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Original Article

Deep learning-based reconstruction enhances image quality 
and improves diagnosis in magnetic resonance imaging of the 
shoulder joint
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Background: Accelerated magnetic resonance imaging sequences reconstructed using the vendor-provided 
Recon deep learning algorithm (DL-MRI) were found to be more likely than conventional magnetic 
resonance imaging (MRI) sequences to detect subacromial (SbA) bursal thickening. However, the extent of 
this thickening was not extensively explored. This study aimed to compare the image quality of DL-MRI 
with conventional MRI sequences reconstructed via conventional pipelines (Conventional-MRI) for shoulder 
examinations and evaluate the effectiveness of DL-MRI in accurately demonstrating the degree of SbA 
bursal and subcoracoid (SC) bursal thickening.
Methods: This prospective cross-sectional study enrolled 41 patients with chronic shoulder pain who 
underwent 3-T MRI (including both Conventional-MRI and accelerated MRI sequences) of the shoulder 
between December 2022 and April 2023. Each protocol consisted of oblique axial, coronal, and sagittal 
images, including proton density-weighted imaging (PDWI) with fat suppression (FS) and oblique coronal 
T1-weighted imaging (T1WI) with FS. The image quality and degree of artifacts were assessed using a 5-point 
Likert scale for both Conventional-MRI and DL-MRI. Additionally, the degree of SbA and SC bursal 
thickening, as well as the relative signal-to-noise ratio (rSNR) and relative contrast-to-noise ratio (rCNR) 
were analyzed using the paired Wilcoxon test. Statistical significance was defined as P<0.05.
Results: The utilization of accelerated sequences resulted in a remarkable 54.7% reduction in total 
scan time. Overall, DL-MRI exhibited superior image quality scores and fewer artifacts compared to 
Conventional-MRI. Specifically, DL-MRI demonstrated significantly higher measurements of SC bursal 
thickenings in the oblique sagittal PDWI sequence compared to Conventional-MRI [3.92 (2.83, 5.82) vs. 
3.74 (2.92, 5.96) mm, P=0.028]. Moreover, DL-MRI exhibited higher detection of SbA bursal thickenings 
in the oblique coronal PDWI sequence [2.61 (1.85, 3.46) vs. 2.48 (1.84, 3.25) mm], with a notable trend 
towards significant differences (P=0.071). Furthermore, the rSNRs of the muscle in DL-MRI images were 
significantly higher than those in Conventional-MRI images across most sequences (P<0.001). However, the 
rSNRs of bone on Conventional-MRI of oblique axial and oblique coronal PDWI sequences showed adverse 
results [oblique axial: 1.000 (1.000, 1.000) vs. 0.444 (0.367, 0.523); and oblique coronal: 1.000 (1.000, 1.000) 
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Introduction

Magnetic resonance imaging (MRI) is widely acknowledged 
as a highly effective technique for diagnosing structural 
abnormalities in the shoulder joint, due to its exceptional 
ability to capture detailed soft tissue images (1,2). However, 
the lengthy scan times associated with shoulder MRI 
examinations can pose challenges for patient compliance, 
especially in individuals experiencing shoulder pain. 
Additionally, these extended scan times increase the 
susceptibility to artifacts caused by breathing or involuntary 
movement, thereby significantly compromising image 
quality and diagnostic accuracy.

Currently, routine sequences based on fast spin-echo 
(FSE), such as T1-weighted imaging (T1WI), proton 
density-weighted imaging (PDWI), and T2-weighted 
imaging (T2WI), are commonly employed in shoulder 
imaging. However, these sequences are prone to artifacts (3), 
further hindering the accuracy of the diagnostic process.

Reducing acquisition time in shoulder imaging not 
only improves patient comfort, particularly for those 
experiencing shoulder pain, but also minimizes the 
occurrence of artifacts in the resulting images. Two 
techniques that have shown promise in achieving faster 
scanning are compressed SENSE (C-SENSE) and parallel 
imaging (PI). While both techniques offer time-saving 
benefits, some studies revealed that SENSitivity Encoding 
(SENSE), a PI technique, has been surpassed by C-SENSE 
in terms of reducing acquisition time (4,5). However, it is 
important to note that these techniques often come with 
a trade-off, namely a potential sacrifice in signal-to-noise 
ratio (SNR) to achieve faster scanning (6). This means that 
the image quality may be compromised to some extent, as 
the SNR is a critical factor in obtaining clear and accurate 
diagnostic information.

Recent advancements in deep learning (DL) have led to 

the development of convolutional neural networks (CNN) 
that significantly accelerate the image reconstruction 
process for conventional MRI sequences. Unlike traditional 
reconstruction pipelines, these DL-based CNN models 
disrupt the trade-off between scan time and image quality, 
allowing for the optimization of image contrast while 
simultaneously reducing scan duration and image noise  
(7-10). Accelerated MRI sequences reconstructed using the 
vendor-provided Recon deep learning algorithm (DL-MRI) 
techniques have proven to be highly beneficial in clinical 
routine scans, with previous investigations successfully 
utilizing them to evaluate various musculoskeletal systems 
(10-13). These studies have demonstrated the remarkable 
potential of DL in speeding up scanning procedures and 
enhancing overall image quality.

Changes in bursal thickness can indicate different 
shoulder pathologies, with the most common being bursitis. 
There is literature indicating that for patients with bursitis 
of different degrees of bursa thickening, the treatment effect 
of the same treatment method varies (14). Shoulder pain is 
commonly associated with bursal effusion, a pathological 
characteristic. Subacromial (SbA) bursitis, an inflammation 
of the SbA bursa, is a common cause of shoulder pain  
(15-17). Additionally, studies have suggested that isolated 
subcoracoid (SC) bursitis may also contribute to shoulder 
pain (18). Measuring the thickness of the SbA and SC bursa 
in shoulder imaging is clinically valuable for diagnosing, 
monitoring, planning treatments, and predicting outcomes 
related to various shoulder pathologies. For the treatment of 
bursitis, physical therapy or injection of anti-inflammatory 
agents are typically used as conservative treatments in mild 
to moderate cases. If bursitis progresses to the chronic 
stage, it can damage surrounding structures, worsen the 
condition, and lead to tendinopathy or even tendon rupture. 
Therefore, it is crucial to utilize imaging techniques to 
accurately assess the thickness of the bursal and evaluate 

vs. 0.460 (0.387, 0.631); all P<0.001]. Additionally, all DL-MRI images exhibited significantly greater rSNRs 
and rCNRs compared to accelerated MRI sequences reconstructed using traditional pipelines (P<0.001).
Conclusions: In conclusion, the utilization of DL-MRI enhances image quality and improves diagnostic 
capabilities, making it a promising alternative to Conventional-MRI for shoulder imaging.
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whether the treatment methods have improved the patient's 
condition.

In a previous study, DL-MRI sequences were found 
to be more effective than traditional MRI sequences in 
detecting SbA bursal thickening, although the extent of this 
thickening was not extensively explored (19). Assessing the 
degree of thickness in the intra-articular bursa can provide 
valuable insights into the severity of the patient’s condition, 
as it often correlates with the level of shoulder pain 
experienced. However, there is a lack of studies evaluating 
the effectiveness of DL sequences in assessing the degree of 
SbA and SC bursa thickening in patients with shoulder pain.

The objective of this study is to investigate the differences 
in image quality between DL-MRI and conventional 
MRI sequences, as well as to evaluate the role of DL-
MRI sequences in accurately demonstrating the degree 
of SbA bursa and SC bursa thickening. By comparing the 
image quality of DL-MRI sequences with traditional MRI 
sequences, we aim to determine the potential benefits of 
DL-MRI in enhancing the visualization and assessment of 
bursal thickening. We present this article in accordance with 
the STROBE reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-1412/rc).

Methods

This prospective cross-sectional study was permitted by 
the Review Committee of the First Affiliated Hospital 
of Zhengzhou University (No. 2023-KY-0888-003) and 
was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). Written informed consent was 
obtained from each included patient. Data for this study 
were extracted from an IRB approved larger prospective 
study. DL-MRI and conventional MRI were sequentially 
acquired within one examination only. We transparently 
communicated the scientific objectives and relevance of the 
research to patients, emphasizing its potential to enhance 
future medical services like reduction in examination 
time, alleviation of discomfort experienced by patients 
enduring headaches, neck pain, shoulder pain during the 
imaging process and potential enhancements in image 
quality. Patients were informed about potential benefits of 
participation, including complimentary MRI examinations 
and the opportunity to gain medical  knowledge. 
Importantly, patients were thoroughly informed about the 
risks associated with repeated MRI examinations, ensuring 
their understanding and voluntary acceptance towards 
participating in the study. Ethical standards were rigorously 

followed, with patients providing informed consent that 
encompassed a clear understanding of all aspects of the 
research.

Patients

The sample-size in this study was selected according to 
the literature from Kaniewska et al. (19). To determine 
the minimal sample size, an a priori power analysis was 
conducted with an effect size of 0.5, an alpha error of 0.05, 
and a beta error of 0.2. For data with a Laplace distribution, 
a minimum sample size of 23 patients was required.

Be tween  December  2022  and  Apr i l  2023 ,  we 
prospectively gathered data from 49 patients with shoulder 
pain at the First Affiliated Hospital of Zhengzhou 
University. The study focused on those with chronic 
shoulder pain, explicitly excluding cases of acute pain due 
to fractures or similar acute conditions. Eligibility for 
inclusion also required patients to provide informed consent 
voluntarily. Specific exclusion criteria were applied to ensure 
the quality and relevance of the data. These included: (I) 
inadequate magnetic resonance images, (II) patients who 
had undergone shoulder surgery, and (III) the presence of a 
shoulder tumor.

Ultimately, our study comprised of 41 participants. 
The median age was 53.0 years [interquartile range (IQR): 
47.5–58.5 years], with 11 males and 30 females. Twenty-
three participants had issues with the right shoulder, and 
18 participants had issues with the left. The distribution 
of bursitis was 18 in the SbA bursa and 30 in the SC 
bursa. A flow chart providing a detailed breakdown of this 
information is available in Figure 1.

MRI acquisition

The experiments were conducted using a 3T GE MRI 
scanner (SIGNATM Premier, GE Healthcare, Waukesha, 
WI, USA) equipped with a dedicated 16-channel shoulder 
coil. The acquisition routine for shoulder MRI involved 
three types of sequences: conventional MRI sequences 
reconstructed using conventional pipelines (referred 
to as Conventional-MRI), accelerated MRI sequences 
reconstructed using the vendor-provided Recon DL 
algorithm (referred to as DL-MRI), and accelerated MRI 
sequences reconstructed without using the vendor-provided 
Recon DL algorithm (referred to as Non-DL-MRI). Each 
sequence consisted of oblique axial, coronal, and sagittal 
images, including PDWI with fat suppression (FS) and 

https://qims.amegroups.com/article/view/10.21037/qims-23-1412/rc
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oblique coronal images T1WI with FS. 
Detailed MRI parameters of conventional MRI 

sequences and accelerated MRI sequences are shown in 
Table 1.

DL image reconstruction

A Recon DL pipeline prototype (7) was utilized to obtain 
DL images in this study. This pipeline employs a deep 
CNN to reconstruct MR images, resulting in improved 
SNR, sharper edges, and reduced truncation artifacts. 
The CNN is integrated into the standard reconstruction 
process, allowing for adjustable noise reduction levels 
ranging from 0 to 100%. This ensures that the DL images 
have reduced noise variance based on the chosen noise 
reduction level. Additionally, the network is capable of 
recognizing truncation artifacts and employs de-ringing 
techniques to enhance image sharpness. In this study, we 
used a noise reduction level of 75%. The CNN in this 
reconstruction incorporates more than 10,000 kernels and 
over 4.4 million trainable parameters. It was trained using 
supervised learning, with the training data comprising of 
high-resolution MRI images that were nearly perfect, as 

well as low-resolution versions synthesized using established 
methods. To enhance the network’s robustness, image 
enhancement techniques such as rotation, flipping, intensity 
gradients, phase manipulation, and additional Gaussian 
noise were employed during the training process. The 
network is also capable of recognizing Gibbs ringing near 
sharp edges and implements de-ringing to improve image 
sharpness.

