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Background: Severe Acute Respiratory Syndrome (SARS) corona virus (CoV) infections are
a serious public health threat because of their pandemic-causing potential. This work is the
first to analyze mRNA expression data from SARS infections through meta-analysis of gene
signatures, possibly identifying therapeutic targets associated with major SARS infections.

Methods: This work defines 37 gene signatures representing SARS-CoV, Middle East
Respiratory Syndrome (MERS)-CoV, and SARS-CoV2 infections in human lung cultures
and/or mouse lung cultures or samples and compares them through Gene Set
Enrichment Analysis (GSEA). To do this, positive and negative infectious clone SARS
(icSARS) gene panels are defined from GSEA-identified leading-edge genes between two
icSARS-CoV derived signatures, both from human cultures. GSEA then is used to assess
enrichment and identify leading-edge icSARS panel genes between icSARS gene panels
and 27 other SARS-CoV gene signatures. The meta-analysis is expanded to include five
MERS-CoV and three SARS-CoV2 gene signatures. Genes associated with SARS
infection are predicted by examining the intersecting membership of GSEA-identified
leading-edges across gene signatures.

Results: Significant enrichment (GSEA p<0.001) is observed between two icSARS-CoV
derived signatures, and those leading-edge genes defined the positive (233 genes) and
negative (114 genes) icSARS panels. Non-random significant enrichment (null distribution
p<0.001) is observed between icSARS panels and all verification icSARSvsmock
signatures derived from human cultures, from which 51 over- and 22 under-expressed
genes are shared across leading-edges with 10 over-expressed genes already associated
with icSARS infection. For the icSARSvsmock mouse signature, significant, non-random
significant enrichment held for only the positive icSARS panel, from which nine genes are
shared with icSARS infection in human cultures. Considering other SARS strains,
significant, non-random enrichment (p<0.05) is observed across signatures derived
from other SARS strains for the positive icSARS panel. Five positive icSARS panel
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genes, CXCL10, OAS3, OASL, IFIT3, and XAF1, are found across mice and human
signatures regardless of SARS strains.

Conclusion: The GSEA-based meta-analysis approach used here identifies genes with
and without reported associations with SARS-CoV infections, highlighting this approach’s
predictability and usefulness in identifying genes that have potential as therapeutic targets
to preclude or overcome SARS infections.
Keywords: SARS-CoV, SARS-CoV2, coronavirus, gene expression, meta-analysis, gene set enrichment analysis,
MERS-CoV
BACKGROUND

Human b-coronaviruses (CoV) are enveloped, positive-sense
RNA viruses that infect humans and a variety of animal
species (1). Human CoV infections typically cause mild upper
respiratory distress, referred to as the common cold, and
generally were non-lethal (1, 2). However, in 2002 a novel
CoV was found to cause the potentially life-threatening
disease, severe acute respiratory syndrome (SARS). The initial
SARS-CoV outbreak infected an estimated 8,400 people with
over a 9% mortality rate (2–5). In 2012, another highly lethal
CoV causing Middle East Respiratory Syndrome (MERS)
emerged with an over 30% mortality rate (6, 7). Fortunately,
both the SARS-CoV and MERS-CoV outbreaks were quickly
contained through aggressive infection control measures. Efforts
are still ongoing to control the pandemic of SARS-CoV2, a
closely related CoV strain with almost 80% genome similarity
to SARS-CoV and 50% similarity to MERS-CoV (8, 9). SARS-
CoV2 is the causative agent of coronavirus disease 2019
(COVID-19), which is already responsible for over a 3.8
million deaths worldwide as of July 2021 (10–12). Several new
variants of SARS-CoV2 are circulating the globe already, with
some variants having increased infectiousness such as B.1.1.7
which originated in the United Kingdom in early 2021,
prompting scientists to consider outbreaks of a future SARS-
CoV3 strain (10, 13–15).

Options to successfully treat SARS-infected patients are
critical to improving patient outcomes. Limited therapeutic
options for SARS-CoV infections were available at the time.
For example, the RNA-dependent RNA polymerase inhibitor,
ribavirin, and corticosteroids were cornerstones of SARS-CoV
treatment. Unfortunately, several reports exist showing a lack of
efficacy for ribavirin and debating the effectiveness of
corticosteroid therapy in SARS-CoV treatment (5, 16).
Remdesivir is a nucleotide analogue that inhibits viral RNA
synthesis in SARS via an unknown mechanism. Remdesivir
achieved mixed results when treating SARS patients (17–19).
MERS-CoV treatment options were limited also, with most
therapies being existing drugs for other disease indications
shown to target MERS-CoV replication in vitro (20). Clinical
therapies previously used to treat SARS-CoV, like ribavirin and
remdesivir, were common treatments for MERS-CoV infections
and there was little investment in developing new therapeutic
options for SARS infections (21). That initiative changed
org 2
dramatically over the past year with many resources devoted to
improving treatment options for SARS-CoV2 due to its
pandemic status. For example, over 284 clinical trials at
different phases are underway to examine efficacy and safety
for repurposed drug and new therapeutic molecule development
as potential treatment options against COVID-19 (21).
Therapies previously used to treat SARS-CoV and MERS-CoV,
like ribavirin and remdesivir, are being re-evaluated as
treatments for COVID-19 (18, 19, 21). Newer therapies, such
as inhibitors of membrane fusion, viral replicases, and human
and viral proteases, also are under extensive examination as
potential therapeutics against COVID-19 (21). Of particular
interest are emerging therapies that target immune response,
particularly the cytokine storm frequently described in COVID-
19 patients, such as interferon (IFN) and interleukin (IL)−6
receptor antagonist therapies (21–27). SARS viruses encode at
least 10 proteins to combat the induction and antiviral action of
IFN (28). A delayed induction of the IFN-stimulating gene
expression through virus-induced modulation of the basal
activity of transcriptional activity of STAT1 and PKR pathways
leads to a peak of coronavirus replication prior to IFN-I
response, suggesting that IFN-I response at least partially
controls SARS infection and potentially contributing to the
progression of the disease. While these various treatment
options show promise, no specific therapy is available currently
to treat SARS-CoV2 infections as death tolls from the virus
continue to increase (24). New therapeutic strategies are needed
to successfully treat current and future SARS infections.

A complete understanding of the molecular changes driving
SARS infections can assist in the development of new therapies
to fight COVID-19 and other future SARS outbreaks. Many
studies have been done to elucidate molecular changes associated
with a SARS infection by examining gene expression changes and
some changes have been confirmed via experimental techniques
such as quantitative real-time polymerase chain reaction (qRT-
PCR). These studies conducted differential expression analysis of
individual genes using statistical methods such as fold change
and/or T-test p−value to identify genes of interest (2, 29–33).
This approach usually generates an exhaustive list of several
hundred genes that meet pre-established statistical criteria
(e.g., fold change <2 and/or T−test p−value<0.05). Further
analysis is needed to refine lists of identified genes to identify
the most promising gene candidates to target therapeutically.
Since experimental work is time consuming and expensive,
July 2021 | Volume 12 | Article 694355
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computational approaches to interpret and prioritize gene lists
are used widely.

Several different computational approaches have been used to
interpret experimentally generated differentially expressed gene
lists. For example, functional enrichment was performed to
interpret generated gene lists using a variety of bioinformatic
approaches including network analysis (29, 30, 33, 34) and/or
hypergeometric test-based approaches (e.g., Fisher’s Exact Test)
that utilize established gene sets from public knowledgebases like
Gene Ontology (GO) (2, 30–32). These studies identified several
gene expression changes associated with SARS-CoV infection
including increased expression of inflammatory mediators IL-6,
IL−8, CXCL10 (i.e., INF g-induced protein 10), IFN-l, IFIT1,
OASL, and OAS3 in SARS-CoV infected human lung cultures
and mouse lung samples (29, 31, 33, 34). Comparative analysis of
differential gene expression across SARS strains found significant
increases in gene expression of some genes, like CXCL10, IFIT1,
and OAS3, or their gene relations, such as CXCL1, CXCL2, and
IFIT3, in MERS-CoV and/or SARS-CoV2 infections in human
epithelial lung cells and lung samples from cynomolgus monkey
and mice (35–38). Other genes were unique to a SARS strain,
such as XAF1 which has been reported only in SARS-CoV2
infections (35–38). Hypergeometric test-based approaches are
known to be limited because only genes that meet an established
cut-off (e.g., T-test p−value<0.05) are considered (39). To
overcome this limitation by considering all genes in an
expression dataset, other studies utilized Gene Set Enrichment
Analysis (GSEA) to calculate the enrichment of an established
gene set from a public knowledgebase (e.g., MSigDB, Blood
Transcriptional Modules, and/or Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways) in a gene signature. This was
done by defining a gene list ranked by differential expression
between mock and SARS infected samples by an appropriate
statistical method (29, 40). Findings from these studies included
positively enriched modules associated with antiviral IFN, cell
cycle and proliferation, and monocytes and dendritic cells in
peripheral blood mononuclear cells from SARS-CoV2 patients
(40). Further, GSEA has been used to confirm enrichment for a
query gene set defined from a network analysis approach, and
identified regulatory genes associated with the pathogenicity of
SARS-CoV have been identified (29). This demonstrated that
GSEA is a useful computational tool to validate gene candidates,
though all reported studies had used GSEA on established query
genes sets rather than using GSEA to establish new sets.
Therefore, we sought to use a GSEA-based approach to
identify gene candidates from SARS mRNA expression
datasets here.

In a prior study to identify genes associated with macrolide
resistance in Streptococcus pneumoniae, we demonstrated a
GSEA-approach for gene identification that compared
differential gene expression between mRNA expression datasets
(41). This study successfully identified known and novel genes
though it was limited due to incomplete genome annotation, a
common problem for many microbial genomes (42–49).
Applying our GSEA-approach to mRNA expression data
derived from a species with a more completely annotated
Frontiers in Immunology | www.frontiersin.org 3
genome, such as human or mouse, our achievable results
would improve. Therefore, in this paper we use the GSEA-
approach previously used on Streptococcus pneumoniae to
identify gene expression changes associated with SARS
infection in human lung cell cultures and mouse lung samples.
Using GSEA in this way generates a list of gene candidates
associated with a SARS infection which is similar in nature to
gene candidate lists generated previously by using single-gene
analysis. To refine and prioritize the exhaustive gene lists
generated from such an analysis, we performed a GSEA-based
meta-analysis that incorporates over 35 different gene signatures.
We hypothesized that therapeutically targeting gene candidates
identified from our nested GSEA meta-analysis has the potential
to improve treatment options for SARS infections
METHODS

mRNA Expression Resources
SARS-CoV Datasets
To identify molecular changes associated with SARS infection in
human lung cell cultures, we searched the Gene Expression
Omnibus (GEO) repository (50–52) to find seven datasets for
use in our study (Table 1). Since most datasets contained
samples infected with an infectious clone of SARS-CoV Urbani
(icSARS), we selected the published SuperSeries GSE47963,
which contained three independent datasets (GSE47960,
GSE47961, and GSE47962) that examined gene expression in
icSARS and mock infected human primary tracheobronchial
epithelium cells (29). We used this SuperSeries to identify and
verify gene expression changes associated with icSARS infection
mechanisms. These datasets also contained gene expression data
for cells infected with two other strains: 1) icSARS-dORF6, the
icSARS strain with a genetic deletion causing a lack of expression
of ORF6 which encodes an IFN antagonist protein that increases
virulence by blocking human nuclear translocation (2, 3, 29), or
2) SARS-BatSRBD, a SARS-CoV like virus isolated from bats that
was synthetically modified to contain the spike receptor binding
domain (SRBD) from the wild type Urbani strain to allow for
infection of human and non-human primate cells (29, 53). To
extend our verification of identified gene expression changes
associated with icSARS infection into another lung cell type, we
selected unpublished datasets GSE37827 and GSE48142 that
examined gene expression in icSARS and mock infected
human lung adenocarcinoma 2B-4 cells. GSE37827 also
contained SARS-BatSRBD infected samples, and GSE48142
had samples infected with mutant strains containing either 1) a
genetic modification of NSP16 (deltaNSP16) that encodes a non-
structural 2’O methyltransferase whose disruption increases
sensitivity to type 1 and 3 IFN responses (32), or 2) ExoNI,
which has no formal description in public knowledgebases. All
gene expression data for these five datasets were profiled on the
commercial probe name version of the Agilent-014850 Whole
Human Genome Microarray 4x44K G4112F platform (GEO
GPL6480). Further, we selected GSE33267 because it had
mock, icSARS, and dORF6 infected samples of Calu-3 cells,
July 2021 | Volume 12 | Article 694355
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from which 2B-4 was a clonal derivative. GSE33267 was profiled
on the feature number version of the Agilent-014850 Whole
Human Genome Microarray 4x44K G4112F (GEO GPL4133).
To compare identified changes associated with icSARS infection
to changes associated with the icSARS’s parent Urbani SARS
strain, we selected GSE17400 since it had samples of 2B-4 with
mock or Urbani infection (31). GSE17400 was profiled on the
Affymetr ix Human Genome U133 Plus 2 .0 Array
(GEO GPL570).

To determine if the molecular changes associated with SARS
infection observed in human lung cell cultures were reproducible
in an in vivo mouse model, we selected four datasets that
examined lung samples from mock or SARS-CoV infected 20-
week-old C57BL6 mice. GSE50000 contained samples from mice
infected with icSARS, SARS-BatSRBD, or MA15, a mouse
adapted SARS-CoV strain, at two different inoculation doses
(104 and 105). GSE33266 had samples over an inoculation dose
range (102, 103, 104, and 105). GSE49262 had samples from mice
infected with MA15 (105 inoculation dose) or dORF6 mutant
strains, and GSE49263 had samples infected with MA15 (105

inoculation dose) or dNSP16 mutant strains. All gene expression
data for these datasets were profiled on the Probe Name version
of the commercial Agilent-014868 Whole Mouse Genome
Microarray 4x44K G4122F platform (GEO GPL7202), except
for GSE33266 which was profiled on the Feature Number version
of the same platform (GEO GPL4134).

All SARS-CoV datasets measured gene expression over a time
course, so we used time-matched samples collected at 48hrs post-
infection unless otherwise stated. Expression data provided by
GEO for all datasets except GSE49262 and GSE49263 were
unnormalized intensities, so we z−scored across all samples
Frontiers in Immunology | www.frontiersin.org 4
within the dataset for normalization prior to use when
appropriate. For data cleaning, we converted probes to Entrez
ID for each gene using the GEO provided platform data table
when necessary. Probes with no provided Entrez ID were
removed from analysis. If multiple probes with the same
Entrez ID existed, the probe with the highest coefficient of
variance across duplicate probes was selected.

MERS-CoV Datasets
To compare molecular changes identified in SARS-CoV to
changes associated with MERS-CoV infections in human and
mouse lung cell cultures, we found three MERS-CoV datasets in
GEO for use in our study (Table 2). GSE81909 and GSE100504
examined cultures of primary human airway epithelial cells
infected with mock or wild type MERS-CoV (icMERS). Gene
expression data for these datasets were profiled on the Probe
Name version of the commercial Agilent-026652 Whole Human
Genome Microarray 4x44K v2 (GEO GPL13497). GSE108594
had mouse lung cell cultures that were mock or MERS-CoV
infected across an inoculation dose range (0, 104, 105, and 106)
and profiled on the Probe Name version of Agilent-026655
Whole Mouse Genome Microarray 4x44K v2 (GEO
GPL11202). For all MERS-CoV datasets, expression data
provided by GEO were already normalized so we selected data
for the 48hr post-infection time point as needed and cleaned data
as previously described for SARS-CoV datasets.

SARS-CoV2 Datasets
To compare molecular changes identified in SARS-CoV to
changes associated with SARS-CoV2 infections in human lung
cell cultures, we found three SARS-CoV2 datasets in GEO with
TABLE 1 | SARS-CoV Infection Datasets Utilized for this Study.

Dataset Description1 Platform Probes IDs Genes

GSE47960 Unnormalized cultures of human primary tracheobroncial epithelium cells with mock, infectious clone SARS-CoV
(icSARS) derived from Urbani strain, SARS-dORF6, or SARS-BatSRBD infection

GPL6480 32067 25666 16479

GSE47961 Unnormalized cultures of human primary tracheobroncial epithelium cells with mock, icSARS, SARS-dORF6, or
SARS-BatSRBD infection

GPL6480 33421 26500 16978

GSE47962 Unnormalized cultures of human primary tracheobroncial epithelium cells with mock, icSARS, SARS-dORF6, or
SARS-BatSRBD infection

GPL6480 32388 25897 16603

GSE37827 Unnormalized cultures of 2B4 cells (a clonal derivative of human lung adenocarcinoma Calu-3 cells) with mock,
icSARS, or SARS-BatSRBD infection

GPL6480 41000 30936 19596

GSE48142 Unnormalized cultures of human lung adenocarcinoma 2B4 cells with mock, icSARS, icSARS-ExoNI or icSARS-
dNSP16 infection

GPL6480 33321 26212 16794

GSE33267 Unnormalized cultures of human lung adenocarcinoma Calu3cells with mock, icSARS, or SARS-dORF6 infection GPL4133 45015 32696 19751
GSE17400 Unnormalized cultures of human lung adenocarcinoma 2B4 cells with mock or Urbani strain of SARS-CoV (SARS)

infection
GPL570 54675 44134 21182

GSE50000 Unnormalized lung samples from 20-week-old C57BL6 mice infected with mock, icSARS, either 104 or 105 plaque-
forming unit wild-type mouse-adapted SARS MA15 or SARS-BatSRBD

GPL7202 41174 34907 21200

GSE33266 Unnormalized lung samples from 20-week-old C57BL6 mice infected with mock or wild-type mouse-adapted SARS
MA15 at 102,103, 104, or 105 plaque-forming units over a time course

GPL4134 45057 36933 21608

GSE49262 Log2 normalized lung samples from 20-week-old C57BL6 mice infected with mock,105 plaque-forming unit wild-
type SARS MA15, or SARS-dORF6

GPL7202 41174 34907 21200

GSE49263 Log2 normalized lung samples from 20-week-old C57BL6 mice infected with mock,105 plaque-forming unit wild-
type SARS MA15, or SARS-dNSP16

GPL7202 41174 34907 21200
Jul
y 2021 | Vo
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1All datasets collected samples over a time course. 48hr samples were used for this study unless otherwise stated. Unnormalized samples were z−scored across all dataset samples
regardless of time or infection for normalization before use.
Platform, Gene Expression Omnibus platform identifiers. Probes, number of platform probes with expression data in dataset. IDs, number of probes with Gene Expression Omnibus
provided Entrez identifiers. Genes, number of unique Entrez identifiers used for gene signature definition with representatives for duplicate Entrez identifiers being selected by highest
coefficient of variation. Values provided in the Genes column reflect the number of genes in gene signatures defined for this study.
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mock or SARS-CoV2 infected samples collected at 48hrs for use
in our study (Table 2). GSE152586 contained gene expression
data for cultures of human alveolar type II cell organoids (54)
that were profiled on HiSeq X Ten (GEO GPL20795 and
GPL28694). GSE160435 and GSE155518 contained gene
expression data from organoids generated from human
primary alveolar type II cells and were profiled on Illumina
NovaSeq 6000 (GEO GPL24676 and/or GPL29320). GEO had no
available SARS-CoV2 datasets utilizing mouse cultures or
samples appropriate for use in this study. All provided SARS-
CoV2 expression data was z-score normalized and cleaned as
previously described for SARS-CoV datasets.

Defining Gene Signatures
We measured differential gene expression by Welch’s two-
sample T-test score of normalized values to generate gene
signatures (i.e., gene lists ranked by differential gene expression
between SARS and mock infected samples). Genes that were
over-expressed in SARS- compared to mock infected samples
(e.g., positive T-score) fall within the positive tail of the gene
signature while under-expressed genes (e.g., negative T-score)
fall in the negative tail (Figure 1A). Genes with no substantial
change in expression between SARS and mock infected samples
(e.g., T-score around 0) were located toward the middle of the
gene signature. Therefore, genes that fall within the tails of a gene
signature likely changed in response to a specific SARS infection.
We noted that three signatures were substantially skewed
(i.e., rank of genes where T-score crosses from positive to
negative was in top or bottom quartile of signature). For
substantially skewed signatures, we adjusted all T-scores in the
signature by the T-score of the gene at mid-point so that genes in
the signature were balanced between positive and negative
T-scores.

From the 17 SARS datasets previously described, we defined a
total of 37 gene signatures. We generated 29 SARS-CoV gene
signatures, which included 17 gene signatures from human lung
cultures and 12 signatures from mouse lung samples (Table 3).
Specifically, we defined seven icSARSvsmock signatures (six in
human cultures, one in mouse samples), one Urbanivsmock
Frontiers in Immunology | www.frontiersin.org 5
signature with the Urbani strain in human cultures, eight
MA15vsmock signatures doses in mouse samples representing
varying inoculation, five ORF6vsmock signatures (four in human
cultures, one in mouse samples), five BATSRBDvsmock
signatures (four in human cultures, one in mouse samples),
two NSP16vsmock signatures (one in human cultures, one in
mouse samples), and one ExoNIvsmock signature from human
cultures. For MERS-CoV datasets, we defined five gene
signatures that included two gene signatures from human lung
cultures and three signatures from mouse lung samples
(Table 4). For SARS-CoV2 datasets, we defined three gene
signatures from human lung cultures (Table 4).

Overview of Gene Set Enrichment Analysis
We used Gene Set Enrichment Analysis (GSEA) as a statistical
method that estimated enrichment between a query gene set
(i.e., unranked list of genes) and a reference gene signature (39).
GSEA used T-score to calculate a running summation
enrichment score where hits (i.e., matches between query set
and reference signature) increased the enrichment score
proportional to the ranking statistical metric (e.g., T-score) and
a miss (i.e., non-matches between query set and reference
signature) decreased the enrichment score. From this, GSEA
determined a maximum enrichment score for the specific query
set and reference signature. Leading-edge genes contributed to
reaching the maximum enrichment score, indicating leading-
edge genes were associated with cellular response to a specific
b−coronavirus infection. Further, GSEA calculated a normalized
enrichment score (NES) from 1000 permutations of the reference
signature to estimate the significance of enrichment between a
specific query set and reference signature. This work used the
javaGSEA Desktop Application release 3.0 version of GSEA
available from Broad Institute to perform gene T−ranking for
signature formation and GSEA for gene identification,
verification, and comparison.

Identification of icSARS Associated Genes
To identify gene expression changes associated with icSARS
infection, we generated two icSARS gene panels (Figure 1B).
TABLE 2 | MERS-CoV and SARS-CoV2 Infection Datasets Utilized for this Study.

Dataset Description Platform Probes IDs Genes

GSE819091 Log2 normalized cultures of primary human airway epithelial cells infected with mock or 5 plague-forming
units/cell of wild type MERS-CoV (icMERS)

GPL13497 34184 29833 26049

GSE1005041 Log2 normalized cultures of primary human airway epithelial cells infected with mock or 5 plague-forming
units/cell of wild type MERS-CoV (icMERS)

GPL13497 34184 29833 26049

GSE1085941 Quantile normalized cultures of mouse lung cells infected with mock, 104, 105, or 106 doses of 3 plaque-
forming units wild-type MERS-CoV

GPL11202 39485 33244 31895

GSE152586 Unnormalized2 samples of human alveolar type II cell lung organoids 48hrs post mock or SARS-CoV2
infection

GPL20795
GPL28694

26496 26496 26494

GSE160435 Unnormalized2 human lung organoid samples generated from primary lung alveolar type II cells 48hrs post
mock or SARS-CoV2 infection

GPL24676
GPL29320

60666 60666 60598

GSE155518 Unnormalized2 human lung organoid samples generated from primary lung alveolar type II cells 48hrs post
mock or SARS-CoV2 infection

GPL24676 60765 60765 60686
July 2021 | Vo
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1Datasets collected samples over a time course. 48hr samples were used.
2Samples were z−scored across all dataset samples regardless of time or infection for normalization before use.
Platform, Gene Expression Omnibus platform identifiers. Probes, number of platform probes with expression data in dataset. IDs, number of probes with Gene Expression Omnibus
provided Entrez identifiers. Genes, number of unique Entrez identifiers used for gene signature definition with representatives for duplicate Entrez identifiers being selected by highest
coefficient of variation. Values provided in the Genes column reflect the number of genes in gene signatures defined for this study.
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To do this, we selected 500 genes from the positive and negative
tails from the GSE47960-derived icSARSvsmock gene signature
and used them to form two individual query gene sets. GSEA
compared each query gene set to the GSE47961-derived
icSARSvsmock gene signature (reference). Leading-edge genes
from each analysis were used to define the two icSARS gene
panels, one panel per tail, and we identified genes included in
icSARS panels as being associated with icSARS infection.
Pathway enrichment analysis was performed on both icSARS
gene panels using Database for Annotation, Visualization and
Integrated Discovery (DAVID) v6.8. DAVID was a web-
accessible knowledgebase with a comprehensive set of
functional annotation tools for researchers to understand
biological meaning behind large list of genes (55, 56).

Verification of icSARS Gene Panels
To verify the icSARS gene panels, we performed GSEA between
icSARS gene panels and GSE47962-derived, GSE37827-derived,
GSE48142-derived, and GSE33267-derived icSARSvsmock
signatures. To assess if results generated from GSEA could be
achieved randomly, we randomly selected 1000 gene panels
consisting of either 233- or 114-genes, to match the number of
genes in the positive and negative icSARS panels, respectively,
from the GPL6480 platform. These analyses generated a null
Frontiers in Immunology | www.frontiersin.org 6
distribution of NES to which we compared the NES achieved by
icSARS gene panels for each reference gene signature and
counted the number of equal or better NES to estimate
significance (i.e., distribution p-value). Histogram data and
associated graphs (e.g., distribution curves and box and
whiskers plot) were generated using XLStat version 2020.3 (57,
58), which was a user-friendly, commercial, data analysis add-on
for Microsoft Excel.

Comparison to icSARS-Induced Gene
Expression Changes in Mice and Across
Other SARS Strains
To examine differential gene expression of genes from the
icSARS gene panels in mice, we performed GSEA between
icSARS gene panels (queries) and the GSE50000-derived
icSARSvsmock signature (reference). We compared gene
membership across leading-edges identified in the analysis of
icSARS verification signatures and the icSARS mouse signature
to identify genes associated with icSARS infection between
models. Any icSARS panel genes that were not included the
dataset’s platform still received consideration when examining
across identified leading-edge genes. To expand this analysis by
comparing gene signatures across infections caused by other
SARS-CoV strains, we repeated this GSEA-based meta-analysis
A

