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ABSTRACT
Purpose. Multiplemyeloma (MM), a kind ofmalignant neoplasm of clonal plasma cells
in the bone marrow, is a refractory disease. Understanding the metabolism disorders
and identification of metabolomics pathways as well as key metabolites will provide
new insights for exploring diagnosis and therapeutic targets of MM.
Methods. We conducted nontargeted metabolomics analysis of MM patients and
normal controls (NC) using ultra-high-performance liquid chromatography (UHPLC)
combined with quadrupole time-of-flight mass spectrometry (Q-TOF-MS) in 40 cases
of cohort 1 subjects. The targeted metabolomics analysis of amino acids using multiple
reaction monitoring-mass spectrometry (MRM-MS) was also performed in 30 cases
of cohort 1 and 30 cases of cohort 2 participants, to comprehensively investigate the
metabolomics disorders of MM.
Results. The nontargeted metabolomics analysis in cohort 1 indicated that there
was a significant metabolic signature change between MM patients and NC. The
differential metabolites were mainly enriched in metabolic pathways related to amino
acid metabolism, such as protein digestion and absorption, and biosynthesis of amino
acids. Further, the targeted metabolomics analysis of amino acids in both cohort
1 and cohort 2 revealed differential metabolic profiling between MM patients and
NC. We identified 12 and 14 amino acid metabolites with altered abundance in MM
patients compared to NC subjects, in cohort 1 and cohort 2, respectively. Besides, key
differential amino acid metabolites, such as choline, creatinine, leucine, tryptophan,
and valine, may discriminate MM patients from NC. Moreover, the differential amino
acid metabolites were associated with clinical indicators of MM patients.
Conclusions. Our findings indicate that amino acid metabolism disorders are involved
inMM.The differential profiles reveal the potential utility of key amino acidmetabolites
as diagnostic biomarkers of MM. The alterations in metabolome, especially the amino
acid metabolome, may provide more evidences for elucidating the pathogenesis and
development of MM.
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INTRODUCTION
Multiple myeloma (MM) is a kind of malignant neoplasm characterized by the
accumulation of clonal plasma cells in the bone marrow (Kocemba-Pilarczyk et al., 2018;
Xiang et al., 2017). It is the second most common hematologic malignancy (Tabata et
al., 2020) and accounts for 1% of all cancers diagnosed in the United States (Schecter &
Lentzsch, 2013), with an annual incidence of 6.3 new cases per 100,000 individuals (Neuse et
al., 2020). Due to the recurrent relapsing disease course,MM is consideredmostly incurable
and requires various therapies (Harding et al., 2019). To date,much progress has beenmade
in the treatment strategy ofMM. According to these clinical trials (Fayers et al., 2011;Gay et
al., 2011; Mateos, 2010), the combination of diverse drugs, such as proteasome inhibitors,
immune-modulatory drugs, monoclonal antibodies, HDAC inhibitors and individual
CAR-T cell therapy, and autologous hemopoietic stem cell transplantation with traditional
drugs, such as corticosteroids, alkylating agents and anthracyclines, has achieved significant
clinical effects, but MM remains an incurable disease. Despite considerable advances in
treatment, the prognosis of MM is still very heterogeneous (Schavgoulidze et al., 2021).
Several reports have demonstrated the links between MM treatment and its early diagnosis
(Korde et al., 2015; Mateos et al., 2013). Therefore, a more comprehensive understanding
of MM features will aid in the design of an effective treatment strategy for this disease.

