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ABSTRACT
Background: An automated image analysis system, e-Pathologist, was developed 

to improve the quality of colorectal biopsy diagnostics in routine pathology practice.
Objective: The aim of the study was to evaluate the classification accuracy of the 

e-Pathologist image analysis software in the setting of routine pathology practice in 
two institutions.

Materials and methods: In total, 1328 colorectal tissue specimens were 
consecutively obtained from two hospitals (1077 tissues from Tokyo hospital, and 
251 tissues from East hospital) and the stained specimen slides were anonymized and 
digitized. At least two experienced gastrointestinal pathologists evaluated each slide 
for pathological diagnosis. We compared the 3-tier classification results (carcinoma or 
suspicion of carcinoma, adenoma, and lastly negative for a neoplastic lesion) between 
the human pathologists and that of e-Pathologist. 

Results: For the Tokyo hospital specimens, all carcinoma tissues were correctly 
classified (n=112), and 9.9% (80/810) of the adenoma tissues were incorrectly 
classified as negative. For the East hospital specimens, 0 out of the 51 adenoma 
tissues were incorrectly classified as negative while 9.3% (11/118) of the carcinoma 
tissues were incorrectly classified as either adenoma, or negative. For the Tokyo and 
East hospital datasets, the undetected rate of carcinoma, undetected rate of adenoma, 
and over-detected proportion were 0% and 9.3%, 9.9% and 0%, and 36.1% and 
27.1%, respectively.

Conclusions: This image analysis system requires some improvements; 
however, it has the potential to assist pathologists in quality improvement of routine 
pathological practice in the not too distant future.

INTRODUCTION

Colorectal cancer is a major cause of morbidity and 
mortality in Japan, where it is the leading cause of death 
among women, and the third leading cause of death among 

men (from malignant neoplasms) [1]. A large number 
of specimens is therefore obtained with endoscopes, in 
order for pathologists to make their respective diagnoses. 
Moreover, in recent years, double-checking of slides by 
pathologists has been widely recommended to ensure 
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correct diagnosis. In contrast, while the number of 
pathologists has remained essentially constant, the number 
of cases has increased, and therefore the diagnostic burden 
on pathologists has grown.

Under these circumstances mentioned above, 
histological image analysis methods have been proposed 
for colorectal cancer detection [2-6]. Esgiar et al. [2] 
performed classification of normal and cancerous classes 
based on texture analysis techniques, and reported the 
classification result on a dataset that consists of 44 normal 
and 58 cancer images captured using a microscope with 
a 40x objective lens, and 512x512 image resolution. 
Altunbay et al. [3] provided a method based on graph 
algorithm, and reported the classification result on a 
test image set consisting of 34 normal specimens, 35 
low-grade cancerous specimens, and 29 high-grade 
cancerous specimens, captured by a microscope at 20x 
magnification, with a resolution of 480x640 pixels. Jiao et 
al. [4] performed class discrimination based on statistical 
texture analysis using the Gray-Level Co-occurrence 
Matrix method [7], and reported the discrimination result 
on a dataset consisting of 30 normal core images, and 30 
abnormal core images cropped from a whole slide image 
(WSI), which is a Tissue Microarray slide consisting 
of 60 core arrays, scanned by a digital slide scanner. 
Kalkan et al. [5] reported the results of categorization of 
small patch images at 1024x1024 dimensions into four 
categories: normal, cancer, adenomatous, and inflamed 
classes on a dataset consisting of 2000 image patches per 
category, cropped from 55 WSIs of 36 patients. Ozdemir 
et al. [6] proposed a resampling-based Markovian model, 
and showed experiments of classifying a test set of 
258 patients consisting of 491 normal, 844 low-grade 
cancerous, and 257 high-grade cancerous images taken 
with a microscope using a 20x microscope objective lens 
with 480x640 image resolution. 

In reviewing previous studies, emphasis has been 
placed on the methods of image analysis, rather than a 
practical computer-assisted diagnosis system for clinical 
use. Furthermore, the efficacy of these methods was only 
evaluated on a small amount of data, and many previous 
studies also only focused on small images photographed 
by a microscope. Although there are a few studies that 
addressed WSIs, these studies focused on only limited, 
manually selected regions of tissues slides rather than the 
entire WSI of each slide. The region selection processes 
involving manual operation have ensured higher quality 
of input images, but also decreased computational 
complexity. In practice, it is desirable that a computer-
assisted diagnosis system be fully automated, and 
therefore free from operators. Unfortunately, however, 
literature on the topic is relatively sparse. 