B

FIGURE 1 | Gene Signature Definition and Generation icSARS Gene Panels. (A) Schematic definition of a gene signature. Differences in gene expression between
two groups, such as SARS and mock infected lung cells, are measured by Welch’s two-sample T−test score. Gene signatures are ranked lists of genes from high
(red) to low (blue) differential mRNA expression between groups. (B) Generation of icSARS gene panels for use in this study. To identify differentially expressed genes
associated with icSARS infection in human airway epithelial cell cultures, query gene sets containing either the 500 most over- or under-expressed genes from
positive or negative tails of the gene signature generated from the Gene Expression Omnibus (GEO) accession number GSE47960 mRNA expression dataset. The
positive and negative tail query sets were compared individually to the gene signature generated from the GEO GSE47961 dataset, which was used as reference for
Gene Set Enrichment Analysis (GSEA). From this GSEA computed two enrichment plots, one for each query set, and their associated normalized enrichment score
(NES) and p-value which represent the extent of enrichment between query set and reference signature. GSEA also identified leading-edge genes, which are genes
that contribute most to achieving maximum enrichment. Two gene panels were defined from leading-edge genes identified in each query set. These gene panels
were used in this study for three purposes: 1) identification of gene expression changes associated with icSARS infection in human airway epithelial cell cultures,
2) verification of identified findings in independent datasets, and 3) comparison to other gene signatures representing changes in gene expression associated with
other SARS infections.
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approach on infections with other strains, such as Urbani, MA15,
SARS-BatSRBD, and mutants in ORF6, NSP16, or ExoNI. All
SARS-CoV strains except ExoNI had strain-matched samples in
both mouse samples and human lung cultures. We included
MA15-infected mouse signatures over a range of inoculation
doses (Table 3) to mimic the range of infection severity that
would be encountered clinically (i.e., asymptomatic to severe
patient presentation). Genes associated with SARS-CoV
Frontiers in Immunology | www.frontiersin.org 7
infection were identified by gene membership across leading-
edges identified in these 22 analyses. Further, we repeated this
GSEA-based meta-analysis approach to include gene signatures
derived fromMERS-CoV and SARS-CoV2 infections to compare
gene signatures across major SARS infectious strains and
examine gene membership across leading-edges. Random
modelling for all comparisons were done as previously
described. Heat maps were generated by a user-friendly, web-
TABLE 3 | SARS-CoV Gene Signatures Defined in this Study.

Dataset Group 1 (N) Group 2 (N)1 Gene signature Use High2 Low2 Cross3

GSE47960 icSARS (4) mock (3) icSARSvsmock I 12.5 -13.2 7245
dORF6 (4) mock (3) ORF6vsmock C 12.5 -13.2 8738
BatSRBD (3) mock (3) BATSRBDvsmock C 11.6 -12.1 8076

GSE47961 icSARS (4) mock (3) icSARSvsmock I 12.0 -13.1 8285
dORF6 (4) mock (3) ORF6vsmock C 13.1 -12.1 9026
BatSRBD (4) mock (3) BATSRBDvsmock C 12.1 -6.7 8421

GSE47962 icSARS (3) mock (3) icSARSvsmock V 12.1 -12.1 8703
dORF6 (3) mock (3) ORF6vsmock C 12.2 -12.2 8225
BatSRBD (3) mock (3) BATSRBDvsmock C 12.2 -12.2 9157

GSE37827 icSARS (3) mock (3) icSARSvsmock V 12.2 -12.2 8261
BatSRBD (3) mock (3) BATSRBDvsmock C 12.2 -11.8 8843

GSE48142 icSARS (3) mock (3) icSARSvsmock V 12.2 -12.2 6918
ExoNI (3) mock (3) ExoNIvsmock C 12.2 -9.9 7570
dNSP16 (3) mock (3) NSP16vsmock C 12.2 -12.2 6638

GSE33267 icSARS (3) mock (3) icSARSvsmock4 V 15.9 -8.6 9874
dORF6 (3) mock (3) ORF6vsmock C 12.2 -12.2 7378

GSE17400 Urbani (3) mock (3) Urbanivsmock C 12.2 -12.2 10571
GSE50000 icSARS (5) mock (4) icSARSvsmock C 6.8 -7.7 10007

MA105 (4) mock (4) MA105vsmock C 9.4 -10.2 9882
MA104 (4) mock (4) MA104vsmock C 14.1 -14.1 9759
BatSRBD (5) mock (4) BATSRBDvsmock C 9.9 -9.5 10185

GSE33266 MA105 (5) mock (3) MA105vsmock4 C 13.6 -14.6 10803
MA104 (5) mock (3) MA104vsmock C 14.0 -14.1 11654
MA103 (5) mock (3) MA103vsmock4 C 12.8 -6.6 10803
MA102 (5) mock (3) MA102vsmock4 C 7.3 -6.4 10803

GSE49262 MA105 (3) mock (3) MA105vsmock C 4.5 -2.5 10073
dORF6 (3) mock (3) ORF6vsmock C 4.4 -2.5 10211

GSE49263 MA105 (4) mock (3) MA105vsmock C 4.8 -2.5 10384
dNSP16 (4) mock (3) NSP16vsmock C 5.0 -2.6 10188
July 2021 | V
olume 12 | Article
1Same mock samples used across signatures in same dataset.
2These values define the range of Welch’s two-sample T-scores that were used to rank genes in the signature.
3Values in the Cross column reflect where (i.e., which gene) in the signature the T-score crosses 0.
4T-scores in gene signature adjusted so Cross (T-score=0) occurs near center of the signature.
C, comparison; I, identification; N, number of samples; V, verification.
TABLE 4 | MERS-CoV and SARS-CoV2 Gene Signatures Defined in this Study.

Dataset Group 1 (N) Group 2 (N)1 Gene signature Use High2 Low2 Cross3

GSE81909 icMERS (5) mock (5) icMERSvsmock C 5.1 -1.7 11451
GSE100504 icMERS (5) mock (5) icMERSvsmock C 5.8 -2.5 12836
GSE108594 MERS (4) mock (4) MERS104vsmock C 4.3 -1.5 14276

MERS (4) mock (4) MERS105vsmock C 4.2 -1.8 14593
MERS (4) mock (4) MERS106vsmock C 4.1 -2.0 15545

GSE152586 SARS2 (3) mock (3) SARS2vsmock C 12.2 -12.2 13084
GSE160435 SARS2 (5) mock (5) SARS2vsmock C 15.8 -12.1 26969
GSE155518 SARS2 (3) mock (3) SARS2vsmock4 C 13.7 -10.8 30343
1Same mock samples used across signatures in same dataset.
2These values define the range of Welch’s two-sample T-scores that were used to rank genes in the signature.
3Values in the Cross column reflect where (i.e., which gene) in the signature the T-score crosses 0.
4T-scores in gene signature adjusted so Cross (T-score=0) occurs near center of the signature.
C, comparison; N, number of samples.
694355

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Park and Harris SARS Gene Expression Meta-Analysis
based program from Broad Institute that produces customizable
heat maps named Morpheus, https://software.broadinstitute.
org/morpheus.
RESULTS

Gene Signature Approach Identified Gene
Expression Changes Associated With
icSARS Infection for Human Lung
Epithelium Cells In Vitro
To identify genes associated with response to an icSARS
infection, we first defined the GSE47960-derived and
GSE47961-derived icSARSvsmock gene signatures (Table 2).
We used the GSE47960-derived icSARSvsmock to generate two
gene sets containing the 500 most differentially expressed genes
from the positive and negative tails of GSE47960-derived
icSARSvsmock (T-score >2.9 and <-3.2 for positive and
negative tails, respectively). We chose 500 genes to capture
maximum coverage of the signature that was allowable by
GSEA (39). To assess similarity between these two gene
signatures, we calculated enrichment using GSEA between
either GSE47960-derived icSARSvsmock positive or negative
tail gene sets and the GSE47961-derived icSARSvsmock and
achieved NES=3.28 and NES=-1.87 for positive and negative tail
query gene sets, respectively, both with a GSEA p−value<0.001.
We defined separate positive and negative icSARS gene panels
from the 233 and 114 leading-edge genes identified (Table 5,
details in Supplementary Table 1), representing over- and
under-expressed genes associated with icSARS infection.

To explore potential factors that could impact our results, we
wanted to see if similar results were generated from panels
defined using 1) reversed query and reference signatures,
Frontiers in Immunology | www.frontiersin.org 8
2) different query set sizes, and 3) different time points. First,
we repeated the process of defining panels except reversing the
query and reference signatures by using the 500-gene tails from
GSE47961-derived icSARSvsmock signature and GSE47960-
derived icSARSvsmock, respectively. We noted that the size of
the positive panel did not substantially change from 233 genes
(Table 1) to 240 genes (Supplementary Table 2). However, we
noted that the size of the negative icSARS panel did change
substantially from 114 to 331 genes. Despite this substantial
change in size, we observed that enrichment did not substantially
change for either positive or negative tail query gene sets when
reversed (Supplementary Figure 1). From this we conclude that
reversing which signature was used as reference and to derive
query gene sets does not change the overall result. Next, we
repeated the process of defining panels except we used smaller
query sizes (100, 200, 300, and 400 genes). We found similar
enrichment regardless of query size (Supplementary Figure 1),
highlighting the strong similarity between these signatures.
Finally, we examined how time point selection (24, 48, 72, and
96hrs) may impact our results. We found reproducible,
statistically significant enrichment beginning at 48hrs,
suggesting that 48hrs was the earliest timepoint where gene
expression changes could be reliably detected. Based on these
results collectively, we focused our meta-analysis on the 48hr
positive (233 genes) and negative (114 genes) icSARS gene panels
defined from using the 500-gene tails of GSE47960-derived
icSARSvsmock gene signature as query, since identified
leading-edge genes represented over- and under-expressed
genes associated with icSARS infection at the earliest time
point with consistent detectable gene signature similarities.

