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Water dropwort (Oenanthe javanica) is a popular vegetable with high nutritional value and
distinctive flavor. The flavor is mainly correlate with the biosynthesis of terpenoids. Shading
cultivation was used to improve the flavor in the production of water dropwort. However,
the changes of terpenoids and the genes involved in terpenoids biosynthesis under
shading treatment remains unclear. In this study, the long- and short-reads
transcriptomes of water dropwort were constructed. In total, 57,743 non-redundant
high-quality transcripts were obtained from the transcriptome. 28,514 SSRs were
identified from non-redundant transcripts and the mono-nucleotide repeats were the
most abundant SSRs. The lncRNAs of water dropwort were recognized and their target
genes were predicted. The volatile compound contents in petioles and leaf blades of water
dropwort were decreased after the shading treatment. The DEGs analysis was performed
to identify the terpenoids biosynthesis genes. The results indicated that 5,288 DEGs were
differentially expressed in petiole, of which 22 DEGs were enriched in the terpenoids
backbone biosynthesis pathway. A total of 12 DEGs in terpenoids biosynthesis pathway
were selected and further verified by qRT-PCR assay, demonstrating that the terpenoids
biosynthesis genes were down-regulated under shading treatment. Here, the full-length
transcriptome was constructed and the regulatory genes related to terpenoids
biosynthesis in water dropwort were also investigated. These results will provide useful
information for future researches on functional genomics and terpenoids biosynthesis
mechanism in water dropwort.
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INTRODUCTION

Water dropwort (Oenanthe javanica) is a perennial aquatic herb belongs to Apiaceae family, which is
mainly cultivated in tropical and temperate regions (Lu and Li, 2019). It is a popular vegetable rich in
vitamins, proteins, dietary fibers, and other nutrients (Park et al., 2015; Feng et al., 2018b). Water
dropwort contains many bioactive substances and it is well known to have various medicinal effects,
such as antithrombotic (Ku et al., 2013), hepatoprotective (Yang et al., 2014), neuroprotective (Ma
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et al., 2010), anti-inflammatory (Ahn and Lee, 2017), antioxidant
(Her et al., 2019), antiviral (Han et al., 2008), and anti-senescence
(Moon et al., 2009).

Water dropwort is a vegetable crop with distinctive flavor. It
is known that the accumulation of high concentrations of
terpenoids in water dropwort produce undesirable flavor (Seo
and Baek, 2005). The flavor of water dropwort can be improved
by shading cultivation (Ye et al., 2009). In the production of
water dropwort, one of the shading cultivation patterns is using
the soil to form a soil wall to protect the water dropwort from
sunlight. The distinctive flavor and tastes of water dropwort
were attributed to the biosynthesis of volatile components. A
previous study has reported that the volatile components that
affect the taste of water dropwort are mainly terpenoids (Deng
et al., 2003). Solid phase microextraction-gas chromatography-
olfactometry (SPME-GC-O) assay indicated that the terpenoids,
including α-terpinolene, p-cymene, β-caryophyllene, and α-
terpinene, were the characteristic aroma components in water
dropwort (Seo and Baek, 2005). The biosynthesis of terpenoids
in water dropwort was controlled by multiple genetic factors,
whereas the related regulatory genes remain unknown.

Terpenoids are an important secondary metabolite and one
of the most diverse natural products in chemistry and structure
(Christianson, 2017). Terpenoids are widely distributed in
plants and participate in a variety of physiological processes,
such as photosynthesis, ion transport, growth regulation, and
stress response (Velikova et al., 2015). Terpenoids also showed
high economic value. The β-caryophyllene, linalool, myrcene,
and other terpenoids can be used in spices production (Behr and
Johnen, 2009; Tholl, 2015). In addition, terpenoids were
investigated to have many medicinal functions for humans,
including anticancer, anti-inflammatory, and hypoglycemic
effects (Amato et al., 2002; Ukiya et al., 2002; Juergens, 2014;
Singh and Sharma, 2015). All the terpenoids are synthesized
from the common C5 isoprene precursors, isopentenyl
diphosphate (IPP) or its allylic isomer dimethylallyl
diphosphate (DMAPP). The biosynthesis of IPP and DMAPP
in plants mainly depends on two pathways, the mevalonate
(MVA) pathway located in the cytoplasm and the 2-C-
methylerythritol 4-phosphate (MEP) pathway located in the
plastid (Vranova et al., 2013). The trans/cis-prenyltransferases
catalyzes the conversion of IPP and DMAPP to polyprenyl
diphosphates, such as geranyl/neryl diphosphate (GPP/NPP,
C10), farnesyl diphosphate (FPP, C15), and geranylgeranyl
diphosphate (GGPP, C20). Then, the diverse terpene
backbones, including isoprene, monoterpenes, sesquiterpenes,
diterpenes, and sesterterpenes, were synthesized under the
catalysis of terpene synthase (TPS) (Nagegowda and Gupta,
2020). These terpene backbones are modified by a series of
glycosylation, methylation, and hydroxylation to form different
terpenoids (Pateraki et al., 2015).

The distinctive aroma and taste of water dropwort was
related to the terpenoids biosynthesis and accumulation (Seo
and Baek, 2005). The information on molecular mechanism and
biosynthesis pathway of terpenoid in water dropwort was still
limited. The transcriptome sequencing is considered to be an
efficient technology to investigate the gene regulatory network

and molecular mechanism in plants (Yang et al., 2012). The next
generation sequencing (NGS) has been conducted to identify the
genes and miRNA in water dropwort under abiotic stress (Jiang
et al., 2015). With the development of sequencing technology,
the genome of O. javanica was also released recently (Liu et al.,
2021). In view of the full-length sequences and transcript
structures, the PacBio single molecule real-time (SMRT)
technology gradually takes the place of NGS sequencing and
become the mainstream of transcriptome sequencing (Li et al.,
2017). In this study, the PacBio SMRT and Illumina RNA
sequencing was employed to investigate the regulatory genes
of terpenoid biosynthesis in water dropwort. The results in this
study will provide a novel insight into the terpenoid biosynthesis
in water dropwort and give a reference for improving the flavor
by molecular breeding.

MATERIALS AND METHODS

Plant Materials and Treatments
“Liyang baiqin,” a water dropwort variety in China, was used as
plant material in this study. The plants of water dropwort were
grown in the field of Liyang, Jiangsu province (31°42′N,
119°48′E) under natural growth. The shading cultivation
was performed. We used soil to form a barrier for
preventing sunlight from water dropwort. After shading
cultivation for 30 days, the green petioles (GP), green leaf
blades (GL), white petioles (WP), and white leaf blade
(WL), were collected for further experiments. Three
biological replicates of water dropwort plants were prepared.

Extraction and Measurement of Volatile
Compounds
The volatile compounds of water dropwort were extracted and
measured using auto-head space-solid phase microextraction-gas
chromatography-mass spectrometry (HS-SPME-GC-MS)
method (Seo and Baek, 2005), with some modifications. The
collected water dropwort was washed and cut into pieces. A total
of 5 g of water dropwort samples were placed in flask applied and
3-heptanol (Sigma-Aldrich) was added. The volatile compound
was extracted and collected by placing the SPME fiber (65 μm
PDMS/DVB) in the headspace at 50°C for 30 min. The collected
volatile compound was then injected to GC-MS (DSQ-II
Thermo) equipped with DB-5 mass spectrometry column
(30 m × 0.25 mm × 0.25 µm) for further analysis. Helium was
used as carrier gas and its constant flow rate was 0.8 ml/min. The
oven temperature was set at 50°C for 2 min, raised to 75°C at 5°C/
min and keep 3 min, then raised to 155°C at 10°C/min and keep
4 min, and finally raised to 210°C at 5 °C/min and keep 2 min. The
mass spectra were performed with 70 eV of ionization energy and
33–350 amu of scan range. The kinds of volatile compounds in
water dropwort were identified by comparing the mass spectra
with the NIST 05 library. 3-heptanol was used as internal
standard, and the relative contents of volatile compounds in
water dropwort were calculated based on the peak areas (Seo and
Baek, 2005).
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Library Preparation and Transcriptome
Sequencing
The total RNA was extracted from the three biological
replicates of WP, GP, WL, and GL samples of water
dropwort, respectively. The purity and quality of RNA were
estimated by Nanodrop, Agilent 2,100, and electrophoresis. A
total of 12 Illumina RNA sequencing libraries was constructed
using the NEBNext® Ultra™ RNA Library Prep Kit (NEB,
Massachusetts, United States) according to the
manufacturer’s protocols. The mixed RNA samples, F01
(WP and WL) and F02 (GP and GL), were used to
construct the PacBio Iso-Seq library. The full-length cDNA
was synthesized by SMARTer™ PCR cDNA Synthesis Kit
(TaKaRa, