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Neurodegenerative diseases are characterized by the progressive loss of neural structures 

instead of the selective neuronal loss caused by metabolic or toxic disorders. Alzheimer's, Park-

inson's, Huntington's, and amyotrophic lateral sclerosis are among the several neurodegenera-

tive diseases for which there is no treatment (Ruz et al., 2020). New and better treatment strat-

egies are urgently required to tackle these fatal illnesses. For example, epicatechin is one of the 

most prevalent and plentiful flavonoids (Figure 1). Numerous organs and tissues, including the 

heart, skeletal muscle, and neurons, have been studied, and epicatechin has been associated 

with mitochondrial improvement (Panneerselvam et al., 2013). Epicatechin has been demon-

strated to aid in treating neurodegenerative diseases, although there is little data to back this 

claim (Shaki et al., 2017). The discoveries will also offer researchers a roadmap for developing 

neuroprotective drugs that are safe and effective (Table 1). 
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Figure 1: Chemical structure of epicatechin 

 

Table 1: An update on the protective effect of epicatechin in various neurodegenerative diseases  

Neurodegenerative 
diseases 

Key findings  References 

Alzheimer Disease 
(AD) 
 

Cuevas et al. investigated Epicatechin's (EC) antioxidant 
effects on Aβ 25-35-induced brain damage in vivo. AD 
neurodegeneration is linked to Amyloid-beta (Aβ). Aβ 25-
35 led to a considerable rise in lipid peroxidation (LPO) and 
reactive oxygen species (ROS) and reduced memory func-
tions. Furthermore, results showed EC treatment pre-
vented oxidative damage to the hippocampus induced by 
Aβ 25-35. 

Cuevas et al., 
2009 

Ali et al. looked at the role of EC, Vitamin E, Vitamin C, and 
Se in improving the potential impact of physical and mental 
activities (Ph&M) over socially isolated and protein mal-
nourished (SI&PM) as risk factors for Alzheimer's disease 
development in rats. In the AD, SI&PM, and SI&PM/AD 
groups, the combination of EC, VE, VC, and Se with Ph&M 
boosted brain monoamines, SOD, TAC, and BDNF. In ad-
dition, SI&PM-induced AD risk was reduced when antioxi-
dants were combined with Ph&M activities. 

Ali et al., 2021 

The impact of EC on the memory function of AD rats was 
studied by Nan et al. After the AD rats were given EC, they 
spent more time in the target quadrant, demonstrating that 
EC may reduce Tau hyperphosphorylation, downregulate 
BACE1 and Aβ1-42 expression, and boost AD rats' antiox-
idant system as well as their cognition and memory. 

Nan et al., 
2021 

Using isolated rat hippocampus mitochondria in vivo, 
Shaki et al. examined the effect of EC on mitochondrial 
damage produced by homocysteine (Hcy). EC decreased 
LPO and ROS levels while raising GSH levels concur-
rently. It has been shown that EC protects against oxida-
tive stress, reduces mitochondrial damage, and cures neu-
rological diseases caused by Hcy, including Alzheimer's 
disease. 

Shaki et al., 
2017 

Diaz and colleagues investigated the effects of EC on 
Aβ25-35 neurotoxicity on spatial memory and the interac-
tion between HSP immunoreactivity in the CA1 area of the 
rat HP. Treatment with EC reduces the risk of Alzheimer's 
disease. EC improves spatial memory performance by re-
ducing A25-35-induced neurotoxicity, HSP-60, -70, and -
90 immunoreactivity, and neuronal loss in the CA1 region 
of the Hp of A25-35-injected rats. 

Diaz et al., 
2019 
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Wang et al. studied that 3′-O-methyl-epicatechin-5-O-glu-
curonide was discovered for the first time in a biosynthetic 
EC metabolite and that proanthocyanidin (PAC) metabo-
lites found in the brain monomeric (Mo) therapy increase 
baseline synaptic transmission in hippocampal slices via 
mechanisms associated with CREB signaling. 