Accumulating evidence has confirmed that metabolic alterations are involved
in myeloma cell growth and drug resistance (Maiso et al., 2015; Pinto et al., 2020).
Metabolomics analysis is a comprehensive method of metabolites that can dynamically
monitor the intermediate and final products of biochemical reactions and has been widely
used in cancer diagnosis, treatment, and prognosis (Armitage & Southam, 2016; Cao et
al., 2020; Kochanowski et al., 2021). By analyzing the metabolic profiles of MM patients at
diagnosis and after achieving complete remission, some of the metabolic changes, such
as glutamine, cholesterol, and lysine, have been observed, suggesting the potential of
metabolic profiles in identifying MM biomarkers or monitoring response to treatment
(Puchades-Carrasco et al., 2013). Studies have also revealed significant alterations in amino
acid, lipid and energy metabolism by analyzing the metabolomic plasma profile of MM
patients and NC and suggested the potential of cellular metabolic processes as promising
therapeutic targets in MM (Steiner et al., 2018). In addition, more studies have focused
on the indispensable mediator in the plasma microenvironment, amino acids. Glutamine
(Cory & Cory, 2006; Pochini et al., 2014) metabolism has proven to have close correlations
with hematopoietic malignancies. Du et al. (2018) reported that 23 metabolites changed
significantly in MM mainly by arginine, proline and glycerol phospholipid metabolic
pathways. Zaal et al. (2017) demonstrated that bortezomib resistance inMMwas associated
with increased serine synthesis. These findings have confirmed the crucial role of some
metabolites and metabolic pathways in the pathogenesis of MM. However, metabolism
encompasses the generation of energy, the synthesis and breakdown of glucose, amino
acids and fatty acids, and oxidative phosphorylation. The metabolic changes in MM cells
include the generation, accumulation and inhibition of metabolites as well as metabolic
shifts (El Arfani et al., 2018). Although previous findings have revealed some metabolic
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changes in MM, the key metabolites and metabolic pathways in MM have not been fully
investigated.

Metabolomics approaches can be nontargeted or targeted. Nontargeted metabolomics
involves global profiling of the metabolome and often provides more information than
targeted metabolomics. However, targeted metabolomics can quantify a select group
of metabolites, such as amino acids, which is more quantitative than nontargeted
metabolomics (Zhang et al., 2016). In the current study, we conducted nontargeted and
targeted metabolomics of amino acids to explore the metabolism disorders and identify
metabolomics pathways as well as key differential amino acid metabolites in MM patients.
Our findings will provide new insight for elucidating the possible mechanism of MM and
exploring promising biomarkers or therapeutic targets for this disease.

MATERIALS AND METHODS
Study design and patient recruitment
In this study, a total of 70 participants in two cohorts were recruited for metabolomic
detection. Patients with MM were collected from Lanzhou University Second Hospital,
and NC subjects were recruited through conventional physical examination in the hospital.
MM patients were diagnosed according to the criteria of International Myeloma Working
Group (IMWG) (Rajkumar, 2016). The International Staging System (ISS) was used to
evaluate disease progression (Loehrer, 2006). The patients with MM in the study were all
newly diagnosed cases. Subjects with immunodeficiency disease, medication use, smoking
habits, or underlying chronic disease were excluded from the study at the preliminary
screening stage. All MM patients in this study were not treated with radiotherapy or
chemotherapy. Finally, in the cohort 1, 40 participants including 20 MM patients and 20
NC subjects, were selected for nontargeted- and targeted-metabolomics. We also collected
the information about clinical variables, including the biochemical detection of serum
albumin (ALB), interleukin 6 (IL-6), lactic dehydrogenase (LDH), β2-microglobulin
(B2-MG), globulin (GLB), and serum creatinine (SCR) using the Beckman automatic
biochemistry analyzer (Beckman Chemistry Analyzer AU5800, Beckman Coulter, Inc.,
Brea, CA, USA) and Roche electrochemiluminescence system (Cobas e 801 Analyzer,
Roche Diagnostics GmbH, Mannheim, Germany), for all the 40 participants in cohort
1. The study of cohort 1 mainly contained two parts: (1) all 40 participants underwent
nontargeted metabolomics analysis, and (2) 30 participants (including 15 MM patients
and 15 NC subjects) underwent targeted metabolomics analysis. In the cohort 2, another
30 cases, including 15 MM patients and 15 NC subjects, were recruited as the validation
group of the targeted metabolomics analysis. Figure 1 summarized the study design,
and detailed information on the participants could be found in Table 1 (cohort 1) and
Table S1 (cohort 2). This study was approved by the Medical Ethics Committee of Lanzhou
University Second Hospital (2018a-037). Written informed consent was obtained from all
participants.
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Figure 1 Overview of the study design and workflow.UHPLC-Q-TOF/MS, ultra-high-performance
liquid chromatography (UHPLC) with quadrupole time-of-flight mass spectrometry (Q-TOF-MS);
MRM-MS, multiple reaction monitoring-mass spectrometry; PCA, principal component analysis; PLS-DA
partial-least squares discrimination analysis; OPLS-DA, orthogonal partial least squares discriminant
analysis; KEGG, Encyclopedia of Genes and Genomes; ROC, receiver operating characteristic curve.

