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Synthesis of patient‑specific 
multipoint 4D flow MRI 
data of turbulent aortic flow 
downstream of stenotic valves
Pietro Dirix*, Stefano Buoso, Eva S. Peper & Sebastian Kozerke

We propose to synthesize patient‑specific 4D flow MRI datasets of turbulent flow paired with ground 
truth flow data to support training of inference methods. Turbulent blood flow is computed based 
on the Navier–Stokes equations with moving domains using realistic boundary conditions for aortic 
shapes, wall displacements and inlet velocities obtained from patient data. From the simulated flow, 
synthetic multipoint 4D flow MRI data is generated with user‑defined spatiotemporal resolutions and 
reconstructed with a Bayesian approach to compute time‑varying velocity and turbulence maps. For 
MRI data synthesis, a fixed hypothetical scan time budget is assumed and accordingly, changes to 
spatial resolution and time averaging result in corresponding scaling of signal‑to‑noise ratios (SNR). In 
this work, we focused on aortic stenotic flow and quantification of turbulent kinetic energy (TKE). Our 
results show that for spatial resolutions of 1.5 and 2.5 mm and time averaging of 5 ms as encountered 
in 4D flow MRI in practice, peak total turbulent kinetic energy downstream of a 50, 75 and 90% 
stenosis is overestimated by as much as 23, 15 and 14% (1.5 mm) and 38, 24 and 23% (2.5 mm), 
demonstrating the importance of paired ground truth and 4D flow MRI data for assessing accuracy and 
precision of turbulent flow inference using 4D flow MRI exams.

Aortic stenosis (AS) is a common condition associated with high morbidity and  mortality1,2. Early detection 
and treatment of AS are associated with lower mortality rates, but the correct classification of the disease sever-
ity remains a  challenge2. Since cardiovascular pathologies are usually associated with abnormal flow  patterns3–5 
and irreversible pressure  losses6–10, the analysis of aortic flow fields is considered an important element for risk 
stratification and personalized planning of clinical interventions.

Cardiovascular magnetic resonance (CMR), and in particular phase-contrast (PC) MRI, has enabled meas-
urements of time-resolved volumetric flow patterns (4D flow MRI)11 in research and clinical settings. Despite 
recent advancements in sequence  design12–14 and image reconstruction  methods15, data is limited by spatiotem-
poral resolution and artifacts. Therefore, the development of robust and realistic models for the analysis of 4D 
flow MRI datasets is a fundamental step to enable predicting accuracy and precision of such measurements in 
research and clinical routine.

Deep learning (DL) methods are particularly suitable to discover intricate patterns in large  datasets16,17, 
which makes them ideal candidates to infer flow parameters and patterns contained in highly dimensional and 
complex 4D flow MRI exams. Recent works on image  reconstruction15,  segmentation18,19,  classification20 and 
flow super-resolution21 have demonstrated the potential of DL algorithms. Berhane et al.18 and Bratt et al.19 
used fully automated segmentation algorithms trained on manually labeled cine 2D and 4D flow MRI datasets 
to accelerate flow and diameter measurements in the aorta. However, the scarcity of high-quality labeled train-
ing  datasets22 effectively hampers the implementation of DL based inference approaches for 4D flow MRI. Fries 
et al.20 alleviated the burden of obtaining manually labeled datasets by developing a weakly supervised DL model 
for classification of aortic valve malformations based on a small number of manually annotated scans. Other 
works have demonstrated the viability of augmenting clinical datasets using synthetic  images23,24 as the training 
of inference machines is significantly compromised by the limited number and potentially biased distributions 
of paired ground truth and imaging data. In general, however, the incorporation of manually labeled datasets as 
well as inherent uncertainties in the MRI measurements lead to biased and imperfect “ground truth” data. This 
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suggests that the intrinsic accuracy and precision of methods developed using such training datasets cannot be 
assessed and only approximate metrics can be derived using in-situ and in-vitro  experiments5.