Wang et al., 
2012 

N’Go et al. investigated whether natural components from 
Chrysophyllum perpulchrum, such as EC and two dimeric 
procyanidins (EC + hexose), potentially inhibit the devel-
opment of oxidative stress and cognitive abnormalities in 
a rat model of AD generated by Aβ1-40 injection into the 
CA1 region of the hippocampi. A rat's identification 
memory and spatial learning were much weaker. This was 
linked to an increase in Iba 1 immunoreactivity and NO lev-
els in microglia. In the hippocampus, prefrontal cortex, and 
septum of AD-like animal models, malondialdehyde and 
SOD levels were associated, but not thiol content. 

N'Go et al., 
2021 

Ferruzzi et al. found that frequent exposure to Grape seed 
proanthocyanidin extract (GSPE) enhanced bioavailability. 
In the brain tissues of rats given a single dose of GSPE, 
neither EC nor catechin (C) was found. Repeated delivery 
of GSPE seems to affect the accumulation of GA, C, and 
EC in the brain. 

Ferruzzi et al., 
2009 

Vinpocetine, alone or in combination with EC, CoQ10, or 
VE & Se, was investigated for its possible neuroprotective 
effect and mechanism of action in reducing aluminum chlo-
ride-induced AD in rats by Ali et al. Histopathological ex-
aminations and DNA fragmentation tests revealed that the 
combination of Vinpocetine and EC exhibited the most in-
credible neuroprotective effects, protecting rat neurons 
against AD induced by AlCl3. 

Ali et al., 2022 

The research of Lim et al.aimed to find out if treating trans-
genic (Tg) mice with EC, a radical scavenger, improved 
AD symptoms. GTC improves AD characteristics, suggest-
ing that it might be used to treat AD. 

Lim et al., 2013 

Parkinson’s  
Disease (PD) 
 

Bitu Pinto et al. examined the neuroprotective properties 
of EC in a rat with PD. Results indicated that the neuropro-
tective effects of EC are most likely attributable to their 
considerable antioxidant and anti-inflammatory properties, 
emphasizing their potential for PD prevention and therapy. 

Bitu Pinto et 
al., 2015 

Tseng et al. investigated the protective benefits of EC 
against ROT-induced motor and neurochemical dysfunc-
tions in rats. EC treatment decreased ROT-induced NO 
levels and LPO production; increased the activity of suc-
cinate dehydrogenase (SDH), ATPase, ETC enzymes as 
well as catecholamine levels in the striatum; and de-
creased neuroinflammatory and apoptotic levels, indicat-
ing that EC may play a clinically significant role in delaying 
or treating human PD. 

Tseng et al., 
2020 

Zhou et al. investigated the protective impact of EC on 
apoptosis and the mTOR/AKT/GSK-3 pathway in substan-
tia nigra neurons in 6-dopamine-induced PD ratsl. In rats 
with PD caused by 6-OHDA, the findings indicated that EC 
might inhibit neuronal cell death in the substantia nigra. 

Zhou et al., 
2019 

Rubio-Osornio et al. discovered no hepatotoxicity in adult 
Sprague–Dawley rats with 50 mg/kg EC. According to this 
investigation, EC possesses neuroprotective properties in 
the MPTP-PD mouse model. EC might provide neuropro-
tection against Parkinson's disease. 

Rubio-Osornio 
et al., 2015 
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Ye et al. evaluated highly differentiated PC12 cells treated 
with MPP(+) as an in vitro cell model to assess cell survival 
after EC treatment. SIRT1/PGC-1 is one of the pathways 
by which EC inhibits MPP(+)-induced cell damage in PC12 
cells. 

Ye et al., 2012 

Al-Amri and co-authors aimed to determine if EC might in-
hibit the production of inflammatory mediators and protect 
dopaminergic neurons from LPS-induced neurotoxicity. 
Antioxidant EC was shown to have a possible therapeutic 
effect against LPS-induced neurotoxicity by decreasing 
TNF-alpha and NO inflammatory mediators in the midbrain 
while preserving DA levels. 

Al-Amri et al., 
2013 

According to a study by Li et al., both the human dopamin-
ergic cell line SH-SY5Y and primary rat mesencephalic 
cultures were significantly protected against microglial ac-
tivation-induced neuronal injury by EC. The results indi-
cate that EC is a potent inhibitor of microglial activation, 
suggesting that it might be employed to treat microglia-me-
diated dopaminergic neuronal damage in Parkinson's dis-
ease. 