Full-size DOI: 10.7717/peerj.12918/fig-1

Nontargeted metabolomics analysis using ultrahigh-performance
liquid chromatography (UHPLC) combined with quadrupole
time-of-flight mass spectrometry (Q-TOF-MS)
Sample collection and preparation
Peripheral blood samples of all 40 participants in cohort 1, including 20 MM patients and
20 NC subjects, were collected, and serum samples were obtained by centrifugation. The
samples were then stored at −80 ◦C before further processing for UHPLC-Q-TOF/MS
analysis.
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Table 1 Clinical characteristics of the 40 participants in cohort 1.

Group Age Sex ISS ALB (g/L) IL-6 (pg/mL) LDH (U/L) β2-MG (ng/mL) GLB (g/L) SCR (µmol/L)

Normal control
(NC, n= 20)

55.10± 10.43 Female (n= 8)
Male (n= 12)

– 42.16± 6.12 4.21± 1.98 183.00± 66.28 1037.05± 423.28 27.62± 6.51 67.88± 33.47

Multiple myeloma
(MM, n= 20)

54.90± 11.29 Female (n= 8)
Male (n= 12)

ISS I (n = 4)
1SS II (n= 6)
ISS III (n= 10)

37.89± 9.08 12.24± 14.72a
∗

241.20± 112.80 10,846.45± 10,615.85a
1

49.56± 26.42a
1

243.75± 229.60a
#

Notes.
Abbreviations: ISS, International Staging System; ALB, albumin, reference range: 40–55; IL-6, interleukin 6, reference range: 0.00–5.30; LDH, lactic dehydrogenase, reference range: 120–250; β2-MG,
β2-microglobulin, reference range: 609–2366; GLB, globulin, reference range: 20–40; SCR, serum creatinine, reference range: 41.0–73.0.

aCompared with the NC group, ∗Significant association with P < 0.05, #Significant association with P < 0.01, 1Significant association with P < 0.001.
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UHPLC-Q-TOF-MS analysis
UHPLC analysis was performed with an Agilent 1290 Infinity LC UHPLC system.
Chromatographic separation was carried out at 25 ◦C on a hydrophilic interaction
chromatography (HILIC) column with a flow rate of 0.3 mL/min. The mobile phase
consisted of solvent A (water + 25 mM ammonium acetate + 25 mM ammonia) and
solvent B (acetonitrile). Gradient elution was performed as follows: 95% solvent B with
0–0.5 min; the linear change of solvent B was from 95% to 65% within 0.5–7 min, from
65% to 40% with 7–8 min, and maintained at 40% for 8–9 min; then, the linear change of
solvent B was from 40% to 95% within 9–9.1 min and maintained at 95% for 9.1–12 min.
The samples were placed in an automatic sampler at 4 ◦C throughout the whole analysis.
To avoid the influence of signal fluctuation caused by instrument detection, continuous
analysis of samples was carried out in random order. Moreover, pooled quality control
(QC) samples (generated by taking an equal aliquot of all the samples included in the
experiment) were run at the beginning of the sample queue for column conditioning and
every ten injections thereafter to assess inconsistencies that are particularly evident in large
batch acquisitions in terms of retention time drifts and variation in ion intensity over time.

Q-TOF-MS analysis was conducted on an AB Triple TOF 6600 mass spectrometer
(AB SCIEX, Framingham, MA, USA). After HILIC chromatographic separation, the
electrospray ionization (ESI) source conditions were as follows: ion Source Gas1 (Gas1):
60 psi, Ion Source Gas2 (Gas2): 60, Curtain gas (CUR): 30, source temperature at 600 ◦C,
ionSapary Voltage Floating (ISVF): ±5,500 V (positive and negative model); TOF MS
scan m/z range: 60–1,000 Da, product ion scan m/z range: 25–1,000 Da, TOF MS scan
accumulation time: 0.20 s/spectra, and product ion scan accumulation time: 0.05 s/spectra.
Information-dependent acquisition (IDA) was used to obtain the secondary MS, as well as
high sensitivity mode, declustering potential (DP): ±60 V (positive and negative modes),
and collision energy: 35± 15 eV. IDA was set as exclude isotopes within 4 Da and candidate
ions to monitor per cycle: 6.

Data processing and analysis
The raw data were converted into. mzXML format files using the ProteoWizard converter
tool and thenprocessed usingXCMS software for peak alignment, retention time correction,
and peak area extraction. Then, the structures of metabolites were identified by comparing
the accuracy of m/z values (<25 ppm) and matching second-stage spectra with the
laboratory’s self-built database (Applied Protein Technology Co., Ltd., Shanghai, China).

After data preprocessing by Pareto scaling, multidimensional data analyses were carried
out, including unsupervised principal component analysis (PCA), supervised partial least
squares discrimination analysis (PLS-DA), and orthogonal partial least squares discriminant
analysis (OPLS-DA). Single-dimensional statistical analyses, including Student’s t -test and
fold change (FC) analysis, were conducted. The variable importance in the projection (VIP)
value (>1) in the PLS-DA model and P value analyzed by Student’s t -test were combined
to confirm the significance of differential metabolites. Significant differential metabolites
were obtained when VIP > 1 and P value < 0.05, and differential metabolites were selected
when VIP > 1 and 0.05 < P value < 0.1. Moreover, Kyoto Encyclopedia of Genes and
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Genomes (KEGG) pathway (http://www.genome.jp/kegg/) pathway enrichment analysis
for significant differential metabolites was conducted by the MetaboAnalyst online tool
(http://www.metaboanalyst.ca/MetaboAnalyst/) to investigate the metabolomics pathways.

Targeted metabolomics analysis of amino acids using multiple
reaction monitoring-mass spectrometry (MRM-MS)
Sample collection and preparation
Peripheral blood samples of 30 out of 40 participants in cohort 1 (including 15MMpatients
and 15 NC subjects) and another 30 cases in cohort 2 (the validation group, including
15 MM patients and 15 NC subjects) were collected for targeted metabolomics analysis.
Serum samples were obtained by centrifuging at 1,000× g for 10 min and then stored at
−80 ◦C.

MRM-MS analysis
The analysis was performed with an Agilent 1290 Infinity LC UHPLC system. The mobile
phases were as follows: solvent A was 25mM ammonium formate + 0.08% formic acid (FA)
in water, and solvent B was 0.1% FA-acetonitrile. The sample was placed in an automatic
sampler at 4 ◦C, the column temperature was 40 ◦C, the flow rate was 250 µL/min, and the
injection volume was 1 µL. Gradient elution was performed as follows: the linear change of
solvent B was from 90% to 70% within 0–12 min; from 70% to 50% with 12–18 min; from
50% to 40% within 18–25 min, from 40% to 90% with 30–30.1 min; and maintained at
90% for 30.1–37 min. In the sample queue, a QC sample was also set in a certain number of
experimental samples at every interval to test and evaluate the stability and repeatability of
the system.MS analysis was carried out in positive ionizationmode on a 5500 QTRAPmass
spectrometer (AB SCIEX, Framingham, MA, USA). The conditions of the 5500 QTRAP
ESI source were as follows: ion source temperature, 500 ◦C; Gas1, 40 psi; Gas2, 40 psi;
CUR, 30 psi; and ISVF, 5500 V. MRM mode was then used to detect the ion pairs.

Data processing and analysis
The chromatographic peak area and analyte retention timewere extracted usingMultiquant
software. Based on the standards of amino acids and their derivatives, the analyte retention
time was corrected, followed by identification of the metabolites. PLS-DA was also
conducted to explore the amino acids profiling and differential amino acid metabolites
between groups. Score scatter plots and loading plots were generated to visualize the
separation of samples and metabolites. MedCalc software (v19.0.4) was utilized for receiver
operating characteristic curve (ROC) analysis to evaluate the diagnostic accuracy of
amino acid metabolites. Moreover, Spearman correlation analysis was performed with the
statistical platform R package (v3.2.4). KEGG pathway enrichment analysis for significant
differential metabolites was also conducted by the MetaboAnalyst online tool.
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RESULTS
Nontargeted metabolomics analysis using UHPLC-Q-TOF-MS
Multivariate statistical analysis
To analyze themetabolic changes betweenMMpatients andNC, nontargetedmetabolomics
analysis was carried out using UHPLC-Q-TOF-MS. As a result, the PCA score plots showed
a clear separation between MM patients and NC in both positive-ion and negative-ion
modes (Fig. 2A). To further identify ion peaks that could possibly be used to differentiate the
metabolic profiles of MM patients and NC, the supervised PLS-DA model was conducted.
The results showed that MM patients were also separated from NC by the PLS-DA score
plots in both modes (Fig. 2B). Consistent results were also obtained by the OPLS-DA score
plots in both modes (Fig. 2C). Further permutation tests consisting of 200 permutations
demonstrated that the model was not overfitted (positive-ion model: R2= (0.0, 0.707), Q2
= (0.0, −0.3673); negative-ion model: R2 = (0.0, 0.8331), Q2 = (0.0, −0.4174); Fig. 2D).
These data indicated that there was a significant metabolic change between MM patients
and NC.