Among genes in positive icSARS panel, we found 13 genes
(5.5% of the panel) had previously reported associations with
icSARS infections via single-gene analysis with minimum fold
TABLE 5 | Positive and Negative icSARS Gene Panels Defined in this Study.

icSARS
panel

Gene symbols

Positive FOS, DUSP1, PAEP, ERG1, PIM3, TRA2B, JUN, NFKBIA, YTHDF1, IER3, IFIT1, RSAD2, OASL, RGR, HES1, FOSB, ZFP36, IER2, RELB, IFIT3, DUSP5,
HERC5, GIGYF1, CXCL10, CXCL2, CSRNP1, C11orf96, IFI44L, ARRDC2, GADD45B, FADS2, ISG15, RGP1, WHAMM, EGR2, ZC3H12A, APOBEC3A,
ANKRD10BP2, CD55, NR1D1, OAS3, SLC25A25, EPSTI1, MANSC1, JDP2, ZBTB24, WFDC9, ZCCHC2, ZNF750, GOLGA3, TRMU, CPEB2, XAF1,
GSTT2, SOD2, ADAM8, HHIP, ENGASE, UVRAG-DT, NUP93, EDAR, LUC7L3, MXD1, LOC100506229, SRF, ARHGAP30, IFI35, C14orf43, TRIM14, YRDC,
NFKBIZ, ST7-AS1, CCNL1, AMOTL2, LATS2, UTP11, HCN3, BCL2L11, IFRD1, IRF2BP2, CX3CL1, LOC284454, HIRA, JUNB, PLA2G4C, HERC6,
SLC26A11, VMP1, TICAM1, AMDHD2, SFSWAP, POGZ, BRD1, PRDM1, RNF114, FOXK1, SLC25A28, RPL26, ADCY6, EIF2AK2, GPR17, KLF15, ZNF433,
GLYCTK, ATG16L2, SUZ12, SAP130, POM121, MID2, LITAF, BHLHE40, USP6NL, USP32P1, DDX55, PER2, UNC5B, PCGF3, ANKS6, SAFB2, TCF7L2,
ARGLU1, GDF15, INSM2, PPRC1, SPPL3, USP25, CHSY1 EIF2AK3, ERICH1, HERC2P2, PCP2, LSM8, IGF2R, GOLGA8A, CCDC93, ZNF692, TMEM127,
CCNL2, PTPN18, CXCL3, ATMIN, CLCN6, DGKD, SECTM1, ZZEF1, LOC100133161, GOLGA2P7, STX16, MLLT6, PNPLA5, ATG4B, MALAT1, GGA1,
ALOX5AP, ARHGEF10L, C19orf66, TAF3, MICALL2, ESRP2, FLCN, SLC16A14, TMPRSS9, CELF6, FBXO41, OLFM1, RNF31, PVRL4, NFS1, LOC727849,
ARMC5, GTF2IP20, ALS2CL, USP31, PUS1, LOC202025, ASB7, GOLGA8F, SP100, AANAT, PTPRJ, SLC24A1, LOC729737, TGFBRAP1, HNRPDL,
CPT1B, FLJ30064, CLCF1, PER1, RNF213, VEGFA, SETD1B, CCN1, AFG3L1P, RAB24, C11orf95, LINC00933, PISD, CNTNAP3B, WDR81, DLG5, ZNF48,
TNNI2, SRGAP3, NEAT1, ZNF267, ZBTB47, SZT2, ZNF628, OR2A7, C17orf56, PAN2, BMT2, NXF1, LRRC1, XPO1, ANO9, RRAGC, CAPN15, RBM3,
E2F3, MAN2A1, EMP1, AKAP8, ANKRD11, AGER, CD209, CTSK, TSPYL1, ZNF320, PROM2, WASH2P, IFI44L, ZCCHC14

Negative AZIN1, LEPROTL1, C8orf44, MRPS10, TMEM14B, ARSG, RNF6, FAM8A1, FAM60A, TRIQK, CNIH, MINCR, SMIM7, ZNF510, MTMR6, SFXN3, ALCAM,
THAP5, SLC35E3, LANCL2, LOC100289230, SIX4, PASK, RNF141, KNSTRN, ST6GALNAC6, PIK3CD, YME1L1, ZNF664, GABPA, IPP, NBAS,
LOC220906, ITGAE, TMEM42, RPL26L1, NOTCH4, CXorf56, PRKACB, WDPCP, VPS41, MUCL1, SLC26A1, HCFC2, SEC14L3, TRAF7, BPNT1, ZNF106,
ANG, CCNDBP1, SSX2IP, PARS2, SLC23A1, CEP162, AIG1, LRRC57, MTAP, LOC100505932, SOX1, ELL3, ADH6, WARS2, CKLF, CYP20A1, TSPAN,
PAIP2B, CES1, BNIP3, RTN3, TRMT1L, SETD4, GOSR2, ATP6V1D, ISCA1, TRIM37, EIF4A2, LOC389705, XPNPEP3, TXNRD3, CFAP97, KLHL12, PIR,
DRAM2, PDCD6IP, PHIP, ATP5G2, FOXE1, LOC100506687, BACE2, ARL10, RPS6KA1, MEP1A, DNAJC3-DT, DDX6, PGCP, LINC01431, RDH14, SUMF1,
CTMM4, IDE, LOC644656, MFSD4B, NAAA, PCYT1A, KIF3B, CAT, FAM172A, PAPOLA, PFDN5, FLVCR1-AS1, KHNYN, AKR7A3, OSBPL6, CLK1
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change of 2.0 and maximum false discovery rate-corrected p-
value of 0.05 between mock and icSARS time-matched samples
(29), demonstrating the predictive ability of our gene signature
approach. There were no genes in the negative icSARS gene
panel with established associations with icSARS infection. We
also identified genes with no prior association with icSARS
infection. These genes included 12 genes had a zinc finger in
addition to the two that were already reported (5.2% of the
panel), six genes encoding IFN-induced proteins (2.6%), five
genes from the solute carrier family (2.1%), and six genes
encoding for uncharacterized proteins (2.6%) in the positive
icSARS gene panel. In the negative icSARS gene panel, we found
three zinc finger protein genes (2.6%), three genes from the
solute carrier family (2.6%), and five genes encoding for
uncharacterized proteins (4.4%). We speculated that these
identified genes without previously reported associations with
icSARS infections in human lung epithelium cultures were also
associated with an icSARS infection.

To expand on our analysis, we examined the cellular roles that
genes in the icSARS panels were involved in. We used DAVID to
calculate enrichment between the icSARS panels and pathways in
commonly used knowledgebases. We noted that GO Biological
Processes (BP) database returned the most identified significantly
enriched pathways compared to other databases (data not shown),
so we focused this discussion on GO-BP data to avoid confusion
from overlapping pathway and gene inclusion variations across
different knowledgebases. DAVID identified 49 significant GO-BP
pathways (EASE score p-value<0.05) from the positive icSARS
panel and 10 significant pathways from the negative icSARS panel
(Supplementary Table 3). Most significantly enriched pathways
have experimentally established associations with icSARS and other
b-coronavirus infections, such as up-regulation of type I IFN
signaling pathway (GO:0060337, p−value<0.001), NF-kappaB
processes (transcription factor activity: GO:0051092, p-
value=0.001; signaling: GO:0043123, p-value=0.043), p38MAPK
cascade (GO:1900745, p-value=0.015) and apoptotic process
(GO:0006915, p-value=0.018) and down-regulation of cilium
morphogenesis (GO: 0060271, p−value=0.038) and assembly
(GO: 0042384, p−value=0.0.030), demonstrating our gene
signature approach’s ability to detect pathways associated with
response to an icSARS infections (59–61). We also find several
pathways, such as SMAD protein signal transduction (GO:0060395,
p−value=0.037), with no prior associations to icSARS infection
though they have been identified in mouse infections with the
dORF strain (2). Therefore, we speculated that pathways without
prior association to icSARS infections identified here were also
involved in response to an icSARS infection.

Enrichment of icSARS Gene Panels and
Specific icSARS Panel Genes Verified in
Independent Datasets
To verify our icSARS gene panels were associated with response
to an icSARS infection, we used GSEA to calculate enrichment
between our icSARS panels and four icSARSvsmock verification
gene signatures derived from independent datasets (Table 2). We
found significant similarity between positive icSARS panels and
Frontiers in Immunology | www.frontiersin.org 9
all icSARSvsmock verification signatures (Figures 2A–D,
NES>2.95, GSEA p-value <0.001). We also observed significant
similarity between negative icSARS panels and the
icSARSvsmock verification signatures (Figures 2E–H, NES<
−2.14, p-value <0.001). To determine how likely the NES
achieved for icSARS panels would be achieved by random
chance, we generated a random model to match the size and
potential composition of our icSARS panels. We observed NES
achieved by our icSARS panels were consistently outside the
range of NES generated randomly (null distribution p
−value<0.001, Figures 2I–L), illustrating that NES achieved by
our icSARS panels were non-random. Taken together, these
results demonstrated that the enrichment achieved from our
icSARS panels was true and reproducible.