The co-authors at the NEC Corporation have 
developed an automated pathological image analysis 
system for colorectal biopsy specimens, named 
“e-Pathologist”. This system detects abnormal tissue 

suggestive of malignancy on hematoxylin and eosin 
(H&E)-stained sections and gives alerts to the user (i.e. 
pathologists) to reduce the risk of incorrect diagnoses. 
This system automatically detects and analyses WSI files 
generated by a digital slide scanner. The general flow 
of this system is as follows: This system distinguishes 
between adjacent tissues in the whole image, and 
recognizes each tissue as an individual entity. Each tissue 
region is then cropped from the WSI at 20x magnification 
(average image size is 10,000x10,000 pixels). Each tissue 
image is further analyzed and classified as four categories: 
suspicious for carcinoma, suspicious for adenoma, no 
neoplasia, and unclassifiable. 

The aim of this study was to evaluate the 
classification performance of the proposed system using 
samples collected for routine diagnostics, from two 
institutions. In addition, we assessed its effectiveness and 
explored the feasibility of using the system routinely as 
part of modern clinical practice. 

RESULTS

Our experiment was performed with datasets from 
two institutions under routine conditions. Test tissues were 
composed of 1077 tissues from Tokyo hospital, and 251 
tissues from East hospital. Table 2 shows the classification 
result table, confusion matrix, in the Tokyo hospital, 
and East hospital datasets. Here, the classifier had been 
trained using training set, and the parameters tuned in 
advance using the validation set, so that an undetected rate 
carcinoma would be less than 1%, and an undetected rate 
of adenoma would be less than 5%. Note that the facilities 
providing both the training set and the validation set were 
different from the facilities providing the two test sets, 
which are target data in this study. 

As shown in Table 2, for the Tokyo hospital 
dataset, the 112 Group 5 tissues were fully correctly 
classified while the 80 out of the 810 Group 3 tissues 
were under-classified as Negative(N). In contrast, for 
the East hospital dataset, none of the 51 Group 3 tissues 
were under-classified as Negative(N) while the 11 out 
of the 118 Group 5 tissues were under-classified as 
Adenoma(A), or Negative(N). For the Tokyo hospital 
dataset, the undetected rate of carcinoma, undetected rate 
of adenoma, and over-detected proportion are 0.0%, 9.9%, 
and 36.1%, respectively. For the East hospital dataset, the 
undetected rate of carcinoma, undetected rate of adenoma, 
and over-detected proportion are 9.3%, 0.0%, and 27.1%, 
respectively. The summary of classification performances 
is shown in Table 3 together with the system performance, 
which tuned parameters by using the validation data as the 
reference value for comparison. 
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Figure 1: Seven tissues classified as Unclassifiable(X). The following images are excerpts from the tissue images. (a)-(d) Overall 
blurred images. (e) Partial blurred image. (f) Image with shadow close by a tissue. (g) Image with a pen mark. 

Table 1: Table defining the similarities between the revised Vienna classification, Japanese group 
classification, and classification of our system

Figure 2: Examples of tissue images from Tokyo hospital and East hospital. (a-1), (b-1), and (c-1) Examples of tissue images 
at Tokyo hospital. (a-2), (b-2), and (c-2) Examples of tissue images at East hospital. Differences in slide preparation between two batches 
give rise to differences in image colors. 
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DISCUSSION

The present study evaluated the automated 
pathological image analysis system (e-Pathologist) for 
colorectal specimens with the goals of clarifying scope 
and requirements for putting the system into practical use. 
Amid the changing environment surrounding pathology 
division, utilizing such a system is one possible solution to 
be able to efficiently make a diagnosis. However, no image 
analysis system has been tested with a large dataset of 
patients, in routine conditions, and multi institutions. This 
is the first study to evaluate the classification performance 
of the proposed system using the datasets collected 
from two institutions in routine diagnosis condition and 
explore the practical use of this system as considering the 
advantages along with the disadvantages. 