Analysis of differential metabolites between MM patients and NC
To compare differences in metabolites between MM patients and NC, differential
metabolites were screened out between MM patients and NC in both positive-ion
and negative-ion modes based on VIP >1 in the PLS-DA model and P < 0.1 analyzed
by Student’s t -test. The results showed that a total of 62 differential metabolites were
identified betweenMM patients and NC in positive-ion mode, of which 56 were significant
(P < 0.05). Similarly, 45 differential metabolites were identified between MM patients and
NC in negative-ion mode, of which 38 were significant (P < 0.05) (Table S2). These data
confirmed that there were significant differences in metabolites between MM patients and
NC.

Metabolic pathway analysis
To investigate the metabolomic pathways involved in MM development, the differential
abundant metabolites were enriched for the related metabolic pathway analysis using the
MetaboAnalyst online tool. As shown in Fig. 3, differential metabolites were significantly
enriched in multiple metabolic pathways, such as protein digestion and absorption
(including L-alanine, L-glutamine, L-tryptophan, L-histidine, L-asparagine, L-valine, and
L-isoleucine), ABC transporters (including L-alanine, L-glutamine, L-histidine, L-valine,
and L-isoleucine), and biosynthesis of amino acids (L-alanine, L-glutamine, L-tryptophan,
L-histidine, L-asparagine, L-valine, L-citrulline, and L-isoleucine). Notably, these pathways
were associated with amino acid metabolism.

Targeted metabolomics analysis of amino acids using MRM-MS
Serum amino acid metabolites of MM patients and NC showed distinguished
profiles
Previously, the results indicated that the altered metabolic profile of MM was mainly
involved in amino acid metabolomics features. We further conducted a target amino acid
metabolomics analysis to gain more insight into MM metabolism. Generally, in the cases
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Figure 2 Score plots of supervised PCA, PLS-DA, and OPLS-DA analysis based on the combination
of UHPLC-Q-TOF/MS data fromMMpatients and NC. (A) PCA score plots between MM patients and
normal controls (NC) in both positive-ion and negative-ion modes. (B) PLS-DA score plots between MM
patients and normal controls (NC) in both modes. (C) OPLS-DA score plots between MM patients and
normal controls (NC) in both modes. (D) Permutation tests consisting of 200 permutations demonstrated
that the OPLS-DA model was not overfitted in either mode.

Full-size DOI: 10.7717/peerj.12918/fig-2
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Figure 3 Metabolic pathway enrichment analysis of differential metabolites betweenMM patients and
NC. Each related metabolic pathway is shown as a circle, whose size and color are based on the pathway
impact value and the P value, respectively.

Full-size DOI: 10.7717/peerj.12918/fig-3

of cohort 1, the PLS-DA two-dimensional (2D) score plot showed clearly distinguished
profiles between the MM and NC groups (Fig. 4A). Moreover, scatter loading plot analysis
was carried out to evaluate whether these differential amino acid metabolites accounted
for the distinguished profiles. MM patients exhibited higher levels of choline, creatinine,
glutamate, and asparagine as well as lower levels of alanine/sarcosine, valine, tryptophan,
and cystine than NC (Fig. 4B). These data suggested that altered amino acid profiles could
discriminate MM patients from NC.
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Figure 4 PLS-DA analysis based onMRM-MS data and functional pathway of key differential metabo-
lites betweenMM and NC groups. (A, B) PLS-DA scores and loading plots between MM patients and
normal controls based on the MRM-MS data. (C, D) Metabolic pathway enrichment analysis of differ-
ential amino acids metabolites between MM patients and NC. In (C), each related metabolic pathway is
shown as a circle, whose size and color are based on the pathway impact value and the P value, respec-
tively.

Full-size DOI: 10.7717/peerj.12918/fig-4

Expression of differential amino acid metabolites and the KEGG
functional analysis
According to the metabolomics features, with the purpose of finding potential diagnostic
biomarkers or therapeutic targets for MM, we focused on the differential amino acid
metabolites in MM patients compared to those in NC. To further investigate the detailed
variety degree of each metabolite, we analyzed the intensity differences in a total of 28
amino acid metabolites. Compared to NC, MM patients exhibited differential metabolic
profiles. Overall, in the cases of cohort 1, there was a total of 12 significantly differential
abundant amino acid metabolites in MM patients relative to NC (P < 0.05), including
lysine, leucine, isoleucine, histidine, valine, threonine, glutamine, tryptophan, choline,
ornithine, creatinine, and alanine/sarcosine (Table S3). Furthermore, we validated these
findings with the samples in cohort 2, and the results showed similar dysregulation trends
with the findings of cohort 1, that we identified 14 significantly differential abundant
amino acid metabolites in MM group (Table S4). Specifically, the high expression levels
of creatinine (FC = 2.029, P < 0.01 in cohort 1; FC = 1.632, P < 0.05 in cohort 2) and
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choline (FC = 1.508, P < 0.001 in cohort 1; FC = 1.234, P = 0.125 in cohort 2) were
found in MM patients in both cohort 1 and cohort 2. Besides, since glutamate signaling
has been reported involved in malignant disorders (Willard & Koochekpour, 2013), we also
examined glutamate levels and found slightly high levels in MM patients (FC = 1.186,
P = 0.245 in cohort 1; FC = 1.292, P = 0.346 in cohort 2).

To determine the pathway impact of these differential amino acid metabolites, we
performed pathway classifications provided by KEGG analysis. Results indicated that the
12 differential abundant metabolites in cohort 1 were significantly enriched in 22metabolic
pathways, such as aminoacyl-tRNA biosynthesis, valine/leucine/isoleucine biosynthesis,
phenylalanine/tyrosine/tryptophan biosynthesis, D-glutamine/D-glutamate metabolism,
and histidine metabolism (Figs. 4C, 4D).

Differential amino acid metabolites may discriminate MM patients
from NC
We subsequently evaluated the performances of these differential abundant metabolites in
distinguishing MM fromNC group. ROC analysis showed that, the amino acid metabolites
classifier could act as potential disease diagnostic biomarkers in both cohort 1 and cohort
2 (AUC > 0.7, P < 0.05, Table 2 and Fig. S1). In MM patients of cohort 1, the AUC values
of two representative upregulated amino acid metabolites, choline and creatinine, were
0.822 and 0.822, respectively (Table 2). Similarly, the AUC of creatinine in the cohort 2
was 0.747 (Table 2). Meanwhile, the ROC analysis also showed good diagnostic values
of the downregulated amino acid metabolites in MM, such as leucine (AUC = 0.871 in
cohort 1, AUC = 0.920 in cohort 2) and tryptophan (AUC = 0.884 in cohort 1, AUC =
0.902 in cohort 2). Specifically, we observed extremely high AUC values of the metabolite
valine in both cohort 1 (AUC = 0.964) and cohort 2 (AUC = 0.960). The results above
suggested that these key differential amino acid metabolites might be regarded as potential
biomarkers for the diagnosis or therapeutic targets of MM.

Differential amino acid metabolites were associated with MM
phenotypes
To investigate the correlations between differential amino acid metabolites and MM-
associated phenotypes, we analyzed the correlations among 6 clinical indices/variables
and 12 amino acid metabolites that differed significantly in abundance between MM
patients and NC in the cohort 1 (Fig. 5). The clinical variables included serum albumin
(ALB), interleukin 6 (IL-6), lactic dehydrogenase (LDH), β2-microglobulin (B2-MG),
globulin (GLB), and serum creatinine (SCR). Among 12 amino acid metabolites whose
abundances differed in MM patients, two mainly correlation clusters were obtained. The
cluster of upregulated components, creatinine and choline in MM patients, was positively
correlated with the levels of LDH, SCR, and B2-MG. Moreover, in the downregulated
amino acids cluster, 10 amino acid metabolites were negatively correlated with the
levels of IL-6 and GLB. Among these metabolites, the relationship between GLB and
valine/isoleucine/tryptophan/leucine/sarcosine exhibited high correlation coefficients
(adjusted P < 0.01). These data suggested that the combination of clinical indices and
amino acid metabolites alterations facilitate a better understanding of MM progression.
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Table 2 Performance of differential metabolites in distinguishingMM from the NC group.

Cohort 1 Cohort 2

Metabolites Sensitivity Specificity AUC P Metabolites Sensitivity Specificity AUC P

Alanine/sarcosine 60.0 93.3 0.751 0.008 alanine/sarcosine 66.7 93.3 0.773 0.003
Choline 66.7 100.0 0.822 <0.001 creatinine 73.3 86.7 0.747 0.012
Creatinine 66.7 100.0 0.822 <0.001 Glutamine 66.7 86.7 0.773 0.003
Glutamine 100.0 60.0 0.778 0.002 histidine 80.0 86.7 0.907 <0.001
histidine 80.0 80.0 0.778 0.002 Isoleucine 60.0 93.3 0.840 <0.001
Isoleucine 73.3 80.0 0.782 0.001 leucine 86.7 86.7 0.920 <0.001
Leucine 93.3 73.3 0.871 <0.001 lysine 40.0 100.0 0.724 0.017
Lysine 40.0 100.0 0.720 0.024 ornithine 46.7 100.0 0.769 0.002
Ornithine 66.7 80.0 0.782 0.001 serine 80.0 73.3 0.738 0.012
Threonine 93.3 73.3 0.853 <0.001 taurine 86.7 60.0 0.764 0.003
Tryptophan 73.3 93.3 0.884 <0.001 threonine 93.3 66.7 0.827 <0.001
Valine 86.7 93.3 0.964 <0.001 tryptophan 73.3 93.3 0.902 <0.001

tyrosine 80.0 66.7 0.769 0.002
valine 86.7 93.3 0.960 <0.001

Figure 5 Correlation analysis of 12 differential amino acids identified fromMMpatients vs. NC with
six clinical indicators.Numbers in the lower left panel: value of the correlation coefficient; symbols in the
upper right panel: results of the significance test; *adjusted P < 0.05, ** adjusted P < 0.01. ALB, albumin;
LDH, lactic dehydrogenase; B2-MG, β2-microglobulin.

Full-size DOI: 10.7717/peerj.12918/fig-5
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DISCUSSION
Metabolite disorder plays an essential role in cancer initiation and progression (La
Vecchia & Sebastián, 2020; Whisner & Aktipis, 2019). Metabolic changes in the tumor
microenvironment affect the effects of immunotherapy (Kouidhi, Ben Ayed & Benammar
Elgaaied, 2018). Therefore, a better understanding of metabolic changes in the tumor
microenvironment will improve the beneficial effects of immunotherapy. Recently, with the
development of metabolomics, more researchers have focused on the clinical examination
of metabolite variation, whichmight providemore predictors and clues in disease diagnosis
and treatment (Chen et al., 2019).

MM, as a heterogenic disease with dynamic metabolic processes in bone marrow
and its microenvironment, has been reported to exhibit metabolic changes (El Arfani et
al., 2018; Silva et al., 2020). Despite this, the specific metabolic profiles in MM patients
and potential clinical biomarkers remain ambiguous and need to be further clarified.
Metabolomics analysis is a powerful means for investigating metabolic processes, revealing
metabolic mechanisms and identifying crucial biomarkers responsible for metabolic
alteration. In the present study, we conducted nontargeted metabolomics analysis using
UHPLC-Q-TOF-MS and found a significant metabolic change between MM patients
and NC. Differential metabolites could discriminate MM patients and NC, which were
significantly enriched in metabolic pathways related to amino acid metabolism, such as
protein digestion, and absorption and biosynthesis of amino acids. These data suggested the
key role of amino acid metabolism in MM. We then conducted the targeted metabolomics
analysis of amino acids using MRM-MS in two cohorts of participants and found that
serum amino acid metabolites of MM patients and NC showed distinguished profiles.
Compared to NC, MM patients exhibited higher levels of choline and creatinine as well as
lower levels of valine, tryptophan, leucine, etc. In another related study, the lipids profiles of
MM showed lower concentrations of phosphatidylcholine (PC), lysophosphatidylcholine
(LPC) and sphingomyelins (SM) (Silva et al., 2020). Besides, the concentration of essential
amino acids, especially tryptophan, was significantly decreased in MM cases (Silva et al.,
2020), which was consistent with our findings. Further ROC analysis in this study showed
relatively good diagnostic values of upregulated amino acid metabolites, including choline
and creatinine, and downregulated amino acid metabolites, such as leucine, tryptophan
and valine. These results suggested that the key differential amino acid metabolites could
be used as promising biomarkers for MM diagnosis. In addition, the clinical indicators
were found to be related to altered amino acid metabolomics in correlation analysis. MM
patients were accompanied by elevation of β2-microglobulin (β2-MG), and researchers
found an inverse correlation between the concentration of tryptophan and β2-MG (Silva
et al., 2020). In the current study, we also observed a negative correlation between the
differential metabolite tryptophan and β2-MG. Besides, the downregulated amino acids,
including lysine, leucine, and valine, were also negatively related with the high level of
β2- MG. Taken together, we hypothesized that the diagnostic value may be improved by
combining examination of clinical indicators and amino acid levels.
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Amino acids and proteins have been shown to play central roles in cellular metabolism
(Rizzieri, Paul & Kang, 2019; Zhang et al., 2019). Amino acids are responsible for the
formation of a variety of components that are used for cell proliferation (Martinez-
Outschoorn et al., 2017). Notably, it has been reported that targeting amino acidmetabolism
may be a promising therapy for cancer, suggesting the crucial role of amino acidmetabolism
in cancer (Bai et al., 2020; Boon et al., 2020; Wang & Zou, 2020). Moreover, protein
digestion and absorption is also an enriched metabolism/digestive pathway involved
in mechanisms of inhibitory effect of 3-O-kaempferol-3-O-acetyl-6-O-(p-coumaroyl)-
β-D-glucopyranoside (HK-11, a flavonoid compound) on MM cell proliferation (Hou
et al., 2020), implying the potential role of protein digestion and absorption pathway in
MM development. Our nontarget metabolomics analysis revealed that the differential
metabolites between MM patients and NC were significantly enriched in metabolic
pathways related to amino acid metabolism. It can therefore be speculated that amino acid
metabolism is involved in MM. Further targeted metabolomics analysis of amino acids
showed that the concentration of keymetabolites was altered inMM, andmost of the amino
acid metabolites was downregulated. We highlight that these key metabolites may act as
potential biomarkers for MM, and that the supplementation of the disease phenotype-
negatively related metabolic components may help prevent or improve the prognosis of
MM. Recent studies have also investigated the proteomic alterations in the bone marrow
interstitial fluid and serum samples, and identified candidate proteins to be associated with
drug resistance in MM patients (Chanukuppa et al., 2019; Chanukuppa et al., 2021). The
complex metabolite and lipid profiling of bone marrow plasma could help differentiate
patients with monoclonal gammopathy of undetermined significance (MGUS) from MM
(Gonsalves et al., 2020). Therefore, the metabolic and proteomic detection provides more
evidences for the development of improved diagnosis and treatment of MM. In the current
study, we also conducted the targeted metabolomics analysis involving amino acids in MM
patients, and it’s necessary to broaden the metabolic classes to find novel biomarkers in
the future.

In conclusion, our results reveal that amino acidmetabolism disorder is involved inMM.
Key differential amino acid metabolites, such as choline, creatinine, leucine, tryptophan,
and valine, may discriminate MM patients from NC. The alteration in metabolism,
especially amino acid metabolism, may provide evidences for elucidating the pathogenesis
of MM and lay a reference for clinical diagnosis and therapy of this disease. However, there
are still several limitations in our research. Althoughwe summarized differential amino acid
metabolites and explored their diagnostic value, more functional validations in vivo are still
needed. Moreover, the sample size was relatively small to make some general conclusions.
More research is needed to support the results and to investigate the underlying biological
functions of the key amino acid metabolites with large scale and mechanism study in the
future. Besides, confounders such as medication taken or smoking habits of the individuals
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can influence the metabolic trend, comprehensive research involving the factors should be
conducted in larger cohort in future research.
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