Qualitative assessment of image quality

Both the Conventional-MRI and DL-MRI sequences were 
assessed for image quality and the presence of artifacts using 
a 5-point Likert scale (0, poor; 1, light; 2, medium; 3, good 
and 4, perfect). The following were the specific scoring 
criteria used for the assessment:
	 Image quality on a 5-point scale (0= Non-

diagnostic image quality: a lot of noise and it is 
almost impossible to analyze the contour of the 
structure; 1= Poor-diagnostic image quality: a lot of 
noise, have significantly distorted contours of the 
analyzed structures; 2= Relatively good diagnostic 
image quality: easy-to-observe image noise retains 

MRI of the shoulder performed from December 2022 
to April 2023 in chronic shoulder pain patients

(n=49)

Finally included MRI exams of the shoulder
(n=41)

Both the subcoracoid and 
subacromial bursa 
thickening (n=16)

Only the subacromial bursa 
thickening

(n=2)

Finally included subacromial 
bursa thickening

(n=18)

Finally included subcoracoid 
bursa thickening

(n=30)

Only the subcoracoid bursa 
thickening

(n=14)

Without the subcoracoid or 
subacromial bursa 

thickening (n=9)

Excluded (8 examinations)
• Inadequate MRI sequences (n=2)
• Postoperative shoulder 

examination (n=5)
• Presence of shoulder tumor (n=1)

Figure 1 Flow diagram of patient selection. MRI, magnetic resonance imaging.
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the contour of the shoulder joint structure with 
significant but non-interfering inhomogeneity; 
3= Good diagnostic image quality: the image 
noise is low, but the description of the analyzed 
structure is very good and there is no significant 
inhomogeneity; 4= Excellent image quality: with 
high image sharpness, without very significant 
image noise, and perfectly describing the structure 
under analysis, without any inhomogeneity or 
signal variation.)

	 Artifacts on a 5-point scale (0= Severe artifacts 
affect the evaluation of anatomical structures; 
1= Moderate artifacts moderately affected the 
evaluation of anatomical structures; 2= Mild or 
moderate artifacts mildly affected the evaluation 
of anatomical structures; 3= Mild artifacts were 
observed but did not affect the evaluation of 
anatomical structures; 4= No obvious artifacts.)

Two experienced radiologists (B.W. and Y.Z., with 
10 and 25 years’ experience of joint MRI, respectively) 
independently evaluated the images for image quality and 
artifact severity in a blind and randomized manner. Prior 
to evaluation, the radiologists familiarized themselves with 
the image rating criteria. Interobserver agreement was 
assessed separately, and the mean scores for DL-MRI and 

Conventional-MRI image quality, as well as artifact severity, 
were compared.

Quantitative assessment of the image quality

To evaluate the effectiveness of DL-MRI sequences in 
demonstrating the degree of SbA bursa and SC bursa 
thickening, two readers independently measured the 
maximum thickness of these bursae on the oblique coronal 
and sagittal fat-suppressed PDWI images. 

To conduct a quantitative assessment of image quality, 
two readers independently selected a round-shaped region 
of interest (ROI) measuring 4 mm2 in both the bone 
(humeral head, excluding any edematous areas) and muscle 
(deltoid, excluding any edematous areas) within each set 
of images. The signal intensity (SI) within the measured 
ROI and the standard deviation (STD) of the SI within the 
measured ROI were recorded by each reader. To determine 
the relative signal-to-noise ratio (rSNR) and relative 
contrast-to-noise ratio (rCNR) for each batch of images, the 
mean values of SI and STD determined by the two readers 
were utilized. By comparing rSNR and rCNR, quantitative 
analyses were performed to compare Conventional-MRI 
and DL-MRI, as well as Non-DL-MRI and DL-MRI, 
respectively. 

Table 1 MRI parameters of conventional MRI sequences and accelerated MRI sequences

Parameters
Conventional MRI sequences Accelerated MRI sequences

OSag PD FS OCor PD FS OCor T1w FS OAx PD FS OSag PD FS OCor PD FS OCor T1w FS OAx PD FS

TE (ms) 41.1  
(40.1–41.5)

41.6  
(39.9–42.0)

10.4  
(10.1–10.4)

42.3  
(41.0–43.7)

41.7  
(40.1–42.3)

42.5  
(39.9–42.5)

7.7  
(7.3–7.7)

43.3  
(41.0–45.4)

TR (ms) 3,375  
(2,757–3,411)

3,090  
(2,470–3,090)

317  
(312–318)

3,025  
(2,727–3,477)

2,853  
(2,757–2,889)

2,605  
(2,470–2,605)

516  
(516–579)

2,669  
(2,545–3,100)

Thickness (mm) 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

Matrix 384×256 384×256 384×256 384×288 384×256 384×256 384×256 384×288

Field of view 
(mm2)

160×160 160×160 160×160 180×180 160×160 160×160 160×160 180×180

Flip angle (°) 111 111 111 111 111 111 111 111

Number of 
excitation

2.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00

Acquisition time 
(min:s) 

02:15  
(01:32–02:48)

02:04  
(01:32–02:34)

01:22  
(01:19–01:26)

02:16  
(01:31–2:47)

00:58  
(00:47–01:11)

01:01  
(00:48–01:13)

00:42  
(00:38–0:48)

00:55  
(00:44–01:07)

TE and TR data were represented by setting parameters (scanning the actual parameter range). Acquisition time data represented as 
average value (minimum, maximum). MRI, magnetic resonance imaging; OSag, oblique sagittal; PD, proton density; FS, fat suppression; 
OCor, oblique coronal; T1w, T1-weighted imaging; OAx, oblique axial; TE, echo time; TR, repetition time.
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The following methods were used for each relative 
metric (10):

rSNR:

max SIrSNR Norm
STD

 =  
 

 [1]

rCNR:

( )
max

,
muscle bone

bone muscle

SI SI
rCNR Norm

mean STD STD

 −
=   

 
 [2]

where SI is the signal of the given ROI, STD is the standard 
deviation within the ROI, and:

( ) ( )
max

max
i

i
i

fNorm f
f

=
∀

 [3]

Statistical analysis

Statistical analyses were performed using IBM SPSS 
Statistics (version 25.0, IBM corporation). Graphs were 
generated using GraphPad Prism version 9.5.1 for Windows 
(GraphPad Software, San Diego, California USA, www.
graphpad.com). The study employed two-sided P values, 
and statistical significance was determined at a significance 
level of P<0.05. Continuous data were assessed for normality 
using the Kolmogorov-Smirnov test or Shapiro-Wilk test, 
depending on the sample size, and were presented as mean 
± standard deviation (SD) or median (IQR), as appropriate. 
Categorical variables were reported as numbers (%). Paired 
Wilcoxon signed-rank tests were utilized to compare 
differences in image quality, artifact severity, rSNR, and 
rCNR between different quantification techniques. To 
evaluate the consistency of interpretations between the two 
readers, the intraclass correlation coefficient (ICC) was 
calculated. The ICC was interpreted as follows: <0.2 = poor, 
0.21–0.50 = fair, 0.51–0.60 = moderate, 0.61–0.75 = good, 
and 0.75–1.00 = excellent.