Li et al., 2004 

The impact of EC on climbing ability, LPO, and apoptosis 
in the brains of PD model flies was explored by Siddique 
et al. The administration of 0.25, 0.50, and 1.0 g/mL of EC 
to the brains of PD model flies in a dose-dependent way; 
it reduced oxidative stress and apoptosis while preventing 
the loss of climbing ability. 

Siddique et al., 
2014 

Huntington's  
Disease 

Kumar and Kumar (2009) demonstrated the effects of ly-
copene and EC on memory impairment and how 3-NP 
therapy disrupts the glutathione system. Treatments with 
lycopene and EC restored glutathione system function and 
dramatically enhanced memory. 

Kumar and 
Kumar, 2009 

The green tea polyphenol EC prevents mutant htt exon 1 
protein from aggregating in a dose-dependent way. In 
vitro, EC contains mutant htt exon 1 protein from misfold-
ing and oligomerizing, indicating that it interferes with early 
aggregation processes. According to their findings, EC, a 
modulator of htt exon 1 misfolding and oligomerization, 
may be able to attenuate polyQ-mediated toxicity in vivo. 

Ehrnhoefer et 
al., 2006 

The concept, that the presence of lipid vesicles affected 
the function of EC, was examined by Beasley et al. Curcu-
min was prevented from suppressing the formation of htt 
fibrils by adding 1-palmitoyl-2-oleoyl-glycerol-3-phospho-
choline or vesicles generated from a whole-brain lipid ex-
tract. These findings suggest that EC and other htt exon 1 
misfolding and oligomerization modulators might lower 
polyQ-mediated toxicity in vivo. 

Beasley et al., 
2019 

Cano et al. claim that ascorbic acid was used to integrate 
EC into PEGylated poly(lactic-co-glycolic acid) NPs. Intox-
ication with 3-nitropropionic acid caused HD-like striatal le-
sions and motor deficits in mice. Motor abnormalities and 
depressive-like behavior related to 3-nitropropionic acid 
poisoning were considerably reduced by EC/AA NPs than 
by free EC. Treatment with EC/AA NPs also reduced neu-
roinflammation and stopped neuronal loss. 

Cano et al., 
2021 

According to AvramovichTirosh et al., M-30 and EC re-
duced apoptosis in human SH-SY5Y neuroblastoma cells 
in a neurorescue, serum deprivation model via multiple 
protection mechanisms. These mechanisms included the 
reduction of pro-apoptotic proteins and the promotion of 

Avramovich-
Tirosh et al., 
2007 
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morphological changes. In addition, these changes re-
sulted in axonal growth-associated protein-43 (GAP-43), 
which was implicated in neuronal differentiation. 

Lewy Body Disease Iron is essential for the pathophysiology of oxidative 
stress, which involves the death of dopaminergic neurons 
and the degradation of proteins via ubiquitination, high-
lighting the relevance of iron in these processes. In rats 
and non-human primates, iron and -synuclein accumula-
tion in the SNpc is linked to MPTP-induced neurodegener-
ation. In MPTP-induced dementia, the iron buildup has 
been connected to the ubiquitination of iron regulatory pro-
teins, related to NO-dependent mechanisms. The buildup 
of iron and -synuclein in the SNpc of mice and rats is in-
hibited by EC and other radical scavengers. These radical 
scavengers protect the nervous system against neurotox-
ins. 

Mandel et al., 
2004 

Amyotrophic Lat-
eral Sclerosis (ALS) 

In a transgenic mouse model of ALS, Xu and colleagues 
investigated the neuroprotective effects of EC. SOD1-
G93A transgenic mice and wild-type mice were separated 
into EC-treated and vehicle-treated control groups at ran-
dom intervals. Oral EC treatment started at a pre-sympto-
matic stage in a mouse model of ALS dramatically delayed 
illness onset and increased life duration. This research 
adds to the expanding amount of data that EC has various 
medicinal properties. 

Xu et al., 2006 

According to Koh and colleagues, the impact of EC on ALS 
model mice with the human G93A mutant Cu/Zn-SOD1 
gene, more than 2.9 micrograms of EC per gram of body 
weight prolonged symptom onset and duration of life, pre-
served more survival signals, and reduced death signals. 
These findings suggest that EC might be a disease-modi-
fying treatment for persons with ALS. 

Koh et al., 
2006 
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