To determine which icSARS panel genes were verified across
all signatures, we examined leading-edge genes identified by
GSEA for each verification signature (Supplementary
Table 4). We observed 51 genes from the positive icSARS
panel and 22 genes from the negative icSARS panel were
shared across all verification signatures. Of the 51 positive
icSARS panel genes, we noted 10 genes had reported
associations with icSARS infection via single-gene analysis with
minimum fold change of 2.0 and maximum false discovery rate-
corrected p-value of 0.05 between mock and icSARS time-
matched samples (29): nuclear factor of kappa light
polypeptide gene enhancer in B-cells inhibitor, alpha (Entrez
ID 4792), zinc finger CCCH-type containing 12A (ID 80149),
cysteine-serine-rich nuclear protein 1 (ID 64651), zinc finger
protein 433 (ID 163059), hairy and enhancer of split 1 from
Drosophila (ID 3280), transformer 2 beta homolog (ID 6434), V-
rel reticuloendotheliosis viral oncogene homolog B (ID 5971),
pim-3 oncogene (ID 415116), chemokine (C-X-C motif) ligand 2
(ID 2920), and C-X-C motif chemokine ligand 10 (ID 3627).
These data together supported the conclusion that our shared
leading-edge genes were associated with icSARS infection in
human lung cultures and supported the hypothesis that
identified genes without previously reported associations were
also associated with icSARS infection in human lung cultures.

Positive icSARS Gene Panel Enriched in
Mouse-Derived icSARS Gene Signature
To determine if icSARS gene panels were also associated with
response to an icSARS infection in a mouse model, we used GSEA
to calculate enrichment between icSARS panels and the GSE50000-
derived icSARSvsmock gene signature (Table 3). We observed
significant enrichment with the positive icSARS panel (NES=1.54,
GSEA p-value<0.001, Figure 3A) but not the negative icSARS panel
(NES=0.81, p−value=0.848, Figure 3B). Achieved NES were non-
random for the positive icSARS panel (NES range: -1.65 to 1.57, null
distribution p-value=0.002, Figure 3C), but not for the negative
icSARS panel (NES range: -1.72 to 1.64, p-value=0.601). These
results suggested that genes in the positive icSARS panel were
associated with an icSARS infection in both in human lung cultures
and mouse lung samples, but the same cannot be concluded for the
negative icSARS panel. Therefore, we did not consider leading-edge
genes identified by GSEA from the negative icSARS panel.
July 2021 | Volume 12 | Article 694355
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When examining across leading-edge genes identified by
GSEA from the positive icSARS panel (Supplementary
Table 5), our meta-analysis approach found nine of the 51
genes verified across human lung cultures were also in the
Frontiers in Immunology | www.frontiersin.org 10
leading-edge from mouse lung samples (Figure 3D): IFN
−induced protein with tetratricopeptide repeats 3 (human
Entrez ID: 3437, mouse Entrez ID: 15959, gene symbol: IFIT3),
C−X-C motif chemokine ligand 10 (human: 3627, mouse: 15945,
A

B

C

D

E

F

G

H

I

J

K

L

FIGURE 2 | Verification of icSARS Gene Panels in Independent Datasets. (A) Gene Set Enrichment Analysis (GSEA) calculated enrichment, as determined by
normalized enrichment score (NES), between the positive icSARS gene panel and the GSE47962-derived icSARSvsmock gene signature. (B) GSEA between the
positive icSARS gene panel and GSE37827-derived icSARSvsmock gene signature. (C) GSEA between the positive icSARS gene panel and GSE48142-derived
icSARSvsmock gene signature. (D) GSEA between the positive icSARS gene panel and GSE33267-derived icSARSvsmock gene signature. (E) GSEA between the
negative icSARS panel and the GSE47962-derived icSARSvsmock signature. (F) GSEA between the negative icSARS panel and the GSE37827-derived
icSARSvsmock signature. (G) GSEA between the negative icSARS panel and the GSE48142-derived icSARSvsmock signature. (H) GSEA between the negative
icSARS panel and the GSE33267-derived icSARSvsmock signature. (I) Distribution plot of NES from 1000 randomly generated gene panels (individual queries)
compared to the GSE47962-derived icSARSvsmock signature. (J) Distribution plot of NES from 1000 randomly generated gene panels compared to the GSE37827-
derived icSARSvsmock signature. (K) Distribution plot of NES from 1000 randomly generated gene panels compared to the GSE48142-derived icSARSvsmock
signature. (L) Distribution plot of NES from 1000 randomly generated gene panels compared to the GSE33267-derived icSARSvsmock signature.
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symbol: CXCL10), XIAP associated factor 1 (human: 54739,
mouse: 327959, symbol: XAF1), 2’-5’-oligoadenylate synthetase 3
100kDa (human: 4940, mouse: 246727, symbol: OAS3), zinc
finger CCHC domain containing 2 (human: 54877, mouse:
227449, symbol: ZCCHC2), IFN−induced protein 35 (human:
3430, mouse: 70110, symbol: IFI35), yrdC domain containing
(human: 79693, mouse: 230734, symbol: YRDC), poliovirus
Frontiers in Immunology | www.frontiersin.org 11
receptor-related 4 (human: 81607, mouse: 71740, symbol:
PVRL4), and cyclin L1 (human: 57018, mouse: 56706, symbol:
CCNL1). We also noted that several icSARS panel genes were not
included in the mouse dataset’s platform (Supplementary
Table 6) with nine of these genes verified across leading-edges
for icSARS gene signatures derived from human cell cultures and
two genes not included in all verification icSARS signatures. We
A

D

E

B C

FIGURE 3 | Positive icSARS Panel Enrichment in icSARS Infected Mouse Model Revealed Genes Associated with icSARS Infection. (A) Gene Set Enrichment
Analysis (GSEA) calculated enrichment, as determined by normalized enrichment score (NES), between the positive icSARS gene panel and the GSE50000-derived
icSARSvsmock gene signature. (B) GSEA between the negative icSARS panel and the GSE50000-derived icSARSvsmock signature. (C) Distribution plot of NES
from 1000 randomly generated gene panels (individual queries) compared to the GSE50000-derived icSARSvsmock signature (reference). (D) Venn diagram of the
inclusion and overlap of positive icSARS panel genes in identified leading-edges and dataset platforms across icSARS-CoV human and mouse gene signatures.
(E) Heat map of T−scores for the 20 positive icSARS panel leading-edge genes identified in (D).
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did not exclude genes from further consideration based on
platform inclusion. A heat map of differential gene expression
(i.e., T-scores) for these 20 genes across all six icSARS gene
signatures revealed that only XAF1 was statistically significant
(Welch’s two-sampled, two-sided T−test p−value<0.05) in all
icSARS gene signatures (Figure 3E), highlighting the advantage
of using a GSEA-based rather than single-gene (e.g., T-score
only) meta-analysis, which would have likely missed the other
genes identified here because of borderline significance in at least
one signature.

Positive icSARS Gene Panel Significantly
Enriched Across Other SARS-CoV Strains
After identifying and verifying genes associated with an icSARS
infection, we wanted to find differential gene expression
similarities between icSARS infection and infections from other
SARS-CoV stains with varying levels of virulence (29, 31–34).
Identified gene similarities represented genes associated with a
SARS-CoV infection regardless of virulence, and we
hypothesized that shared genes may be useful targets clinically
to preclude or overcome SARS infection. To identify genes
associated with SARS-CoV infection across strains, we used
GSEA to compare icSARS gene panels to 18 gene signatures
derived from samples of human lung cultures or mouse lung
samples mock or SARS-CoV infected with one of six strains
(Urbani, MA15, dORF6, BAT-SRBD, dNSP16, and ExoNI;
Table 2). Urbani and MA15 were fully virulent, while BAT,
dORF6, dNSP and ExoNI were attenuated by established
differences in host range or gene mutation mechanisms. These
strains were selected so all available GEO datasets containing
SARS-CoV and mock samples collected at 48hrs post infection
were included in our meta-analysis. We found the positive
icSARS panel significantly enriched (NES>1.66, GSEA
p−value<0.01) across all 18 gene signatures (Figure 4A). We
confirmed via random modelling as previously described for all
icSARS signatures that achieved significant positive NES were
non-random (null distribution p−value<0.002, Figure 4B),
except for the GSE33266-derived MA15(102)vsmock signature
which was the lowest infectious dose examined in this study. Due
to this finding, we remove the MA15(102)vsmock signature from
further analysis. The negative icSARS panel was significantly
enriched across most signatures (NES<−1.52, p−value<0.01)
except two BATvsmock signatures, the GSE47961-derived
signature from human cultures (NES=-0.95, p−value=0.569)
and the GSE50000-derived signature from mouse samples
(NES=-0.81, p−value=0.846), and the GSE33266 MA15(103)
vsmock signature from mouse samples (NES=0.90,
p−value=0.635). Random modelling with gene sets the same
size as the negative icSARS panel supported enrichment findings
observed with the negative icSARS panel since enriched
signatures were not randomly enriched (Figure 4C ,
p−value<0.002) but unenriched signatures were randomly
enriched (p-value>0.075). As additional verification of our
findings, we re-ran GSEA using the panels generated from
GSE47961-derived icSARSvsmock (500-gene queries), and
noticed this subtle change did not affect observed enrichment
Frontiers in Immunology | www.frontiersin.org 12
across 27 signatures (Supplementary Figure 2) Taken together,
these data supported our previous findings of consistent
enrichment of the positive icSARS panel and inconsistent
enrichment of the negative icSARS panel across icSARS
signatures, suggesting that genes shared across positive icSARS
panel leading-edges were associated with SARS-CoV
infections generally.

