‐, and motion‐corrected, we
use FSL's eddy's QUAD (Bastiani et al., 2019) module for quality

assessment. This subject level visual and quantitative report that is

generated, derives QC measures based on volume‐to‐volume motion,
within‐volume motion, eddy current‐induced distortion, susceptibility
induced distortion, and the number of outliers replaced. SNR and CNR

ratios are additionally calculated and incorporated in the subject level

report. OnceQC reports at subject level are ready, group‐level reports
are generated/updated by using FSL's eddy's SQUAD tool.

Tensor fitting

Once the data are distortion‐, eddy current‐, and motion‐corrected
(and the b‐vectors rotated), we fit a WLS tensor model to the data

using FSL dtifit. Voxel‐wise sum of squared errors is also saved, and

the principle diffusion direction is visualized by overlaying on the FA

map.

2.4.4 | Software versions for QC

The analyses pipelines requiring MATLAB have been setup using

MATLAB R2019b (https://www.mathworks.com/) with SPM v7487;

the CAT toolbox (http://www.neuro.uni‐jena.de/cat/) currently be-

ing used is v1450 running on MATLAB R2019b with SPM v7487.

The container version of MRIQC (https://mriqc.readthedocs.io/en/

latest/) used is 0.14.2. The diffusion pipeline was implemented in

FSL (https://fsl.fmrib.ox.ac.uk) 6.0.1; BET version 2.1, CUDA version

9.1, QUAD and SQUAD versions 1.0.2. We note that the QC

methods described above are not bound to a particular soft-

ware version and are periodically updated as new versions get

released.

3 | RESULTS

3.1 | Phantom QA

3.1.1 | Agar gel phantom

For agar gel phantom, we calculated various measurements like

SNR, PIU, PSG, SFNR, drift, percent fluctuation, and PSC, which

quantify the spatial and temporal characteristics of the EPI images.

Descriptive statistics of these measures for 172 time points

collected between April 2018 and December 2019 presented in
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Table 3 (see Tables S5 and S6 for scan schedule) and Figure 2

shows the variation in these measurements over time. Outliers in

the phantom measurements were identified as two standard de-

viations away from the mean measurement over time. We noticed

a few outliers in each measurement category. The outliers in the

ghosting category can be explained by an error in the automatic

ROI placement during the ghosting calculation and skewed place-

ment of the phantom within the head coil (see Figure S6 for a few

examples). We found that four phantom measurements (three in

2018 and one in 2019) showed a different intensity profile than the

rest of the measurements, characterized by lower intensities in the

center of the phantom (see Figure S7). This has led to outliers in

various measurements such as SFNR, PIU, and drift; we could not

find any obvious reason for these fluctuations, and therefore need

to closely examine the human data acquired on these days. We

discovered a fault in the head coil during one of our scans in

November 2019 which resulted in altered SFNR, drift, percent

fluctuation, and mean PSC values (a representative time series of

this scan is shown in Figure S8 which shows a sharp signal change

indicative of the malfunctioning head coil). For six measurements,

the overall SNR is higher than average; since the SNR is measured

as a the ratio of mean signal to the standard deviation of the signal

in the centrally placed ROI (Friedman & Glover, 2006; Friedman

et al., 2006), this could indicate more uniformity in the central

region of the phantom for those time points, thereby leading to

increased SNR. For the remaining six outliers, we have not found

any obvious visual or processing problems. These fluctuations could

have been caused by several other factors like phantom orienta-

tion, slice selection, and temperature and humidity during the time

of acquisition, although it is not possible to conclusively identify the

causative factor for these variations.

3.1.2 | HPD phantom

For HPD phantom (PD images), we calculated the percentage R2

value for each time point and examined this value over time. We have

shown the fitted percentage R2 value for 48 time points between

April 2018 and December 2019 in Figure 3 (see Tables S7 and S8 for

scan schedule). We noticed two outliers in December 2019. On visual

examination of these scans, we observed that the central region of

the images was darker and therefore the mean intensities in the

central spheres was lower. This resulted in a poorer R2 value, as

compared to other time points (see Figure S9). This could be caused

due to errors in phantom handling or an incorrect slice being selected

during the acquisition.

3.2 | Test–retest reliability analysis

A summary of MRIQC measures on T1‐weighted images and SQUAD
summary on DWI are shown in Figures S10 and S11 respectively,

while the test–retest reliability results are presented below.

3.2.1 | T1‐weighted scans

Whole brain reliability

At the whole brain level, the CVs of GM, WM, CSF, and TIV were not

significantly different between the two acquisition series. The TIV

showed a trend level significance with p‐value 0.06; since the TIV is

the sum of GM, WM, and CSF, the CV of TIV would be influenced by

the cumulative variances in each of these measures, thereby leading

to a trend level p‐value. Additionally, we note that these p‐values are
unadjusted for multiple comparisons. A summary of the whole brain

reliability is shown in Table 4.

Region of interest‐level reliability
At an ROI level, the CV of GM volumes of left fusiform gyrus (p‐value
0.03), left posterior temporal lobe (p‐value 0.03), right inferiolateral
remainder of the parietal lobe (p‐value 0.05), left precentral gyrus (p‐
value 0.02), and left presubgenual frontal cortex (p‐value 0.03) were
significantly different; however, none of the CVs were significant after

correcting for multiple comparisons for the number of ROIs (Bonfer-

roni adjustment). A summary plot showing the absolute difference in

the CV between acquisition series 1 and 2 (for left and right hemi-

sphere ROIs) is shown in Figure 4 and the absolute difference in CV

values and associated p‐values are listed in Table S11.We additionally

note that the difference in the CV of GM in substantia nigra and pal-

lidum (left and right hemispheres) are relatively on the higher side. This

is explained by the relatively poor overlap of the substantia nigra and

pallidum and the GM segmentation (see Figure S14 and S15).

Voxel‐level reliability
At the voxel‐level, we created a p‐value map after eliminating voxels
with p < 0.001. On visual inspection of this map, we did not find any

clusters of significantly different CVs (see Figure S12 for voxel‐wise
absolute difference in CVs). We found a total of 394 voxels spread

overmultiple ROIs (labeled usingHammersAtlas). To summarize these

results, we counted the number of voxels in each ROI with p < 0.001.

These summary counts are presented in Figure 5 while an overlay of

these significant voxels are shown on a template brain in Figure S13.

Consistency of segmentation

Examining the pairwise DC for each tissue class, (153 pairs of images,

9 acquisitions per series), we observed excellent agreement between

the segmentation images. The mean and standard deviations of DC

were 0.97 ± 0.001 (GM), 0.96 ± 0.001 (WM), and 0.95 ± 0.003 (CSF).

A summary of each pairwise DC for each tissue class is shown in

Figure 6. The DC of all tissue segmentations were above 0.95 for all

pairs of images (except one pair with CSF DC = 0.94).

3.2.2 | Diffusion scans

Whole brain reliability

At the whole brain level, the CVs of FA, MD, RD, and AD were not

significantly different between the two acquisition series. The CV of
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MD showed a trend level significance (p = 0.08); MD
�
λ1þλ2þλ3

3

�
is

derived from AD (λ1) and RD
�
λ2þλ3
2

�
, therefore the CV of MD would

be influenced by the cumulative variances in both these measures,

thereby possibly leading to a trend level p‐value. Additionally, we
note that these p‐values are unadjusted for multiple comparisons. A

summary of the whole brain reliability of diffusion scans is shown in

Table 5.

Region of interest‐level reliability
At the ROI‐level, the FA of the right anterior corona radiata

(p = 0.04) and the left cingulum (cingulate gyrus) (p = 0.05), the AD of

the right corticospinal tract (p = 0.003) and the left posterior

thalamic radiation (including optic radiation) (p = 0.02), the RD of the

left inferior cerebellar peduncle (p = 0.02), the left anterior corona

radiata (p = 0.04), the right uncinate fasciculus (p = 0.01), and the left

uncinate fasciculus (p = 0.01), and the MD of the right corticospinal

tract (p = 0.01) and the left anterior corona radiata (p = 0.03), were

statistically significant; however, none of these values survived a

Bonferroni correction for the number of ROIs. A summary plot

showing the absolute difference in the CV between acquisition series

1 and 2 (for each of the diffusion measures) is shown in Figure 7 and

the absolute difference in CV values and associated p‐values are

listed in Table S13. Additionally, we note that the difference in CV of

left tapetum was relatively on the higher side; this is because the left

tapetum has minimal overlap with the mean FA skeleton from which

the diffusion measures are summarized (see Figure S17).

Voxel‐level reliability
At the voxel‐level, we created a p‐value map after eliminating voxels
with p < 0.001 for each of the diffusion measures. On visual in-

spection of these maps, we did not find any clusters of significantly

different CVs. To summarize these results, we counted the number of

voxels in each JHU WM label ROIs and found that the CVs of 124

voxels for AD, 223 voxels for RD, 161 voxels for MD, and 114 voxels

for FA were significantly different between the two acquisition series

at uncorrected α < 0:001. These summary counts are presented in

Figure 8 while an overlay of these significant voxels are shown on the

mean FA image in Figure S16.

4 | DISCUSSION

In this paper we have presented the QA and QC pipeline for MRI

studies of the ADBS project. In the literature, various QA methods

have been proposed to monitor scanner stability and to ensure reli-

ability of quantitative measurements. Measurements like SNR, SFNR,

TAB L E 3 Descriptive summary of
EPI quality check on agar gel phantom
(see text for details)

Measure Mean Standard deviation Min Max

SNR 219.4163 31.6091 158.8507 333.1398

Mean PIU2 84.2961 2.0638 80.7046 93.5360

PSGsignalimage
a 0.0022 0.0011 0.0008 0.0116

PSGvolume
b 0.0016 0.0011 0.0000 0.0059

SFNR 299.6195 33.0544 116.2972 358.1444

Drift 0.6043 0.4615 0.0753 4.0682

Percent fluctuation 0.1335 0.0570 0.0786 0.8075

Mean PSC 0.0680 0.0071 0.0564 0.0890

Abbreviations: EPI, echo‐planar imaging; PIU, percent integral uniformity; PSC, percent signal
change; PSG, percent signal ghosting; SFNR, signal‐to‐fluctuation noise ratio; SNR, signal‐to‐noise
ratio.
aSlice (mean_PSG).
bVolume (PSG2).

TAB L E 4 Coefficient of variation
(CV) and p‐values for whole brain
volumetric measurements from T1‐
weighted scans for test–retest reliability

Measurement CV Series 1 (%) CV Series 2 (%) | CVdiff (%) | p‐Value

Total GM volumes 0.5964 0.8234 0.2270 0.4272

Total WM volumes 0.5815 0.5698 0.0118 0.9210

Total CSF volumes 1.0910 1.5059 0.4149 0.5917

TIV 0.1032 0.2101 0.1069 0.0564

Note: Series 1 refers to nine scans on the same subject between July and September 2019 and Series
2 refers to nine scans on the same subject between October and December 2019 (three scans per

month) (see Table S9 for scan schedule).

Abbreviations: CSF, cerebrospinal fluid; GM, gray matter; TIV, total intracranial volume; WM, white

matter.
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drift, and percent fluctuation (Friedman & Glover, 2006; Friedman

et al., 2006), PSC (Stöcker et al., 2005) and PIU and PSG (The

American College of Radiology, 2005), and so forth, can be used on

F I GUR E 4 Absolute percentage difference in coefficient of variation (CV) of GM volumes between acquisition Series 1 (S1) and Series 2
(S2), for regions of interest from Hammers Atlas for test retest reliability data; (a) regions from the left hemisphere, and (b) regions from the

right hemisphere; see Table S11 for full names of the brain regions. GM, gray matter

F I GUR E 5 Region‐wise counts of the number of voxels which
had significantly different coefficient of variation of GM between
acquisition Series 1 and Series 2 at α < 0:001 (uncorrected); see

Table S11 for full names of the brain regions. GM, gray matter

F I GUR E 6 Pairwise Dice coefficient for gray matter (green
color), white matter (purple line), and cerebrospinal fluid (orange

color); between July and December 2019, a volunteer underwent
three scans per month (total 18 scans); Dice coefficient between
the segmentation of the three tissue classes was calculated for all

pairs of images (total 153 pairs) to examine the consistency of
segmentation (see Table S9 for details of reliability schedule)
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phantom or acquired human data for the identification of scanner

instabilities or time points with large fluctuations. Further, test–

retest analysis on acquired human data can reveal the reliability of

quantitative outcome variables (for example [Maclaren et al., 2014],

examined CV of regional brain volumes over data from three sub-

jects; [Madan & Kensinger, 2017] examined reliability of volumes and

surface features using two open‐access datasets; [McGuire

et al., 2017] worked on three assessments for 25 subjects using

multimodal brain imaging data). Test–retest approaches show that

tracking of outcome variables over repeated assessments can not

only highlight the natural biological variability but also serve as a

measure for consistent scanner performance. Over and above these,

various subject‐level QC processes can be employed for identifying

and flagging images that could potentially influence data analysis.