Fluid flow can be obtained by simulating hemodynamics in realistic aortic  shapes25–27. The corresponding 
MR signal is derived by simulating the acquisition process using the simulated data as input, effectively creat-
ing trustworthy ground truth and MR image  pairs21,28,29. In Ferdian et al.21, downsampled synthetic flow fields 
were derived from data generated by computational fluid dynamics (CFD) and used to train a super-resolution 
algorithm capable of estimating high-resolution flow features from low-resolution data. Inference was limited to 
velocity fields and turbulence was not incorporated. A more realistic approach consists of using data from CFD 
to compute the trajectories of individual material points while their complex-valued magnetization, and corre-
sponding MRI signal, can be evaluated by solving the Bloch equations in the Lagrangian frame of  reference30,31. 
Such a method can be used to evaluate specific MRI sequences while inherently accounting for flow-induced 
displacement and dephasing  artifacts32. However, in order to accurately estimate MRI signals for turbulent flows, 
a large number of material points need to be tracked, rendering these simulations computationally expensive. 
Alternatively, synthetic MRI images can be obtained using a model equation for the signal, which directly 
includes pointwise velocity and turbulence data from CFD, drastically reducing the computational  cost33,34.

The presence of transitional or turbulent flow regimes downstream of aortic  stenoses5 suggests that simula-
tions including turbulence modeling are an important step towards accurate modeling of pathological aortic 
flows. However, to the best of our knowledge, synthesis of 4D flow MRI data using turbulent flow simulations 
in realistic moving aortic shapes and signal encoding of velocity magnitude, phase and intra-voxel standard 
deviation (IVSD) has not been performed so far.

In this work we propose a framework to synthesize 4D flow MRI datasets of turbulent flow in the aorta with 
moving walls. Ground truth velocity and turbulence fields, computed with CFD, are input to generate multipoint 
MR signals at realistic resolution followed by Bayesian image reconstruction to output velocity and turbulence 
maps. The method is utilized with steady and pulsatile flow in idealized stenotic geometries to investigate the 
impact of the interplay of signal-to-noise ratio (SNR), spatial resolution and time averaging on measurement 
accuracy and precision of turbulent kinetic energy (TKE). Successively, patient-specific aortic 4D flow MRI data 
is generated with various degrees of aortic stenosis to report errors relative to ground truth for realistic SNR 
and resolutions.

Results
Synthetic 4D flow MRI data generation. Figure 1 illustrates the overall pipeline for the generation of 
synthetic 4D flow MRI data. 2D cine MRI and time-resolved 2D PC-MRI data are utilized to extract transient 
moving aortic geometries and corresponding inlet velocity profiles (Fig. 1a). A large eddy simulation (LES) CFD 

Figure 1.  Pipeline for generation of synthetic patient-specific pulsatile mean and turbulent 4D flow MRI 
datasets. (a) Patient-specific segmentation and mesh generation. (b) Large Eddy Simulation CFD simulation 
to obtain mean velocity u and Reynolds shear tensor R . (c) Band-limited projection of velocity ( u� ) and 
Reynolds stress tensor ( R� ) in the spatial frequency domain (k-space) upon Fourier transform F  . (d) Signal 
model to generate MRI signal, S, for a given velocity encoding vector, kv , fluid density, ρ , and complex-valued 
white Gaussian noise, η . (e) Bayesian reconstruction of voxel mean velocities, ν , and intra-voxel variances and 
co-variances, σ 2,  and (f) their projection onto Cartesian coordinates using a least squares solution approach to 
obtain mean velocity vector U and Reynolds stress tensor R.
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approach with moving boundaries is employed to simulate turbulent flow (Fig. 1b). Subsequently, multipoint 
MRI signals are synthesized using dedicated signal models (Fig. 1c,d) followed by reconstruction using a Bayes-
ian approach (Fig. 1e). Finally, velocity and intra-voxel standard deviation data are projected onto Cartesian 
coordinates to output velocity, Reynolds stress tensor (RST) and TKE maps (Fig. 1f). In this work both idealized 
and realistic shapes are used. The former allow to define control cases to study the effect of the interplay of SNR, 
resolution and time averaging for a given scan time budget, while the latter exemplify the utility of the method 
for patient-specific studies.

Spatiotemporal resolution and SNR dependencies in steady stenotic flow. In Fig. 2, the effect of 
spatial resolution and time averaging on velocity and TKE quantification for steady flow is visualized. Of note, 
a fixed hypothetical scan time budget is assumed in all MRI synthesis experiments and hence SNR ∝ V

√
�t , 

where V  denotes voxel volume and �t temporal averaging. For isotropic voxel sizes between 1 and 2.5 mm and 
hypothetical instantaneous encoding, total kinetic energy (KE) is underestimated by up to 8% while total TKE is 
overestimated by up to 24% in ROI1 (envelope of the turbulent region, Fig. 2c) and by 13–65% for ROI2 (whole 
geometry, Fig. 2d). For SNR values between 30 and 4, noise contribution to total TKE varies from 14 to 94% for 
ROI1.