Meta-Analysis of Leading-Edge Genes
From Positive icSARS Panel GSEA
Revealed Five Top Gene Candidates
To determine which positive icSARS panel genes were most
associated with SARS-CoV infections, we compared inclusion of
leading-edge genes identified by GSEA across 22 gene signatures
derived from five SARS-CoV strains. We examined leading-edge
gene inclusion in each SARS-CoV strain specifically (Figure 5A).
Genes identified through leading-edge intersections represent
genes associated with infection of that specific SARS-CoV strain.
We noted 13 of the 61 leading-edge genes identified from the
Urbanivsmock signature in human lung cultures were shared in
leading-edges across the seven MA15vsmock signatures from
mouse lung samples (Supplementary Tables 7, 8). There were
18 leading-edge genes from the Urbanivsmock signature that
were not included across all platforms used to profile MA15 gene
expressions and 10 positive icSARS panel genes not included in
all platforms used to profile Urbani and MA15 gene expressions.
We found 12 of the 49 leading-edge genes identified across the
four BATvsmock signatures from human lung cultures were
shared in BATvsmock signature leading-edge from mouse lung
samples (Supplementary Tables 9, 10). There were 20 positive
icSARS panel genes not included in all platforms used to profile
BAT gene expressions that we included in further analysis with
10 of these genes shared across leading-edges from BATvsmock
human culture signatures. Out of the 49 leading-edge genes
identified across the four ORF6vsmock signatures from human
lung cultures, 12 were shared with the ORF6vsmock signature
leading-edge from mouse lung samples (Supplementary
Tables 11, 12). There were 14 positive icSARS panel genes not
included in all platforms used to profile ORF6 gene expressions.
Finally, we found 43 of the 99 leading-edge genes identified in the
NSP16vsmock signature from human lung cultures were shared
in the NSP16vsmock signature leading-edge from mouse lung
samples (Supplementary Tables 13, 14). There were 21 positive
icSARS panel genes not included in all platforms used to profile
NSP16 gene expressions. There were 73 leading-edge genes
identified from the one ExoNIvsmock gene signature used in
this study (Supplementary Table 15). Overall, we identified
several genes with known associations to infection with specific
SARS-CoV strains, such as fos and jun that were found in
leading-edges from signatures derived from dORF6 (2) and
Urbani (31) infections in human lung cell cultures. We also
found several genes with no previously reported associations to
that specific SARS infection. These findings were akin to findings
from our meta-analysis of icSARS infection earlier that
demonstrate the ability of our meta-analysis approach to
identify genes associated with specific SARS infections and
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predict new genes associated with infections of specific
SARS strains.

Next, we analyzed the intersection of common leading-edge
genes across all six SARS strains examined in this study. We
found five positive icSARS panel genes, IFN-induced protein
with C−X−C motif chemokine ligand 10 (CXCL10), 2’-5’-
oligoadenylate synthetase 3 (OAS3), 2’-5’-oligoadenylate
synthetase-like (OASL), tetratricopeptide repeats 3 (IFIT3), and
XIAP associated factor 1 (XAF1), in all 22 positive icSARS panel
leading-edges (Figure 5B). As additional verification of our
findings, we re-ran GSEA using the panels generated from
GSE47961-derived icSARSvsmock (500-gene queries) and
noticed this change did not affect the inclusion of our five gene
candidates across leading-edges. We further noted all five gene
candidates identified here were included in leading-edges
identified by the 500 gene query set size at the 72hr and 96hr
time points first examined in Supplementary Figure 1, suggesting
that these gene candidates likely would have been identified if later
time points were selected for use, thus not altering our overall result.
Differential gene expression (i.e., T-scores) heat maps illustrated the
strong consistency and extent of expression changes observed across
gene signatures (Figures 3C, 5C), further supporting the conclusion
Frontiers in Immunology | www.frontiersin.org 13
that these five genes were associated with SARS-CoV infection
regardless of strain.
Top Five Gene Candidates Also
Associated With MERS-CoV and SARS-
CoV2
We expanded our analysis to examine icSARS panel enrichment
and inclusion of leading-edge genes identified by GSEA across
five MERS-CoV gene signatures and three SARS-CoV2
signatures (Figure 6). Two MERS-CoV gene signatures and all
SARS-CoV2 signatures were in human lung cultures while the
other three MERS-CoV gene signatures were derived from
mouse lung cultures with various inoculation doses (54). Using
GSEA to calculate enrichment between icSARS panels and
MERS-CoV, we found both icSARS panels significantly
enriched (NES>1.97, GSEA p−value<0.001 for positive panel,
NES<−1.68, p-value<0.003 for negative panel) across all five gene
signatures (Figure 6A). For comparison to SARS-CoV2 gene
signatures, we found the positive icSARS panel significantly
enriched (NES>1.85, p-value<0.001) for two of the three
signatures while the negative icSARS panel was not
A B

C

FIGURE 4 | icSARS Panel Enrichment Detected Differential Gene Expression Similarities Across SARS Strains with Varying Virulen. (A) Heat map of Gene Set
Enrichment Analysis (GSEA) calculated normalized enrichment scores (NES) of the positive and negative icSARS panels across SARS-CoV strains with varying levels
of virulence in both human lung cultures and mouse lung samples. (B) Box and whisker plots of NES from 1000 randomly generated gene panels containing 233
genes (individual queries) compared to gene signatures (individual references) used in (A). (C) Box and whisker plots of NES from 1000 randomly generated gene
panels containing 114 genes (individual queries) compared to gene signatures (individual references) used in (A).
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consistently enriched (NES<-1.13, p-value<0.210), which was
not surprising since enrichment of the negative icSARS panel
was inconsistent in icSARS signatures. We confirmed that
achieved significant NES for the positive icSARS panel were
non-random (null distribution p−value<0.02, Figure 6B) via
random modelling for all signatures, which did not hold true for
the negative icSARS panel (Figure 6C, p-value<0.573).
Interestingly, we noted that NES for the positive icSARS panel
compared to the GSE155518 signature was negative. To explain
this result, we directed our inquiry to the depositor on record for
GSE155518, who shared that the quality of the RNA collected for
this dataset was reduced compared to their GSE160435 dataset,
suggesting that the quality of RNA may impact the detection
ability of our computational approach.

When examining leading-edge gene inclusion in each SARS
strain specifically (Figure 6D), we noted 32 of the 60 leading-edge
genes identified from twoMERSvsmock signatures in human lung
cultures were shared in leading-edges across the three
MERSvsmock signatures from mouse lung cultures
(Supplementary Tables 16, 17). There were six leading-edge
genes from MERSvsmock signatures in human cultures that
were not included across all platforms used to profile MERS
gene expressions. For SARS-CoV2 signatures, there were 44
Frontiers in Immunology | www.frontiersin.org 14
leading-edge genes shared across the three signatures
(Supplementary Table 18). These 44 genes are detailed in
Table 6. When looking at leading-edges across all SARS strains
examined in this study, we again found the same five gene
candidates with strong consistency and extent of expression
changes observed across gene signatures as determined by T-
score (Figure 6E), supporting the conclusion that these five genes
were associated with SARS infection overall.
DISCUSSION

SARS infections remain a serious public health threat due to their
strong pandemic causing potential. While efforts have gone into
developing effective therapeutics for SARS-infected patients,
treatment options were still limited, due in part to an
incomplete understanding of the molecular changes driving
SARS infections. Identification of differentially expressed genes
associated with SARS infections can improve our understanding
of SARS-induced molecular changes, potentially contributing to
the development of new therapeutic options to use in the fight
against SARS and future SARS outbreaks. This work performed a
meta-analysis of gene signatures generated from mRNA
A B

C

FIGURE 5 | Meta-analysis Across 28 Gene Signatures Representing Seven SARS-CoV Strains Varying in Virulence Identified Five Over-Expressed Genes
Associated with SARS-CoV Infection. (A) Venn diagrams of the inclusion and overlap of positive icSARS panel genes in identified leading-edges and dataset
platforms from human and mouse gene signatures shared in individual strains of SARS-CoV. (B) Venn diagram of the inclusion and overlap of shared positive
icSARS panel genes identified in SARS-CoV leading-edges across individual strains of SARS-CoV. (C) Heat map of T−scores for the five positive icSARS panel
leading-edge genes identified in (B).
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expression data across SARS-CoV, MERS-CoV, and SARS-CoV2
infections to reveal differentially expressed genes associated with
SARS infections.

Among genes identified by our GSEA-based meta-analysis
approach, we found five IFN-inducible gene candidates,
CXCL10, OAS3, OASL, IFIT3, and XAF1, stood out
consistently across SARS strains. CXCL10 was an IFN g-
induced protein with a strong connection to inflammatory and
infectious diseases including viral infections (62). CXCL10 was
associated with infections of several SARS strains, specifically
icSARS (29) and Urbani (31) in human lung cell cultures, MA15
in mouse lung samples (34), and SARS-CoV2 in clinical
bronchoalveolar lavage fluid and plasma samples (63). Also,
increased levels of CXCL10 were associated with acute
respiratory distress syndrome (ARDS), a clinical result of the
cytokine storm frequently described across SARS infections,
especially SARS-CoV2 where high CXCL10 levels have been
implicated in increased disease severity and poorer patient
outcomes (24, 63–66). The two OAS genes (OAS3 and OASL)
were anti-viral restriction factors (67). Both OAS genes had
reported associations with Urbani infections in human lung cell
cultures (31). Further, associations between the OAS pathway
Frontiers in Immunology | www.frontiersin.org 15
and MERS-CoV and SARS-CoV2 infections have been reported
(68) and single nucleotide polymorphisms in OAS genes were
found to be involved in the protective effects of Neandertal
haplotypes against SARS-CoV2 (69, 70). IFIT3 was one of four
IFN-induced proteins with tetratricopeptide repeats whose
expression was greatly enhanced by viral infection, IFN
treatment, and pathogen-associated molecular patterns (71).
While IFIT3 was not specifically named in published SARS-
CoV reports examining these datasets used in this study, IFIT1
had reported associations with MA15 infections in mouse lung
samples (33, 34). All IFIT proteins including IFIT3 have been
connected to SARS-CoV2 infection in human lung cell cultures
and samples (28). XAF1 was an apoptotic gene whose reduced or
absent expression in tumor samples and cell lines leads to poorer
survival in gastric adenocarcinomas (72, 73). This paper was the
first study to report an association between XAF1 and SARS-
CoV infections for any strain, to the best of our knowledge,
though a recent report examining differential gene expression
associated with SARS-CoV-2 infection identified increased
expression of CXCL10, OAS3, IFIT3, and XAF1 in human
epithelial lung cells and lung samples from Cynomolgus maca
(cynomolgus monkey) and mice (35). Taken together, these
A B C

D E F

FIGURE 6 | Five Over-Expressed Genes Identified in SARS-CoV Meta-analysis Found in Meta-analysis of MERS-CoV and SARS-CoV2 Signatures. (A) Heat map of
Gene Set Enrichment Analysis calculated normalized enrichment scores for positive and negative icSARS panels across gene signatures derived from MERS-CoV and
SARS-CoV2 infections in human or mouse lung cultures. (B) Box and whisker plots of normalized enrichment scores from 1000 randomly generated gene panels
containing 233 genes (individual queries) compared to MERS-CoV and SARS-CoV2 gene signatures (individual references). (C) Box and whisker plots of normalized
enrichment scores from 1000 randomly generated gene panels containing 114 genes (individual queries) compared to MERS-CoV and SARS-CoV2 gene signatures
(individual references). (D) Venn diagram of the inclusion and overlap of positive icSARS panel genes in identified leading-edges and dataset platforms across MERS-
CoV human and mouse gene signatures. (E) Venn diagram of the inclusion and overlap of shared positive icSARS panel genes in identified in SARS-CoV (Figure 6),
MERS-CoV (from D), and SARS-CoV2 gene signatures. (F) Heat map of T−scores for the five positive icSARS panel leading-edge genes identified in (E).
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results supported the conclusion that targeting IFN response
therapeutically, particularly one or more of these five identified
genes, might improve outcomes for patients with SARS
infections. Our results supported recent reports detailing the
connections between SARS-CoV2 and type I IFN response,
including one report demonstrating that pretreatment with
IFNb protected both Calu3 and Caco2 (human intestinal
epithelium) cells against SARS-CoV2 infection (26, 28). Several
reports also examine the success of IFN therapy for SARS-CoV2
patients with promising results though questions around timing,
type of IFN, and administration route remain debatable (21, 25–
27, 74). While these five genes were noted among those identified
by pathway enrichment analysis like the one performed here
Frontiers in Immunology | www.frontiersin.org 16
using GO (Supplementary Table 3), our meta-analysis approach
improves upon the existing method by refining the gene
candidate list and examining a larger number of datasets.

In our study, we observed our meta-analysis approach had
threshold of gene detection limits that may have biological
implications. For example, we failed to observe non-random
enrichment in the GSE33266 MA15(102)vsmock signature, which
was the lowest inoculation dose used in this meta-analysis
(Figure 4B). While we removed the GSE33266 MA15(102)
vsmock signature from inclusion in our meta-analysis because its
observed enrichment was not statistically different from NES
achieved randomly, we noted that IFIT3 was the only top
candidate in the leading-edge of the MA15(102)vsmock signature
and IFIT3 was not statistically significant individually (Welch’s T-
test p−value=0.160). These findings suggest there was a lower
inoculation dose limit to our approach’s ability to detect relevant
genes, which should be considered when applying ourmeta-analysis
to future research. Further, since gene expression has been known to
change over a time course (2), we repeated the process of defining
icSARS gene panels over a range of time points (24, 48, 72, and
96hrs) and found consistent enrichment and identification of gene
candidates for all timepoints but the 24hr timepoint
(Supplementary Figure 1). This finding suggested that gene
expression changes generated by an icSARS infection become
more predictable at later time points. These gene detection
threshold limits were interesting considering recent reports of that
SARS-CoV2 suppresses IFN response in early infection stages to
establish infection and early IFN treatments of SARS-CoV2 patients
improved mortality (21, 27, 28). We cannot rule out the idea that
the threshold of gene detection limits observed in our study were
not the result of IFN therapeutic limitations previously reported.

While this meta-analysis revealed genes with already well-
established associations to SARS infections, this purely
bioinformatic work was limited by a lack of direct experimental
evidence. We were unable to conduct follow-up experiments using
other techniques, such as Western blotting or qRT-PCR, to confirm
our top gene candidate predictions that were generated only from
mRNA expression data. Further, datasets selected for this study
contained only human lung cultures or mouse lung samples due to
their public availability at the time this study was conducted and
inclusion of 48hr time point data. Based on results from this study,
gene expression data from IFN-treated and untreated SARS-CoV2
patients would be of particular interest for future studies.We predict
IFNtreatedSARS2vsuntreatedSARS2 gene signatures would be
reversed (i.e., positive icSARS panel achieves significant
enrichment with a negative NES), indicating IFN-treated samples
looked more like untreated cultures and samples from this study,
further supporting the conclusion of targeting IFN as viable
therapeutic option for SARS infections.
CONCLUSION

This work used mRNA expression data to predict genes associated
with SARS infections through a meta-analysis examining gene
signatures. Through our GSEA-based meta-analysis approach, we
identified five over-expressed IFN-inducible genes, CXCL10, OAS3,
TABLE 6 | Shared Positive icSARS Panel Genes from SARS-CoV2 Datasets
Utilized for this Study.

ID Symbol Description

9830 TRIM14 tripartite motif containing 14
6672 SP100 SP100 nuclear antigen
94240 EPSTI1 epithelial stromal interaction 1
55008 HERC6 HECT and RLD domain containing E3 ubiquitin protein

ligase family member 6
10561 IFI44L interferon induced protein 44
91543 RSAD2 radical S-adenosyl methionine domain containing 2
5610 EIF2AK2 eukaryotic translation initiation factor 2 alpha kinase 2
4940 OAS3 2’-5’-oligoadenylate synthetase 3, 100kDa
54739 XAF1 XIAP associated factor 1
57674 RNF213 ring finger protein 213
3430 IFI35 interferon induced protein 35
81894 SLC25A28 solute carrier family 25, member 28
54877 ZCCHC2 zinc finger, CCHC domain containing 2
8638 OASL 2’-5’-oligoadenylate synthetase-like
3434 IFIT1 interferon-induced protein with tetratricopeptide repeats 1
29761 USP25 ubiquitin specific peptidase 25
3437 IFIT3 interferon-induced protein with tetratricopeptide repeats 3
1847 DUSP5 dual specificity phosphatase 5
64651 CSRNP1 cysteine-serine-rich nuclear protein 1
55072 RNF31 ring finger protein 31
23067 SETD1B SET domain containing 1B
9636 ISG15 ISG15 ubiquitin like modifier
9712 USP6NL USP6 N-terminal like
4616 GADD45B growth arrest and DNA-damage-inducible, beta
64121 RRAGC Ras related GTP binding C
55905 RNF114 ring finger protein 114
26524 LATS2 LATS, large tumor suppressor, homolog 2 (Drosophila)
51191 HERC5 hect domain and RLD 5
9572 NR1D1 nuclear receptor subfamily 1, group D, member 1
8605 PLA2G4C phospholipase A2 group IVC
2012 EMP1 epithelial membrane protein 1
11043 MID2 midline 2
51421 AMOTL2 angiomotin like 2
132864 CPEB2 cytoplasmic polyadenylation element binding protein 2
7290 HIRA HIR histone cell cycle regulation defective homolog A (S.

cerevisiae)
3627 CXCL10 C-X-C motif chemokine ligand 10
148022 TICAM1 toll-like receptor adaptor molecule 1
101 ADAM8 ADAM metallopeptidase domain 8
9415 FADS2 fatty acid desaturase 2
92822 ZNF267 zinc finger protein 276
6398 SECTM1 secreted and transmembrane 1
8870 IER3 immediate early response 3
4084 MXD1 MAX dimerization protein 1
5971 RELB v-rel reticuloendotheliosis viral oncogene homolog B
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OASL, IFIT3, and XAF1, as being most associated with SARS
infections. We concluded from this finding that targeting type I IFN
response either in a stand−alone or combination therapy,
particularly the five genes identified here, might improve
treatment options for SARS and other b−coronavirus infections.
Our conclusion supported prior reports of successful outcomes
from IFN therapy in patients with less severe SARS infections and at
earlier time points. Overall, this work demonstrated the gene
detection ability and reproducibility of our meta-analysis
approach and presents it as a useful computational approach
through application on mRNA expression data from SARS and
mock infected cultures and samples.
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