These steps could involve identification of incidental structural ab-

normalities, identification of MRI artifacts (for example, using MRIQC

[Esteban et al., 2017]), data points with high amount of motion (by

methods like framewise displacement and DVARS for fMRI

[Afyouni & Nichols, 2018; Power et al., 2012], and volume and slice‐
level motion correction using eddy for DWI [Andersson et al., 2017,

2016]), and so forth.

4.1 | QA approach of the ADBS project

4.1.1 | Phantom measurements

For monitoring scanner performance, we have used data from two

phantoms: PD images from HPD phantom and EPI BOLD images

from an agar gel phantom. The results from the PD images show a

general trend of increasing PD values with increasing proton fraction,

as indicated by high percentage R2 values (see Figure 3), with the

exception of two time points where the acquired images exhibited a

central darkening. We believe this could be caused due to errors in

phantom handling or an incorrect slice being selected during the

acquisition. The results from agar gel phantom images show a general

trend of lower ghosting, drift, and fluctuations, with the exception of

a few outliers. These are explained by incorrect ROI placement

during the analysis step, issues related to phantom handling, and a

head coil problem. For outliers with no obvious explanation, we need

to closely examine the already acquired human data from those dates

and ensure their usability. Vogelbacher et al. (2018) have shown a

strong dependence of QA measurements on the positioning of the

phantom, and suggest that the only way to alleviate this is by using a

phantom holder. We are in the process of implementing this

recommendation at our site to further improve the consistency of our

phantom measurements. Given differences in scanners, acquisition

protocol, types of phantom, and other reasons, it is not straightfor-

ward to establish a range for these QA measurements. Therefore,

steps to integrate an automated warning system to promptly detect

scanner instabilities are currently underway. This is similar to the

idea of LAB‐QA2GO (Vogelbacher et al., 2019) but incorporating

modifications relevant to our site and phantoms (see Supporting In-

formation Material). Since standardizing various QA measurements

across sites and scanners is not straightforward, the warning system

will use a distribution of QA measurements from our site (reported in

this paper) and check a new measurement against this distribution; if

the new measurement is an outlier, the system will generate a

warning (the cause of which can be investigated by the site techni-

cians). As measurements accumulate, it should be possible to train a

machine learning classifier to predict scanner anomalies.

4.1.2 | Test–retest reliability on human volunteer

In our approach to test–retest reliability, we have analyzed 18

repeated scans of a human volunteer, over a period of 6 months. We

compared the global, regional, and voxel‐level CVs of quantitiatve

measures from T1w and DWI images between the first and last three

months. We did not find any significant differences between the CVs

at global and local levels. Additionally, examination of DC shows the

consistency of segmentation at short‐term (within series) and long‐
term (between series) basis. These results lead us to believe that

the structural and diffusion images that we are acquiring have the

potential to yield consistent volumes and diffusivity measures. As the

scanner‐related variation remains consistent, the acquired images

could potentially be sensitive enough to reveal differences in longi-

tudinal scans.

4.2 | QC approach of the ADBS project

The ADBS QC approach is based on automated and semi‐automated
tools that can help identify and flag problematic images, the analysis

TAB L E 5 Coefficient of variation
(CV) and p‐values for whole brain
average diffusivity measurements from

diffusion weighted scans for test–retest
reliability

Measurement CV Series 1 (%) CV Series 2 (%) | CVdiff (%) | p‐value

Fractional anisotropy 0.5388 0.4224 0.1164 0.4485

Axial diffusivity 0.4988 0.3220 0.1768 0.1186

Radial diffusitivty 0.8355 0.5157 0.3198 0.1132

Mean diffusivity 0.6529 0.3824 0.2705 0.0798

Note: Series 1 refers to nine scans on the same subject between July and September 2019 and Series
2 refers to nine scans on the same subject between October and December 2019 (three scans per

month) (see Table S9 for scan schedule).
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of which could lead to incorrect interpretation. The QC procedure