Results 

Scan time

The accelerated sequence significantly reduced the total 
scan time, with an average of just 3 minutes and 36 seconds, 
representing a remarkable 54.7% decrease compared to the 
regular sequence. In contrast, the regular sequence required 
an average total scan duration of 7 minutes and 57 second.

Image quality 

Figure 2 visually demonstrates the disparity between DL-
MRI and Conventional-MRI images, clearly highlighting 
that DL-MRI images exhibit fewer artifacts and superior 
image quality compared to Conventional-MRI images. 
To provide a comprehensive evaluation, Table 2 presents 
the subjective image quality and artifacts severity scores 
for both image sets, along with the ICC between the two 
readers.

The image quality scores of oblique coronal FS 
PDWI for DL-MRI [3.00 (3.00, 3.25)] were found to be 
comparable to those of Conventional-MRI [3.50 (3.00, 
4.00)] (P=0.326). However, DL-MRI exhibited superior 
image quality scores overall compared to Conventional-
MRI for oblique axial FS PDWI [3.50 (3.00, 4.00)], oblique 
sagittal FS PDWI [4.00 (3.00, 4.00)], and oblique coronal 
FS T1WI [4.00 (4.00, 4.00)]. These differences were 
statistically significant (all P<0.001). The ICC analysis 
revealed that the image quality scores of DL-MRI were 
consistent across the two readers, with ICC values ranging 
from 0.760 to 0.806. In contrast, the ICC analysis for 
Conventional-MRI ranged from 0.521 to 0.691, which 
indicated a relatively lower inter-observer agreement in 
image quality scores. These findings suggest that DL-MRI 
exhibits improved inter-observer agreement and consistency 
in image quality assessment.

All DL-MRI images exhibited significantly higher 
artifacts scores compared to Conventional-MRI. Specifically, 
oblique axial FS PDWI [3.00 (3.00, 4.00)], oblique sagittal 
FS PDWI [3.50 (3.00, 4.00)], oblique coronal FS T1WI 
[4.00 (3.00, 4.00)], and oblique coronal FS PDWI [3.50 
(3.00, 4.00)] of DL-MRI had significantly higher artifacts 
scores than their counterparts in Conventional-MRI 
[oblique axial FS PDWI, 3.00 (2.50, 3.00); oblique sagittal 
FS PDWI, 3.00 (3.00, 3.50); oblique coronal FS T1WI, 
3.00 (3.00, 4.00); and oblique coronal FS PDWI, 3.00 (3.00, 
3.50)] (all P=0.001). The results indicated that DL-MRI 
images exhibit a lower occurrence of artifacts compared 
to Conventional-MRI images. The consistency of artifact 
scores in DL-MRI was evaluated using the ICC analysis, 
which yielded a range of 0.768 to 0.858, indicating a high 
level of agreement between the two readers. Conversely, 
the ICC analysis for Conventional-MRI yielded a range 
of 0.618 to 0.673, suggesting a relatively lower level of 
agreement between the two readers. These findings suggest 
that DL-MRI not only reduces artifacts but also enhances 
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interobserver agreement.

Bursa thickness 

Table 3 presents the evaluation of SbA bursa and SC bursa 
thickening using DL-MRI and Conventional-MRI. The 
comparison of bursa thickness between the SC bursa and 
SbA bursa, as observed in Conventional-MRI and DL-MRI, 
is illustrated in Figure 3. The findings suggest that DL-
MRI has a higher likelihood of detecting bursa thickening 
compared to Conventional-MRI.

The measurements of SC bursa thickening on DL-MRI 
images [oblique coronal FS PDWI: 4.14 (2.46, 5.70) mm; 
oblique sagittal FS PDWI: 3.92 (2.83, 5.82) mm] were 
found to be higher compared to Conventional-MRI images. 

Notably, the difference in thickness became statistically 
significant in the oblique sagittal FS PDWI (P=0.028). 
Similarly, the measurements of SbA bursa thickening on 
DL-MRI images [2.61 (1.85, 3.46) mm] were higher than 
those on Conventional-MRI images [2.48 (1.84, 3.25) mm] 
in the oblique coronal FS PDWI. Although the difference 
did not reach statistical significance, the P value of 0.071 
suggests a trend towards significance. In the oblique sagittal 
FS PDWI, the measurements of SbA bursa thickening on 
DL-MRI images [2.64 (1.44, 3.21) mm] were observed 
to be slightly lower compared to Conventional-MRI 
images [2.75 (1.77, 3.11) mm]. However, this difference 
was not statistically significant (P=0.983). Figures 4 and 
5 visually depict the contrasting effects of DL-MRI and 
Conventional-MRI in visualizing SbA and SC bursa 

A B

C D

Figure 2 MRI of a 67-year-old man with left shoulder pain. (A-D) MRI include oblique axial/coronal PDWI with FS standard images 
reconstructed using conventional pipelines (A,C), accelerated image with DLR (B,D). Conventional sequences reconstructed using 
conventional pipelines (A,C) show artifacts and noise. Accelerated images with DLR (B,D) show decreased noise and increased sharpness. 
MRI, magnetic resonance imaging; PDWI, proton density-weighted imaging; FS, fat-saturated; DLR, deep learning-based reconstruction.
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Table 2 Subjective image quality and artifacts severity scores 

Sequences Parameters
Scores (comparison individually) Interobserver agreement

 DL-MRI Conventional-MRI P Conventional-MRI DL-MRI

Oblique axial  
FS PDWI

Subjective image quality 3.50 [3.00, 4.00] 3.00 [2.50, 3.00] <0.001* 0.623 0.760

Artifacts 3.00 [3.00, 4.00] 3.00 [2.50, 3.00] 0.001* 0.673 0.768

Oblique coronal 
FS PDWI

Subjective image quality 3.00 [3.00, 3.25] 3.50 [3.00, 4.00] 0.326 0.691 0.782

Artifacts 3.50 [3.00, 4.00] 3.00 [3.00, 3.50] 0.001* 0.618 0.794

Oblique coronal 
FS T1WI

Subjective image quality 4.00 [4.00, 4.00] 3.00 [3.00, 3.00] <0.001* 0.521 0.778

Artifacts 4.00 [3.00, 4.00] 3.00 [3.00, 4.00] 0.001* 0.670 0.858

Oblique sagittal FS 
PDWI

Subjective image quality 4.00 [3.00, 4.00] 3.00 [2.50, 3.00] <0.001* 0.546 0.806

Artifacts 3.50 [3.00, 4.00] 3.00 [3.00, 3.50] 0.001* 0.623 0.775

The data for the scores for image quality and artifact severity were shown as median [upper quartile, lower quartile]. *, P value with 
significance. DL-MRI, accelerated magnetic resonance imaging sequences reconstructed using the vendor-provided Recon deep learning 
algorithm; Conventional-MRI, conventional magnetic resonance imaging sequences reconstructed using conventional pipelines; FS, fat 
suppression; PDWI, proton density-weighted imaging; T1WI, T1-weighted imaging.  

Table 3 Degree of subacromial bursa and subcoracoid bursa thickening 

Sequences Parameters
Thickening, mm (comparison individually) Interobserver agreement

DL-MRI Conventional-MRI P Conventional-MRI DL-MRI

Oblique coronal  
FS PDWI

Subacromial bursa 2.61 [1.85,3.46] 2.48 [1.84,3.25] 0.071 0.985 0.987

Subcoracoid bursa 4.14 [2.46,5.70] 3.47 [2.17,5.22] 0.122 0.995 0.995

Oblique sagittal  
FS PDWI

Subacromial bursa 2.64 [1.44,3.21] 2.75 [1.77,3.11] 0.983 0.993 0.990

Subcoracoid bursa 3.92 [2.83,5.82] 3.74 [2.92,5.96] 0.028* 0.991 0.997

The data for the thickening of the subacromial bursa and subcoracoid bursa were shown as median [upper quartile, lower quartile]. *, P 
value with significance. DL-MRI, accelerated magnetic resonance imaging sequences reconstructed using the vendor-provided Recon 
deep learning algorithm; Conventional-MRI, conventional magnetic resonance imaging sequences reconstructed using conventional 
pipelines; FS, fat suppression; PDWI, proton density-weighted imaging.  
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Figure 3 Comparison of the bursa thickness in Conventional-MRI and DL-MRI. (A) Comparison of the bursa thickness of subcoracoid 
bursa in Conventional-MRI and DL-MRI. (B) Comparison of the bursa thickness of subacromial bursa in Conventional-MRI and DL-MRI. 
*, P value with significance. Conventional-MRI, conventional magnetic resonance imaging sequences reconstructed using conventional 
pipelines; DL-MRI, accelerated magnetic resonance imaging sequences reconstructed using the vendor-provided Recon deep learning 
algorithm; FS, fat suppression; PDWI, proton density-weighted imaging. 
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thickenings. Specifically, Figure 4 demonstrates that the 
SbA bursa thickness measured in Conventional-MRI was 
lower than that in DL-MRI, both in the oblique coronal FS 
PDWI and the oblique sagittal FS PDWI. Furthermore, 
our analysis revealed that the SC bursa thickening measured 
in Conventional-MRI was comparatively smaller than that 
in DL-MRI, as depicted in Figure 5 for both the oblique 
coronal FS PDWI and the oblique sagittal FS PDWI. It is 
worth noting that the degree of bursal thickening showed 
similar values across DL-MRI (ranging from 0.987 to 
0.997) and Conventional-MRI (ranging from 0.985 to 
0.995) images, indicating a consistent level of thickening. 

Moreover,  both DL-MRI and Conventional-MRI 
demonstrated strong interobserver agreement in assessing 
bursal thickening.

Comparison of rSNR and rCNR 

Figure 6 provides an intuitive visualization of the comparison 
between Conventional-MRI and DL-MRI, as well as Non-
DL-MRI and DL-MRI, in terms of rSNR and rCNR. 
The differences are clearly depicted in the figure. Based 
on the findings presented in Table 4, the rSNRs of bone 
on Conventional-MRI of oblique axial FS PDWI [1.000 

Figure 4 MRI of a 55-year-old woman with right shoulder pain. (A-D) MRI images include oblique coronal/sagittal PDWI with FS standard 
images reconstructed using conventional pipelines (A,C), accelerated image with DLR (B,D). Conventional sequences reconstructed using 
conventional pipelines (A,C) show artifacts and noise, and the subacromial bursa thickenings measured in the oblique coronal FS PDWI 
was 2.54 mm (A) and in the oblique sagittal FS PDWI was 2.75 mm (C). Accelerated images with DLR (C,D) show decreased noise and 
increased sharpness, and the subacromial bursa thickenings measured in the oblique coronal FS PDWI was 3.21 mm (B) and in the oblique 
sagittal FS PDWI was 3.21 mm (D). MRI, magnetic resonance imaging; PDWI, proton density-weighted imaging; FS, fat-saturated; DLR, 
deep learning-based reconstruction.

A B

C D
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(1.000, 1.000)] and oblique coronal FS PDWI [1.000 (1.000, 
1.000)] images were significantly higher compared to DL-
MRI [oblique axial FS PDWI: 0.444 (0.367, 0.523); oblique 
coronal FS PDWI: 0.460 (0.387, 0.631)] (all P<0.001). 
Furthermore, the rSNRs of bone on oblique coronal FS 
T1WI with DL [1.000 (0.811, 1.000)] and oblique sagittal 
FS PDWI [1.000 (1.000, 1.000)] images were significantly 
higher compared to Conventional-MRI [oblique coronal 
FS T1WI: 0.827 (0.617, 1.000); oblique sagittal FS PDWI: 
0.747 (0.574, 0.972)] (P=0.036, P<0.001, respectively). In 
terms of bone imaging, our analysis revealed that DL-MRI 
and Conventional-MRI images exhibited comparable noise 

reduction abilities. 
Additionally, our analysis revealed that the rSNRs of the 

muscle in DL-MRI images were significantly higher than 
those in Conventional-MRI images across all sequences 
(all P<0.001), except for the oblique coronal FS PDWI 
(P=0.464). Furthermore, in the oblique axial/coronal FS 
PDWI sequences (all P<0.001), as well as the oblique 
coronal FS T1WI (P=0.028), the rCNRs of DL-MRI 
images were significantly higher compared to Conventional-
MRI images. However, in the case of the oblique sagittal 
FS PDWI, the difference in rCNR did not reach statistical 
significance (P=0.091).

A B

C D

Figure 5 MRI of a 51-year-old woman with right shoulder pain. (A-D) MRI include oblique sagittal/coronal PDWI with FS standard 
images reconstructed using conventional pipelines (A,C), accelerated image with DLR (B,D). Conventional sequences reconstructed using 
conventional pipelines (A,C) show artifacts and noise, and the subcoracoid bursa thickenings measured in the oblique sagittal FS PDWI 
was 2.68 mm (A) and in the oblique coronal FS PDWI was 3.87 mm (C). Accelerated images with DLR (B,D) show decreased noise and 
increased sharpness, and the subcoracoid bursa thickenings measured in the oblique sagittal FS PDWI was 2.91 mm (B) and in the oblique 
coronal FS PDWI was 4.40 mm (D). MRI, magnetic resonance imaging; PDWI, proton density-weighted imaging; FS, fat-saturated; DLR, 
deep learning-based reconstruction.
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Figure 6 Comparison of rSNR and rCNR between different sequence images. (A) Comparison of rSNR and rCNR between Conventional-
MRI and DL-MRI. (B) Comparison of rSNR and rCNR between Non-DL-MRI and DL-MRI. *, P value with significance. OAx, oblique 
axial; PDWI, proton density-weighted imaging; rCNR, relative contrast-to-noise ratio; rSNR, relative signal-to-noise ratio; OCor, oblique 
coronal; T1WI, T1-weighted imaging; OSag, oblique sagittal; Conventional-MRI, conventional magnetic resonance imaging sequences 
reconstructed using conventional pipelines; DL-MRI, accelerated magnetic resonance imaging sequences reconstructed using the vendor-
provided Recon deep learning algorithm; Non-DL-MRI, accelerated magnetic resonance imaging sequences reconstructed without using 
the vendor-provided Recon deep learning algorithm. 

Table 4 Results of quantitative comparison of bone and muscle between DL-MRI and Conventional-MRI on different sequences

Sequences Parameters
rSNR rCNR

Conventional-MRI DL-MRI Z P Conventional-MRI DL-MRI Z P

Oblique axial 
FS PDWI

Bone 1.000  
[1.000, 1.000]

0.444  
[0.367, 0.523]

−5.553 <0.001* 0.483  
[0.318, 0.744]

1.000  
[1.000, 1.000]

−4.970 <0.001*

Muscle 0.567  
[0.461, 0.748]

1.000  
[1.000, 1.000]

−5.371 <0.001* – – – –

Oblique 
coronal FS 
PDWI

Bone 1.000  
[1.000, 1.000]

0.460  
[0.387, 0.631]

−5.034 <0.001* 0.596  
[0.343, 0.884]

1.000  
[1.000, 1.000]

−4.529 <0.001*

Muscle 0.935  
[0.604, 1.000]

1.000  
[0.656, 1.000]

−0.732 0.464 – – – –

Oblique 
coronal FS 
T1WI

Bone 0.827  
[0.617, 1.000]

1.000  
[0.811, 1.000]

−2.093 0.036* 0.885  
[0.672, 1.000]

1.000  
[0.947, 1.000]

−2.196 0.028

Muscle 0.658  
[0.417, 0.991]

1.000  
[0.977, 1.000]

−3.959 <0.001* – – – –

Oblique 
sagittal FS 
PDWI

Bone 0.747  
[0.574, 0.972]

1.000  
[1.000, 1.000]

−4.296 <0.001* 0.866  
[0.566, 1.000]

1.000  
[0.844, 1.000]

−1.691 0.091

Muscle 0.699  
[0.593, 0.952]

1.000  
[1.000, 1.000]

−4.140 <0.001* – – – –

The data for rSNR and rCNR were shown as median [upper quartile, lower quartile]. *, P value with significance. DL-MRI, accelerated 
magnetic resonance imaging sequences reconstructed using the vendor-provided Recon deep learning algorithm; Conventional-MRI, 
conventional magnetic resonance imaging sequences reconstructed using conventional pipelines; rSNR, relative signal-to-noise ratio; 
rCNR, relative contrast-to-noise ratio; FS, fat suppression; PDWI, proton density-weighted imaging; T1WI, T1-weighted imaging.  
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In terms of both bone and muscle, all DL-MRI images 
exhibited significantly higher rSNRs compared to the 
original accelerated MRI images, as determined by a non-
parametric test (paired Wilcoxon test; all P<0.001), as shown 
in Table 5. Additionally, our study demonstrated that all DL-
MRI images had significantly greater rCNRs compared to 
Non-DL-MRI images (all P<0.001), as indicated in Table 5.

Discussion

In our study, we found that it was plausible to consider DL-
MRI as a potential substitution for Conventional-MRI in 
shoulder MRI examinations because of the superior image 
quality of DL-MRI compared to Conventional-MRI in the 
majority of cases, as well as the enhanced efficacy of DL-
MRI in evaluating the degree of SbA bursa and SC bursa 
thickenings. Given that DL-MRI is particularly valuable in 
detecting SbA and SC bursa thickenings, we also speculate 
that it has potential in identifying and characterizing 
specific shoulder lesions.

MRI is a valuable tool for accurately and comprehensively 

evaluating various shoulder anatomical structures, such 
as the extent of tendons, the muscles of the rotator cuff, 
and the glenohumeral joint capsule (20-22). However, the 
conventional sequences used in shoulder MRI often require 
a significant amount of time to complete. This prolonged 
duration can cause discomfort for patients experiencing pain 
and may also lead to the presence of artifacts in the resulting 
images. To address these challenges, this study introduces a 
DL technique aimed at reducing the examination time for 
shoulder MRI by 54.7%. By leveraging DL, the goal was 
to explore whether reconstructed accelerated images, with 
75% noise reduction, can serve as a superior substitute for 
conventional-MRI images in shoulder MRI examinations.