Evaluation results are summarized in the confusion 
matrices (Table 2). In Tokyo hospital, the seven tissues 
shown in Figure 1 were classified as Unclassifiable(X). 
The cause of being Unclassifiable(X) is found to be 
blurred regions, shadows, and pen marks. Therefore, it has 
been confirmed that this system provided the functions to 
properly exclude such artifacts. 

The representative tissue images from two 
hospitals are shown in Figure 2. We speculate that these 
color differences were largely caused by H&E staining 
conditions rather than by the individual differences 
among the scanners at each institution. Differences in slide 
preparation between two batches give rise to differences 
in image properties. Histopathological image analysis 
often suffers from batch effects of color tone and color 
contrast. All of the Group 5 tissues were fully correctly 
classified on the Tokyo hospital dataset, while the 3 out of 
118 Group 5 tissues were under-classified as Negative(N) 

on the East hospital dataset. The three tissue images are 
shown in Figure 3. The two out of three tissues were 
poorly differentiated adenocarcinoma, and the other tissue 
was signet-ring cell carcinoma. The poorly differentiated 
adenocarcinoma was classified based on cytological atypia 
analysis, where nuclei were extracted. In the tissue images 
with low contrast, nuclei extraction was difficult even if 
the system adopted a color normalization method by using 
training data of several thousands in different medical 
facilities. The Supplementary Figure 1 shows the results 
of nuclear extraction, which is the intermediate process in 
cytological atypia analysis, and the color distribution of 
nuclei and the other areas in two institutions. The nuclear 
extraction was successful in Tokyo hospital, and was not 
successful in East hospital. Since color distribution of 
nuclei and other areas had large overlap in East hospital, 
the nuclear extraction process based on color information 
was not successful, which resulted in the underestimation 
of carcinoma.

Lymphoma and carcinoid, which were not epithelial 
neoplasia, were classified into various classes, probably 
because such rare subtypes of neoplasia were not trained 
by using a large amount of data assigned to such classes. 

None of the Group 3 tissues were under-classified 
as Negative(N) on the East hospital dataset, while the 
80 out of the 810 Group 3 tissues were under-classified 
as Negative(N) on the Tokyo hospital dataset. The 
representative tissue images are shown in Figure 4. 
Most of them are low grade adenoma, and no tissues 
with high grade adenoma were underestimated. There 
are reports concerning inter-observer agreement of 
human pathologists in the diagnosis of adenoma and 
non-adenoma. Because this system was trained based 
on tissues diagnosed by several pathologists in different 

Figure 3: Three tissues classified as Negative(N) in case a diagnosis by human pathologists is Group 5 on East hospital 
dataset. (a) Poorly differentiated adenocarcinoma. (b) Poorly differentiated adenocarcinoma. (c) Signet-ring cell carcinoma.
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Figure 4: Representative tissues classified as Negative(N) in case a diagnosis by human pathologists is Group 3 on 
Tokyo hospital. 

Table 2: Confusion matrix in the Tokyo hospital, and East hospital datasets

P = Positive, A = Adenoma, N = Negative, X = Unclassifiable
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medical facilities, the system might not classify kinds of 
tissues with thin glands shown in Figure 4 as Adenoma(A). 

In this study, we evaluated whether the system 
can achieve spec performance without training and 
tuning using, by data from the two monitor institutions. 
The undetected rate of carcinoma was 0.0% and 9.3%, 
while the undetected rate of adenoma was 9.9% and 
0.0% for the two institutions, respectively. This system 
could not achieve spec performance in the undetected 
rate of carcinoma in East hospital. The primary factor is 
the difference in the color properties caused by differing 
H&E staining conditions. We expect that the difference 
in the color properties of images can be compensated 
for by training and tuning using the data from the target 
institution, or by preparing the slides under specific 
conditions. We demonstrated the following quality control 
workflow: a diagnosis by the first human pathologist and 
the prediction by the system were compared with each 
other, and the tissues over-predicted by the system were 
rechecked by a second human pathologist. The amount 
of re-checking by a second pathologist could be reduced 
to only 36.1% or 27.1% on the Tokyo hospital, and East 
hospital datasets, respectively. This rate might seem high. 
There is somewhat of a tradeoff between false negative 
rate and false positive rate. A system which classifies 
nearly all positives correctly usually has high false 
positive rate. In our system, the risk of underestimation 

of carcinoma is reduced as much as possible, and hence 
a certain level of over-estimation is unavoidable. Though 
it is desirable that the over-estimation rate should be low, 
this system will contribute to the reduction in the burden 
of work, of double-checking.