Spatiotemporal resolution and SNR dependencies in pulsatile stenotic flow. Figure 3 shows the 
effect of spatial resolution and time averaging on TKE quantification for pulsatile flow. For isotropic voxels sizes 
between 1 and 2.5 mm , total KE at peak systole is underestimated by up to 10% with hypothetical instantane-
ous encoding and by up to 22% when time averaging of 20 ms is assumed. A delay between peak systole and 
maximum total TKE is seen in the simulated data. Figure 3a shows that temporal and spatial gradients artificially 
contribute to up to 100% of measured TKE. This effect is also visible to a lesser extent at peak TKE in Fig. 3b, 
where up to 40% of the measured total TKE is erroneous. For instantaneous encoding with isotropic voxel sizes 
between 1 and 2.5 mm , total TKE is overestimated by up to 15% and 31% for ROI1 (Fig. 3c) and ROI2 (Fig. 3d), 
respectively. With 2.5 mm resolution and time averaging of 20 ms , total TKE is overestimated by up to 38% for 
ROI1 and 58% for ROI2.

Figure 4a,b compares total TKE during a simulated cardiac cycle for different settings of spatial resolution, 
time averaging and SNR. Figure 4c,d visualize the effect of spatial resolution and time averaging on the quanti-
fication of total TKE integrated over the cardiac cycle. Isotropic spatial resolutions between 1.5 and 2 mm and 

Figure 2.  Impact of SNR and spatiotemporal resolution on velocity and turbulent kinetic energy for a 75% 
eccentric stenosis and steady flow. Magnitude of velocity (U) (a) and turbulent kinetic energy (TKE) (b) for 
varying voxel sizes, time averaging and, correspondingly, signal-to-noise ratios (SNR) are shown. The percentage 
error in total TKE as a function of spatial resolution, time averaging, and SNR is shown in (c) and (d) for ROI1 
(envelope of the turbulent region) and ROI2 (whole geometry), respectively. Instantaneous (Inst.) encoding 
refers to a hypothetical noise-free PC-MRI experiment with infinitely high velocity encoding bandwidth.
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time averaging of 5 ms lead to overestimation of total TKE by up to 26% for ROI1 (Fig. 4c) and 70% for ROI2 
(Fig. 4d), respectively.

Patient‑specific velocity and turbulence fields. Figure 5 compares velocity magnitude and TKE maps 
at peak systole and peak TKE for CFD and synthetic PC-MRI. Artificially high TKE values are visible at the walls 
and in flow regions with high velocity gradients.

Figure 6a shows the evolution of TKE for various degrees of stenosis during the cardiac cycle. Peak TKE 
occurs after peak systole with a delay δ that depends on the stenosis degree. For stenotic degrees of 50%, 75% 
and 90% the delay δ is 32, 53 and 90 ms. For mild to severe aortic stenosis, peak total TKE varies from 7 to 70 mJ . 
Figure 6b summarizes peak TKE statistics.

Mean and standard deviation of TKE in the ascending aorta for stenotic degrees of 50, 75 and 90% are 
overestimated by 37.9, 8.6 and 8.6% and 13.5, 5.0 and 13.3%, respectively, for a voxel size of 1.5 mm . Similarly, 
the overestimation is 55.2, 18.2 and 16.7% and 23.1, 12.5 and 23.8% for a voxel size of 2.5 mm (Fig. 6b). Higher 
spatial resolution results in outliers with larger TKE.

The patient-specific datasets presented in this work required on average 60 wall-clock hours using 48 cores 
to obtain the CFD solution, each time frame was around 260 MB.

Discussion
In this study, a framework for the synthesis of time-resolved multipoint 4D flow MRI data of turbulent flow in 
patient-specific, moving aortic geometries has been presented. The impact of spatial resolution, time averaging 
and SNR was investigated for both steady and pulsatile flows in idealized geometries for a fixed hypothetical 
scan time budget.

The qualitative comparison of velocity and TKE maps in Fig. 2a,b–d confirmed that turbulence measurements 
are more sensitive to SNR and spatial resolution when compared to velocity measurements and that the ROI 
used to compute total TKE should be selected carefully. In Fig. 2c,d, limited spatial resolution and low SNR both 
contribute to overestimation of TKE due to contributions by noise and spatial velocity gradients in accordance 
with previous  studies35,36. Variations in total TKE for different time averaging in Fig. 2c,d are due to SNR differ-
ences, as time averaging has no influence for steady flows.

Contributions by temporal velocity gradients further increase the artificial overestimation of TKE in pulsatile 
flows as demonstrated in Fig. 3a. Turbulence only appears after peak systole in the ground truth, suggesting TKE 
production is kick-started by post-systolic flow deceleration (Fig. 4a).

Figure 3.  Impact of SNR and spatiotemporal resolution on turbulent kinetic energy for a 75% eccentric stenosis 
and pulsatile flow. Turbulent kinetic energy at peak systole (a) and at peak total TKE (b) is shown. Percentage 
errors of peak total TKE are compared in (c) and (d) for ROI1 (envelope of the turbulent region) and ROI2 
(whole geometry). Instantaneous (Inst.) encoding refers to a hypothetical noise-free PC-MRI experiment with 
infinitely high velocity encoding bandwidth.
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Spatial and temporal gradients compromise measured velocity and TKE values in voxels due to partial volume 
effects, which are visible at the walls of the aorta, where artificially high TKE values are present. In particular, we 
have demonstrated that, at peak systole, the measured RST is purely artificial and does not represent turbulence 
(Fig. 3a). Additionally, we have observed that peak TKE occurs with a delay compared to peak systole, suggesting 
that TKE quantification at peak systole as proposed in the literature may need to be  reconsidered33.

For spatial resolutions of 1.5 and 2.5 mm and time averaging of 5 ms, peak total TKE downstream of a 75% 
stenosis is overestimated by 15 and 24%, respectively (Fig. 6a). Similar overestimations (18 and 25%) were 
observed using the idealized geometry with pulsatile flow, suggesting that observations in Figs. 2, 3 and 4 can be 
extrapolated to more realistic geometries and flows. Higher spatial resolution creates outliers with larger TKE 
values due to lower SNR levels. For a typical 4D flow MRI isotropic spatial resolution of 2.5 mm and stenotic 
degree > 75%, voxel-wise TKE is consistently overestimated in the ascending aorta, suggesting that 4D flow MRI 
overestimation of TKE might be predictable for high turbulence regimes.

In the present study, net flow was identical for the different degrees of simulated stenoses. Since pressure along 
the aorta depends on the stenotic degree, variations in vessel cross-sectional area are expected, which were not 
modeled in our work. Future work is warranted to integrate wall displacements resulting from the interaction of 
flow and wall compliance to arrive at realistic pulse wave velocities. Full fluid–structure interaction approaches, 
or reduced order models applied to the elastic and viscoelastic response of the tissue could be translated from 
our previous  works37–40. Also, anatomical variability could be augmented using anatomical models based on 
low rank  reconstructions41.

Another limitation of the present study relates to the use of a simplified approach for generating PC-MRI 
signals, assuming ideal encoding and readout and, therefore, neglecting the impact of encoding schemes on 
measured values of velocity and turbulence. Flow-induced displacement artifacts were not included, and cycle-
to-cycle variations were condensed into cycle-averaged quantities. These assumptions were made to reduce 
the computational cost as compared to more accurate modelling of the imaging  processes31. Recent work from 
Dillinger et al.42 demonstrates that the implementation of realistic encoding gradients in an Eulerian–Lagran-
gian Bloch solver results in systematic underestimation of high frequency components of turbulence. Therefore, 
quantification of in-vivo turbulence is subject to overestimation due to partial volume effects on one hand and 
underestimation due to band-limited velocity encoding gradients on the other hand.

The study also lacks comparison between in-vivo and synthetic 4D flow MRI datasets. However, due to 
the complexity of flow patterns in the aorta and assumptions used in patient-specific CFD, only a qualitative 

Figure 4.  Impact of SNR and spatiotemporal resolution on time-resolved turbulent kinetic energy for a 75% 
eccentric stenosis and pulsatile flow. Time-resolved total TKE and flow rate (Q) during a simulated cardiac 
cycle for varying voxel sizes (L) , time averaging (�t) and, correspondingly, signal-to-noise ratios (SNR) for ROI1 
(a) and ROI2 (b) (see Fig. 3). Errors in total TKE integrated during the cardiac cycle ROI1 (c) and ROI2 (d). 
Instantaneous ( �t = 0 ms ) encoding refers to a hypothetical noise-free PC-MRI experiment with infinitely 
high velocity encoding bandwidth.
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comparison of flow patterns would be  achievable26,43,44. Although this is a general limitation for patient-specific 
simulations, it does not directly affect our proposed workflow as our aim is to generate realistic flows in the aorta 
rather than to attempt to duplicate patient-specific hemodynamics in every detail.

To conclude, the synthesis framework presented here enables the generation of paired sets of patient-spe-
cific realistic ground truth and 4D flow MRI data to cater to training of deep learning algorithms for image 
 reconstruction15 and  inference21 in the future. Although this work focused on velocity and TKE in post-stenotic 
aortic flows, the ground truth CFD contains information about pressure drop, wall shear stresses and pulse wave 
velocity, opening the door to the possibility of analyzing other important hemodynamic biomarkers in future 
works. Additionally, the patient-specific nature of this work suggests that, if adequate datasets are available, the 
pipeline could be used to generate synthetic 4D flow datasets for other valvular or aortic pathologies, such as 
aortic regurgitation (AR), bicuspid aortic valve (BAV) and dilated ascending aorta.

Methods
Idealized computational domain. An eccentric stenotic tube with fixed walls and stenosis severity of 
75%45,46 was modeled as idealized geometry. This geometry has been widely studied in the  literature34,47,48 and 
has an analytical description with the stenosis modelled as a cosine function offset in one direction by an eccen-
tricity of 5% of the diameter. The stenosis throat was positioned at a distance of 3 diameters from the inlet, and 
the cylinder extended for 20 diameters downstream. A structured hexahedral butterfly mesh with 2.7 M cells was 
generated using OpenFoam’s blockMesh  utility49.
Patient‑specific computational domain. Realistic aortic geometries were obtained from in-vivo MRI 
data. The subjects were studied upon written informed consent under the approval of the ethics committee of the 
Canton of Zurich, Switzerland, and according to institutional guidelines. Imaging experiments were performed 
on a 1.5 T MR system (Philips Healthcare, Best, The Netherlands) using a 32-channel receive array. High-res-
olution cine balanced steady-state free precession slices ( 1× 1× 5 mm3 ) were acquired orthogonally to the 
aorta centerline with a temporal resolution of 40 frames/cardiac cycle in a breath hold. A total of 9 slices were 
distributed uniformly along the aortic center line, covering the aortic arch and the descending aorta with the first 
slice positioned at the aortic root. Lumen boundaries were extracted and the corresponding 3D surface extrapo-

Figure 5.  Patient-specific velocity and TKE maps for varying degrees of stenosis (foot-head slices of the aorta 
aligned with the inflow jet). (a) Magnitude of the velocity at peak systole and (b) turbulent kinetic energy at 
peak total TKE for two resolutions and the corresponding reference CFD. For (a) and (b), from left to right, 
healthy inlet flow and simulated stenosis degrees of 50%, 75% and 90% are shown. Note the difference in color 
bar scaling for both velocity and TKE depending on the stenosis degree. A video showing all time steps is 
available in the online supplemental material.
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lated from segmented 2D contours (Supplemental Fig. S1). The brachiocephalic, left common carotid and left 
subclavian arteries were removed, as their impact on flow features in the ascending aorta is not  significant50. A 
structured hexahedral butterfly mesh was then generated using OpenFoam’s blockMesh  utility49 on the anatomy 
at end diastole, which was considered as the initial phase of the cardiac cycle (Fig. 1a). A mesh size of 2.2 M cells 
with mean and maximum cell heights in the region of interest of 0.37 mm and 0.6 mm was found to be sufficient 
to accurately simulate both velocity and turbulence fields in aortae with pathological  inflows51–53.

Boundary conditions. Fully developed Hagen-Poiseuille profiles were used as inlet boundary conditions 
for the idealized geometries. The mean inlet Reynolds number (Re) was set to 1000 for both steady and pulsatile 
scenarios. For the pulsatile case, the velocity waveform was extracted from in-vivo data acquired at the aortic 
root in a healthy subject with a peak inlet Re of 4000, typical for physiological  flows54.

Aortic wall motion for the patient-specific simulation was extracted for all cardiac phases and was used as 
boundary condition for the CFD simulation. Time-resolved inlet velocity profiles for the patient-specific simu-
lations were extracted from time-resolved 2D PC MRI spoiled gradient echo imaging ( 1.5× 1.5× 8 mm3 , 40 
frames/cardiac cycle). Pathological stenotic inlets were generated by projecting the healthy inlet velocities onto 
reduced cross sections (50, 75 and 90%) of the geometrical model inlet while keeping the flow rate constant 
(Supplemental Fig. S2).

Computational fluid dynamics. Blood flow in the aorta was computed using the three-dimensional, 
unsteady and incompressible Navier–Stokes (NS) equations in moving domains. Blood was assumed Newtonian 
and incompressible with density ρ = 1060 kg/m3 and kinematic viscosity µ = 3.5e−3 Pa s55. In our work, the 
NS equations were solved using a large eddy simulation (LES) model in the arbitrary Lagrangian–Eulerian (ALE) 
framework as implemented in  OpenFOAM®  v180649. The subgrid scheme selected was the wall-adapting local-

Figure 6.  Variations in turbulent kinetic energy depending on the stenosis degree during the cardiac cycle and 
at peak total TKE. (a) Comparison of measured total TKE for two resolutions of PC-MRI and the reference CFD 
during the cardiac cycle for a healthy inlet flow and simulated aortic stenosis degrees of 50%, 75% and 90%. 
Note the temporal lag between peak flow rate and peak TKE represented by the fitted peak TKE curve. (b) Mean 
µ and standard deviation σ of peak voxel-wise TKE for the two resolutions of PC-MRI for healthy flow and 50%, 
75% and 90% stenoses.
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eddy viscosity (WALE) subgrid-scale (SGS)  model51,52 and Spalding’s wall function was  used56. Second-order 
central differences and backward Euler schemes were used for spatial and temporal discretization. Adaptive time 
stepping was used to reduce simulation times; at peak turbulent production the time step ranged between 25 and 
100 μs depending on the stenotic  degree7,34 (Fig. 1b). Simulations were run on a high-performance cluster of the 
Swiss National Supercomputing Center (CSCS). On average 6 wall clock hours per cardiac cycle were required 
using 48 cores (300 CPU hours) for a simulation of moderate aortic stenosis.

Computation of the Reynolds stress tensor. The covariance matrix Cov(u) of N measurements of a 
time varying velocity vector u = (u1, u2, . . . , uN ) ∈ R

3×N is defined as:

where �̄ is the averaging operator, u′ = u− u are the velocity fluctuations over the mean velocity u ,  
u
′
u
′T = u

′ ⊗ u
′ defines an outer product, and R ∈ R

3×3 is the Reynolds stress tensor. In the case of pulsatile 
flow, the N measurements (u1, u2, . . . , uN ) are acquired at the same time t0 of the cycle, over N cycles. Due to 
band-limited encoding and finite readout times in MRI, flow measurements are not instantaneous snapshots, 
but include flow information over finite durations. To model this condition, measurements of u and R are per-
formed in a temporal window �t around t0 , where �t corresponds to the modeled temporal averaging duration 
of the acquisition.

Synthetic 4D flow MRI. The MR signal S∗ , assuming Gaussian intra-voxel velocity distribution (IVSD) of 
variance σkv reads (Fig. 1d):

where kv,i = kv,i
−→
e i =

[

kvx , kvy , kvz
]

i
∈ R

1×3 represents flow sensitivity along the ith direction with encoding 
velocity frequency kv,i = π/[VENC]i .  η ∝ SNR is complex Gaussian noise with zero mean and standard devia-
tion ση =

∣

∣SROI
∣

∣ · (SNR)−1 with SROI being the mean noise-free signal in the region of interest, defined as the 
full fluid domain for all simulations. S0 is the normalized reference signal without velocity encoding that in this 
work is modelled as:

where u�  is the velocity field at the selected MR signal resolution. The term σ 2
kv ,i

∣

∣kv,i

∣

∣

2 can be expressed as 
ρ−1

kv,iR
t

�
kv,i

T where  Rt

�
  is the Reynolds stress tensor at the selected MR resolution �L . Both Rt

�
 and u� are 

obtained by first projecting computed values from the CFD simulations onto a regular grid (nx × ny × nz) with 
isotropic voxel size L = 0.65 mm . The fields are subsequently downsampled to the prescribed MR resolution, 
�L , by apodization with a truncated 3D Gaussian modular transfer function (MTF) ω with standard deviation 
σG =

√
8ln2L/�L . The truncation window is a box with width w ∝ L/�L , such that the Gaussian MTF is trun-

cated at an amplitude of 0.5 along each principal Cartesian direction. The downsampled RST Rt

�
 and velocity 

u� are then defined as (Fig. 1c.1 and c.2):

where  F  is the Fourier operator and ◦ is the apodization operator. Synthetic noise was defined for the idealized 
geometries (Figs. 2, 3 and 4) as a function of voxel volume V  and temporal averaging of signal �t (analogous to 
the repetition time TR assuming that signal is continuously acquired during this time) as SNR = αV

√
�t , where 

α = 1.68 is a scaling factor designed to obtain SNR = 30 for V = 2× 2× 2 mm3 and �t = 5 ms.

Reynolds stress tensor reconstruction. The RST can be determined by encoding along six non-col-
linear directions and solving a system of linear equations. For six measurements along six different velocity 
encoding directions {i|i ∈ Z, 1 ≤ i ≤ 6} , σkv ,i is obtained from the ratio between S∗

(

kv,i

)

 and S∗(0) as:

where R∗ is the estimated RST. By rewriting Eq. (6), the following system of linear equations is obtained:

(1)Cov(u) =
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where σ kv
 ∈ R

6×1 is the IVSD vector, Hi

(

kv,i , ρ
)

 is the ith row of H(kv , ρ) ∈ R
6×6, a transformation matrix that 

depends on kv ∈ R
6×3 and ρ , and r∗ ∈ R

6×1 is the vector representation of the symmetric RST tensor R∗ . The 
encoding matrix kv was designed for orthogonal  encoding35,57 in this study, but can be modified for any other 
encoding scheme. The elements of the RST can be calculated voxel-wise using the pseudoinverse (Fig. 1f):

The symmetric RST vector r∗ can be recast into its tensor representation R∗ ∈ R
3×3 . The elements along the 

diagonal represent velocity fluctuation variances while the off-diagonal elements represent covariances. Turbulent 
kinetic energy in [J/m3] is then defined as:

where Tr(R∗) is the trace of the RST. Total TKE in [mJ] refers to the volumetric integration of TKE in a region 
of interest.

Velocity reconstruction. Redundant encoding schemes provide additional information for estimation of 
mean velocities. The velocities encoded in the six directions are defined by 

⌣
ν = arg

(

S
∗(
kv,i

))

∈ R
6×1 and can 

be written as:

where Ki

(

kv,i

)

 is the ith row of K(kv) ∈ R
6×3 , the normalized encoding tensor and u∗ ∈ R

3×1 is the Cartesian 
velocity vector. A solution to this overdetermined system of linear equations is provided by the pseudo-inverse 
(Fig. 1f):

From the Cartesian velocity vector u∗ , kinetic energy (KE) in [J/m3] is defined as:

Total KE in [mJ] refers to the volumetric integration of KE in a region of interest.

Bayesian reconstruction. Turbulence estimation shows high sensitivity within a limited range of IVSD 
values dictated by the choice of velocity encoding (VENC) and, respectively, encoding strength kv = π/VENC . 
This suggests that single VENC acquisitions are limited in their ability to probe the rich variety of expected 
IVSD in pathological aortic  flows12. To mitigate this effect, a multipoint approach was used to probe velocity and 
turbulence fields using orthogonal encoding with three different encoding  strengths35 (Supplemental Table S1). 
For each encoding direction, the acquisitions at different encoding strengths were combined using Bayesian 
multipoint  unfolding12 to generate a set of directional velocities 

⌣
ν i and IVSD σkv ·i that were then converted to 

velocities and RST using Eqs. (8 and 11).

Data availability
Our Python code for 4D flow MRI synthesis and Bayesian reconstruction is publicly available (https:// gitlab. ethz. 
ch/ ibt- cmr- public/ 4dflo wmris ynthe sis), accompanied with demo data corresponding to the idealized geometry 
with pulsatile flow presented in Fig. 3b).
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