Previous research has indicated that DL-MRI has the 
potential to generate images of higher quality compared 
to Conventional-MRI in the FS PDWI and FS T2WI 
sequences (23). Besides, Dratsch et al. (24) have assessed the 
image quality of shoulder MRI utilizing a combination of 
compressed sensing (CS) acquisition and DL reconstruction. 
It has been confirmed that the DL-based algorithm allows 
for additional acceleration of acquisition time compared 

Table 5 Results of quantitative comparison of bone and muscle between DL-MRI and Non-DL-MRI on different sequences

Sequences Parameters
rSNR rCNR

Non-DL-MRI DL-MRI Z P Non-DL-MRI DL-MRI Z P

Oblique axial FS 
PDWI

Bone 0.441  
[0.382, 0.605]

1.000  
[1.000, 1.000]

−5.553 <0.001* 0.441  
[0.296, 0.589]

1.000  
[1.000, 1.000]

−4.957 <0.001*

Muscle 0.426  
[0.358, 0.548]

1.000  
[1.000, 1.000]

−5.566 <0.001* – – – –

Oblique coronal 
FS PDWI

Bone 0.436  
[0.312, 0.599]

1.000  
[1.000, 1.000]

−5.527 <0.001* 0.439  
[0.351, 0.775]

1.000  
[1.000, 1.000]

−4.671 <0.001*

Muscle 0.442  
[0.315, 0.583]

1.000  
[1.000, 1.000]

−5.553 <0.001* – – – –

Oblique coronal 
FS T1WI

Bone 0.628  
[0.470, 0.987]

1.000  
[1.000, 1.000]

−3.738 <0.001* 0.665  
[0.539, 0.837]

1.000  
[1.000, 1.000]

−4.464 <0.001*

Muscle 0.560  
[0.377, 0.753]

1.000  
[1.000, 1.000]

−5.216 <0.001* – – – –

Oblique sagittal 
FS PDWI

Bone 0.369  
[0.312, 0.508]

1.000  
[1.000, 1.000]

−5.579 <0.001* 0.360  
[0.255, 0.622]

1.000  
[1.000, 1.000]

−5.384 <0.001*

Muscle 0.382  
[0.299, 0.485]

1.000  
[1.000, 1.000]

−5.553 <0.001* – – – –

The data for rSNR and rCNR were shown as median [upper quartile, lower quartile]. *, P value with significance. DL-MRI, accelerated 
magnetic resonance imaging sequences reconstructed using the vendor-provided Recon deep learning algorithm; Non-DL-MRI, 
accelerated magnetic resonance imaging sequences reconstructed without using the vendor-provided Recon deep learning algorithm; 
rSNR, relative signal-to-noise ratio; rCNR, relative contrast-to-noise ratio; FS, fat suppression; PDWI, proton density-weighted imaging; 
T1WI, T1-weighted imaging. 
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to conventional methods. Notably, the reconstruction in 
this study involved super-resolution reconstruction by DL 
following the undersampling of K-space data through CS, 
a crucial aspect in reducing acquisition time. A significant 
technical challenge associated with this technology pertains 
to the reliability of the information in post-production 
increments. The DL reconstruction we employed primarily 
focused on image denoising. The reduction in acquisition 
time is incidental and resulted from the improved noise 
reduction capability, leading to a potential decrease in 
number of excitation (NEX). Concurrently, additional 
research, inspired by Kaniewska et al. (19), explores whether 
DL-MRI holds advantages in delineating the thickness 
of the SbA and SC bursa. Nevertheless, in anatomical 
structures like bones and joints, the absence of appropriate 
third-party standards as reference poses a challenge. DL 
technology in these areas requires further validation, 
necessitating future studies with suitable samples, such as  
in vitro investigations.

In our study, we observed that DL-MRI images 
generally exhibited significantly better image quality than 
Conventional-MRI images, and also required shorter 
examination times. Specifically, DL-MRI performed 
comparably to Conventional-MRI in terms of image 
quality for oblique coronal FS PDWI. These findings 
align with previous research, suggesting that DL-MRI 
consistently offers superior image quality compared to 
Conventional-MRI.

Our investigation revealed a notable difference in artifact 
scores between DL-MRI and Conventional-MRI, with 
DL-MRI exhibiting significantly higher scores (P=0.001) 
compared to conventional MRI (11). This disparity could 
potentially be attributed to the differences in acquisition 
time between our study and the literature referenced. 

In a study conducted by Kaniewska et al., it was 
demonstrated that the use of faster periodically rotated 
overlapping parallel lines with enhanced reconstruction 
(PROPELLER) sequences, combined with DL post-
processing, resulted in superior image quality and 
higher diagnostic confidence compared to traditional 
PROPELLER sequences (19). Additionally, the DL 
sequences were found to be more effective in detecting 
bursal thickening that went unnoticed by the traditional 
PROPELLER sequences. However, it is important to note 
that Kaniewska et al. did not perform precise numerical 
measurements of the thickened bursa. To further investigate 
the effectiveness of DL sequences in detecting bursa 
thickening, our study focused on evaluating the thickening 

of the SbA and SC bursa using oblique coronal/sagittal FS 
PDWI images. Our findings indicate that the measurements 
of SC thickenings on DL-MRI images were consistently 
higher compared to Conventional-MRI images. This 
difference reached statistical significance in the oblique 
sagittal FS PDWI sequence (P=0.028). Additionally, in the 
oblique coronal FS PDWI sequence, the measurements 
of SbA thickenings on DL-MRI images were higher than 
those on Conventional-MRI images, with a P value of 
0.071, indicating a tendency toward significance. However, 
it is important to note that the measurements of SC 
thickenings on DL-MRI images were higher than those 
on Conventional-MRI images in the oblique coronal FS 
PDWI sequence. Conversely, the measurements of SbA 
thickenings on DL-MRI images were lower than those on 
Conventional-MRI images in the oblique sagittal FS PDWI 
sequence. Despite these observations, neither of these 
differences reached statistical significance. The limited 
number of participants in our study, coupled with the 
prevalence of significant bursa effusions among them, may 
have influenced our results. Consequently, both DL-MRI 
and Conventional-MRI images exhibited evident bursal 
sac hypertrophy, making it challenging to discern subtle 
thickness differences. To obtain more conclusive findings, 
further research is warranted, preferably with larger 
sample sizes and a broader range of disease severity among 
patients. Based on our current findings, we believe that 
DL-MRI has the potential to provide clearer visualization 
of SbA and SC thickness, thereby enhancing the precision 
of disease diagnosis. However, to validate this assertion 
and fully understand the benefits of DL-MRI in clinical 
practice, additional studies involving more diverse patient 
populations are necessary.

Previous studies have reported improvements in SNR 
and CNR when utilizing DL techniques in both phantom 
experimental experiments and clinical evaluations (7,25). 
To assess the noise reduction capabilities of DL-MRI 
compared to Conventional-MRI, we calculated the rSNR 
and rCNR. Furthermore, we quantitatively compared 
DL-MRI to Non-DL-MRI in terms of noise reduction 
capabilities using rSNR and rCNR. Our experimental 
results demonstrated that the accelerated sequence images 
reconstructed using DL (75%) exhibited higher rSNR 
and rCNR values compared to the accelerated sequence 
images without DL in every image. These differences were 
statistically significant (P<0.001), aligning with the findings 
of a previous study (10).

Besides, in the oblique axial FS PDWI and oblique 
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coronal FS PDWI images, Conventional-MRI exhibited 
higher relative rSNRs of bone compared to DL-MRI 
(all P<0.001). Conversely, in the oblique coronal FS 
T1WI and oblique sagittal FS PDWI images, DL-MRI 
demonstrated greater rSNRs of bone than Conventional-
MRI (P=0.036, P<0.001, respectively). Therefore, in terms 
of bone imaging, the noise reduction capabilities of DL-
MRI and Conventional-MRI were found to be comparable. 
In addition, our study revealed that the rSNRs of muscle 
in DL-MRI images were consistently higher than those 
in Conventional-MRI images across all sequences. These 
differences reached statistical significance (all P<0.001), 
except for the oblique coronal FS PDWI sequence 
(P=0.464). These findings suggest that the DL technique is 
more effective at reducing noise in muscle tissue compared 
to bone tissue. This discrepancy may be attributed to the 
inherent differences in noise distributions between muscle 
and bone tissues in MRI images. Muscle tissue typically 
exhibits lower noise levels with a relatively uniform signal 
distribution. This uniformity aids in mitigating the impact 
of noise, leading to higher image quality. In contrast, 
bone tissue imaging may have higher noise levels due to 
its lower SI in MRI images and its complex structure, 
which includes numerous small details and gaps. These 
intricate features within the bone structure can contribute 
to variations in noise levels, making it more challenging for 
the DL technique to effectively reduce noise in bone tissue. 
The image results obtained from our study highlight the 
limitations of the DL technique, as it cannot completely 
eliminate noise or infinitely improve the SNR. There exists 
a threshold beyond which further improvements become 
challenging to achieve. Furthermore, our findings indicated 
that in the oblique axial/coronal FS PDWI sequences (all 
P<0.001) and oblique coronal FS T1WI sequence (P=0.028), 
the rCNRs of DL-MRI images were significantly higher 
compared to Conventional-MRI images. However, in 
the oblique sagittal FS PDWI sequence, the difference in 
rCNRs between DL-MRI and Conventional-MRI images 
did not reach statistical significance (P=0.091). Based 
on these observations, it can be inferred that, DL tends 
to exhibit greater rCNRs than Conventional images in  
most cases.

Previous research has explored the application of DL 
reconstruction technology in shoulder MRI, demonstrating 
its efficacy in reducing acquisition times. Similarly, studies 
focusing on knee MRI have shown that DL-MRI has the 
potential to shorten scan times, suggesting that DL-MRI 
can serve as a viable alternative to Conventional-MRI 

(23,26). Moreover, DL-MRI has exhibited remarkable 
performance in various anatomical regions, including the 
pituitary, temporomandibular joint, prostate, and brain 
(7,27-29). These studies have demonstrated the versatility 
and effectiveness of DL across different tissues in MRI, 
as well as in different imaging modality (30,31), further 
highlighting its potential as a valuable tool in medical 
imaging.

There are several limitations in our study that should 
be acknowledged. Firstly, the small sample size and limited 
diversity of lesions prevented us from fully validating the 
clinical diagnostic efficacy of DL-MRI in various shoulder 
diseases. Though the primary objective of this study was to 
investigate the potential of DL-MRI as a replacement for 
conventional sequences in routine shoulder MRI scanning, 
the limited sample diversity could restrict the applicability 
of the results across various shoulder conditions. Secondly, 
despite efforts to ensure unbiased evaluation by having 
readers assess the images blindly and in a random order, 
variations in noise patterns may have led to different 
interpretations of image types among the readers. 
Addressing this issue in future studies, such as standardizing 
noise patterns or implementing additional measures 
to minimize reader bias, may be crucial for ensuring 
more reliable and objective evaluations of image quality. 
Thirdly, due to the lack of arthroscopy or other reference 
standards, especially the lack of accuracy assessment for 
bursal measurements with an external reference standard, 
we relied solely on conventional images as the reference 
standard. This limitation may have impacted the accuracy 
and comprehensiveness of our findings. Furthermore, our 
current evaluation focused solely on objectively assessing 
the denoising capabilities of DL-MRI in different tissue 
types (muscle vs. bone). Further exploration is needed to 
fully understand the capabilities and limitations of this 
technique in a clinical setting.

Conclusions

DL-MRI presents itself as a superior alternative to the 
conventional sequence for shoulder MRI. This is due to its 
ability to significantly reduce scan time by approximately 
54.7%, while simultaneously enhancing image quality 
and improving the consistency of reader interpretations. 
Moreover, DL-MRI proves to be particularly valuable in 
the detection of SbA and SC, offering a more pronounced 
visualization of these pathologies. By adopting DL-MRI in 
shoulder MRI protocols, healthcare providers can benefit 
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from the substantial time savings without compromising the 
diagnostic accuracy or quality of the images. The improved 
image quality and consistency of reader interpretations 
further contribute to enhanced diagnostic confidence 
and potentially better patient outcomes. Furthermore, 
the enhanced detection of SbA and SC thickenings 
through DL-MRI underscores its potential to aid in the 
identification and characterization of specific shoulder 
pathologies, that can enable more targeted and effective 
treatment strategies.
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