There are, however, some limitations on this system. 
For example, this system is able to classify a blurred image 
as blurred, but is not to able to reconstruct a clear image 
from a blurred one. In this system, some instances cannot 
be classified properly under certain staining conditions. 
Especially, the classification of lymphoma or carcinoid 
is insufficient, and some of the low grade adenoma cases 
are missed. Currently, it is necessary to evaluate this 
system at target facilities, and adjustment of this system 
should be performed if necessary. In conclusion, the 
present study provided promising results for applying an 
automated histopathological classification of colorectal 
biopsy specimens into clinical practice, although there 
are some limitations and requirements. Analysis of 
histological images is challenging research that requires 
interdisciplinary collaborations among pathologists and 
computer scientists. Such collaboration is necessary to 
tackle the difficult problem of discovering and interpreting 
novel patterns in histopathological data. To enhance the 
system performance, it is important not only for further 
improvement of machine learning, but also standardization 
of slide preparation. Although the processes toward 

Figure 5: Structure of the automated colorectal classification scheme
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medical information and communications technology have 
a lot of social issues due to medical systems, cultures, and 
industries, such an automated histopathological image 
analysis system could assist pathologists in the not too 
distant future. 

MATERIALS AND METHODS

Patient selection, tissue section preparation and 
pathological diagnosis

The study was conducted in accordance with the 
Declaration of Helsinki, and with the approval of the 
institutional review board of the National Cancer Center 
in Tokyo, Japan. This study was performed using all 
colorectal biopsy specimens and polypectomy specimens 
up to 10mm obtained from routine patients during a 15-
week period from January 19, to April 30, 2015, at Tokyo 
hospital and East hospital in the National Cancer Center, 
Japan. In total, 1328 tissue specimens consisting of 1068 
slides were subject to the survey. The daily histological 
slide preparation at both hospitals is as follows: Several 
biopsy and/or polypectomy specimens per patient were 
fixed in 10% buffered formalin and embedded in the same 
paraffin block. A single 4-µm-thick section from each 
paraffin block was mounted on a glass slide and stained 
with H&E stain by an automated stainer; at least two 
experienced gastrointestinal pathologists microscopically 
examined, and made a pathological diagnosis for each 
tissue specimen according to the Japanese Group 
Classification [8], in line with routine clinical practice. 
All cases with diagnostic discordance were reviewed by 
multiple pathologists, and diagnostic agreement on all 
cases was established. The final consensus diagnosis was 
used in this study. 

The Japanese Group Classification is applied only 
to endoscopic biopsy materials, and is applied only to 
epithelial tissue. Materials obtained by polypectomy, 
endoscopic resection, or surgery were not included. 
Japanese Group Classification is as follows: Group X—

inappropriate material for which histological diagnosis 
cannot be made; Group 1—normal tissue or non-
neoplastic lesion; Group 2—material for which diagnosis 
of neoplastic or non-neoplastic lesion is difficult; Group 
3— adenoma; Group 4—neoplastic lesion that is 
suspected to be carcinoma; and Group 5—carcinoma. To 
resolve the differences between the conventional Western 
criteria and the Japanese Group Classification, the Vienna 
Classification was established to combine the basic 
concepts of the conventional Western criteria. The revised 
Vienna classification [9] has been widely accepted and 
consists of five categories, and corresponds to the Japanese 
Group Classification as follows: Category 1—negative for 
neoplasia/dysplasia (Group 1); Category 2—indefinite for 
neoplasia/dysplasia (Group 2); Category 3—low grade 
adenoma/dysplasia (Group 3); Category 4.1—high grade 
adenoma/dysplasia (Group 4); and Categories from 4.2 to 
5.2—non-invasive carcinoma to submucosal carcinoma or 
beyond (Group 5). The Japanese Group Classification and 
Vienna Classification schemes are shown in Table 1. 

Digital image acquisition and automated image 
analysis system

During the 15-week evaluation period in this 
validation study, the following procedures were performed 
every weekday. Glass slides were anonymized at each 
of the hospitals, and then converted to a WSI by the 
NanoZoomer 1.0-HT digital slide scanner (Hamamatsu 
Photonics K.K., Hamamatsu, Japan) at Tokyo hospital, 
and the NanoZoomer 2.0-HT digital slide scanner 
(Hamamatsu Photonics K.K) at East hospital, at 40x (0.23 
µm/pixel) magnification. The WSI files of East hospital 
were encrypted on the server located on site, transferred 
to the server at Tokyo hospital via network, and decrypted, 
all completely automatically. The system automatically 
detects WSI files of both Tokyo hospital and East hospital, 
and starts analyzing the detected WSIs. All aspects 
concerning the pathological diagnoses by the pathologists 
were undisclosed to researchers and statisticians during 
this period. 

Table 3: Classification performances
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Automated colorectal classification scheme and 
image analysis

The whole structure of our protocol is shown 
in Figure 5. When a WSI is first accepted, each tissue 
region is identified one by one from the low-resolution 
image of whole area. Following this, the corresponding 
high-resolution images get retrieved from the WSI. Then, 
the following processes are performed for each tissue 
image: blur detection, color normalization, cytological 
atypia analysis, structural atypia analysis, and overall 
classification. Finally, the image gets classified into one 
of the four categories, either: suspicious for carcinoma 
(Positive), suspicious for adenoma (Adenoma), no 
neoplasia (Negative), or unclassifiable (Unclassifiable) for 
each tissue. The similarities between the revised Vienna 
classification, the Japanese group classification, and the 
final output of our system are summarized in Table 1. The 
classifier in each of the six processes had been trained 
using the training set, and its parameters had been tuned 
using the validation set, in advance. The system had not 
been modified using the data derived from either Tokyo 
hospital or East hospital. The details of our approach are 
described in the following subsections, which correspond 
with each of the steps. 

Blur detection

Blurred regions, which occur when the lens is 
out-of-focus, can practically lead to serious problems 
downstream, because these blurred regions have 
unpredictable effects on image segmentation and other 
quantitative image features. Therefore, we used a blur 
detection method in order to rule out the possibility of an 
erroneous classification. Our procedure are present in the 
Supplementary Material S1. 

Color normalization

The variation in protocols for preparing histological 
sections and digitizing the images inevitably results in 
batch effects, especially image color, which is a critical 
aspect that influences image processing. Therefore, we 
used a color normalization method that converted each 
color image into one that was free from batch effects. Our 
procedure are present in the Supplementary Material S2. 

Figure 6: Examples of results that indicated glandular level by ten different colors between cool and warm. (a-1) An 
example of an input image with low grade atypia. (a-2) Visualization-displayed glandular level of the input image a-1. (b-1) An example of 
an input image with high grade atypia. (b-2) Visualization-displayed glandular level of the input image b-1. Warm colors indicate a thicker 
object and cool colors indicate a thinner object.
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Structural atypia analysis

The degree of cytological atypia and structural 
atypia contributes greatly to the diagnostic process for 
colorectal neoplasia. The distinction between adenoma 
and well- or moderately differentiated adenocarcinoma 
depends largely on the evaluation of structural atypia. 
Therefore, we proposed a method that quantifies the 
degree of gland changes corresponding to structural 
atypia, and classifies a tissue image into one of four 
classes: low atypia level, middle atypia level, high atypia 
level, or unclassifiable. Our method for structural atypia 
analysis was designed by the desire to mimic a pathologist, 
and, we provided methods putting an emphasis on easily 
understandable and acceptable bases for pathologists 
instead of black-box learning approaches. Our procedure 

was roughly as follows: (Step 1) a mask image was created 
as pre-processing. (Step 2) Nuclear regions of cells that 
make up glands were extracted using image processing 
methods from the tissue image on a low magnification, 
and the thickness of each extracted glandular nuclear 
component was quantified. (Step 3) When glandular 
components with thick cells were found by the above Step 
2, nuclear and cytoplasmic regions of the cells making up 
the glands were extracted using image processing methods 
from the tissue image, on a high magnification, and the 
arrangement of the nuclei and cytoplasm in each extracted 
gland component was evaluated. We designed the two-
step approach, which uses low-magnification analysis 
and, and then high-magnification analysis as necessary, to 
reduce the computational time. The details of our steps are 
described in the Supplementary Material S3. 