aims at identifying outliers for each imaging modality (structural,

functional, and diffusion) by using state of the art tools such as

MRIQC (Esteban et al., 2017) and QUAD/SQUAD (Bastiani

et al., 2019), along with in‐house workflows which provide additional
information about the quality of acquired scans. Specifically, for

structural images, each acquired image is reviewed by a trained

neuroradiologist to flag any incidental finding(s). In addition, artefacts

and images of low quality are identified using MRIQC (Esteban

et al., 2017) and CAT (http://www.neuro.uni‐jena.de/cat/) reports. In

addition, we visually examine any structural image which is flagged as

an outlier. For functional images, we comprehensively examine the

motion profile of each image using MRIQC (Esteban et al., 2017) and

DVARS (Afyouni & Nichols, 2018), along with quantifying the degree

of signal loss within susceptibility regions, visually examining the

level of distortion by brain mask profile, and calculating left–right

correlation for identifying images with signal anomalies using in‐
house workflows. Finally, for diffusion images, we use eddy for

volume and slice‐level motion correction and use QUAD/SQUAD

(Bastiani et al., 2019) for identification of problematic images.

F I GUR E 7 Absolute percentage difference in coefficient of variation (CV) of (a) axial diffusivity (AD), (b) mean diffusivity (MD), (c) radial
diffusivity (RD), and (d) fractional anisotropy (FA) between acquisition Series 1 (S1) and Series 2 (S2), for regions of interest from JHU white

matter labels Atlas for test‐retest reliability data; see Table S12 for full names of the brain regions; unlabeled ticks are right hemisphere
regions
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4.3 | Conclusions and future directions

The establishment and implementation of strong QA–QC procedures

is critical in neuroimaging studies as exemplified by the success of

studies like the ADNI (Jack et al., 2008; http://adni.loni.usc.edu) and

HCP (Van Essen et al., 2013; https://neuroscienceblueprint.nih.gov/

human‐connectome/connectome‐programs). It is important to

emphasize that monitoring of both QA and QC measures is critical

for any study. Having only a good QC protocol does not necessarily

ensure that the quantitative outcome variables will be reliable as the

QC protocol does not capture the repeatability value of the

acquisition. Additionally, QC protocols may not be able to capture

scanner related instabilities. Similarly, having only a good QA pro-

tocol does not necessarily ensure that the acquired scans will be

acceptable for quantitative analyses because of factors like subject‐
level motion, incidental structural abnormalities that could interfere

with image processing steps, and so forth. In the ADBS project, we

have implemented rigorous QA as well as QC steps, which sets a

precedent for other studies to adapt and build on (a summary of

these QA–QC steps is presented in Figure 9).

As the ADBS data acquisition relies on a single site/scanner, we

do not face intersite/interscanner variability as a factor (unlike

F I GUR E 8 Region‐wise counts of the number of voxels which had significantly different coefficient of variation of (a) axial diffusivity (AD),
(b) mean diffusivity (MD), (c) radial diffusivity (RD), and (d) fractional anisotropy (FA) between acquisition Series 1 and Series 2 at α < 0:001

(uncorrected); see Table S12 for full names of the brain regions
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multisite studies). This also allows for a stricter control on variability

caused by human factors (e.g., planning of an acquisition), time win-

dow during which acquisition happen, and the incorporation of

methods to ensure scanner stability. One of the key aspects that we

have focused here is ensuring scanner stability by using different MRI

phantoms and incorporating test–retest reliability on human volun-

teers. As the study progresses, it will be necessary to update some of

these QA–QC measures to incorporate the longitudinal nature of the

dataset. These methods would also need to be periodically revised as

newer methods get proposed and adapted in the field. Currently, we

have adapted methods in the field which require little to no manual

intervention. With the influx of data, it will be possible to develop/

incorporate machine learning methods for classifying problematic

images (we note that the Alfaro‐Almagro et al. (2018) have used a

similar idea for identifying problematic T1‐weighted images). We

hope to curate a high quality neuroimaging database that can serve

the scientific community and contribute to understanding the

neurobiology of various psychiatric disorders. We also expect that

the pipeline for rigorous quality control and reliability measures that

are detailed in this manuscript would benefit researchers while

planning similar longitudinal neuroimaging studies in various neuro-

psychiatric disorders.
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