Figure 7: Examples of results that segmented glandular nuclei and glandular cytoplasm. (a) An example of high grade 
atypia. (b) An example including high grade atypia. (c) An example including intermediate grade atypia. (d) An example of low grade 
atypia. The extracted glandular nuclei are shown in blue, and the extracted glandular cytoplasms are shown in green. 
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The glandular level was visualized by 10 colors, 
which changed gradually from cool to warm colors. The 
coolest color indicates gland level near 1 (i.e. thinner), 
while the warmest one indicates gland level near 10 (i.e. 
thicker). The results of Step 2 are shown in Figure 6. 

 As illustration of Step 3, four examples of the 
segmentation of glandular nuclei and glandular cytoplasm 
are shown in Figure 7. 

Cytological atypia analysis

The diagnosis of poorly differentiated 
adenocarcinoma depends on the degree of cytological 
atypia. Analysis of cytological atypia used a method 
[10], which co-authors at NEC Corporation previously 
developed for classifying gastric cancer. This method is 
based on the multi-instance learning (MIL) [11] using a 
neural network [12]. Our procedure was as follows: First, 
regions of interest (ROIs) were formed so as to cover an 
entire tissue image using the density of nuclei. Second, 
the degree of tissue change was computed in a range 
from 0 to 1, using a MIL classifier mentioned above for 
each ROI. Finally, the input tissue image was classified 
into one of two classes: high atypia level or low atypia 
level according to a threshold of the mean-square of 
top three values computed for each ROI. The threshold 
was adjusted to avoid missing poorly differentiated 
adenocarcinoma on a training data set from a different 
medical facility. Supplementary Figure 2 shows extracted 
nuclei superimposed on ROI, and a result tissue image 
with colors according to value from 0 to 1 computed for 
each ROI. 

Overall Classification

Overall Classification categorized a tissue section 
into one of four classes: Positive, Adenoma, Negative, 
or Unclassifiable, according to the decision result (high, 
middle, or low) of structural atypia analysis and the result 
of cytological atypia analysis (high or low). The result 
with the higher atypia level was adopted preferentially. 

Evaluation method

Our system was developed as a quality control 
system to avoid overlooking of carcinoma in the diagnosis 
process. Currently, two pathologists independently make 
a diagnosis for the entire tissue sections. Instead of 100% 
manual double-checking, the quality control system 
could be considered in the following: the diagnosis 
by a pathologist and the prediction by the system are 
compared with each other, and the tissues that were over-
predicted by the system are rechecked by a pathologist. 
It is possible to reduce the incidence of false diagnosis 
without double-checking entire tissue sections. In such 

a quality control system, the false negative rate (cancer 
tissue being detected as non-cancer) should be suppressed 
as much as possible, while the false positive (non-cancer 
being detected as cancer) is tolerable. To evaluate the 
performance of the system, we adopted the following three 
indices: undetected rate of carcinoma, undetected rate of 
adenoma, and over-detected proportion to total, instead 
of the accuracy, which is the percentage of correctly 
predicted labels over all predictions. The three indices are 
as follows:

where n(a|b) is the number of tissue examples, in 
case that a diagnosis by human pathologists is b and a 
prediction by the system is a. An index called the “over-
detected proportion” is equivalent to the proportion of 
second checking, and is directly related to various costs. 
The undetected rate of carcinoma and undetected rate of 
adenoma are expected to be almost zero, while keeping the 
over-detected proportion low. Note that there is a trade-off 
relation between “undetection” and over-detection. 

Our system was taught through training data of 
several thousands in different medical facilities, and was 
tuned to satisfy the above requirements using validation 
data. The details of the validation data were 15% of G5, 
35% of G3, and 50% of G1. Our system was tuned so as 
to have the following performance: the undetected ratio 
of carcinoma ≈1%, the undetected ratio of adenoma ≈5%, 
and the over-detected proportion ≈30%. 
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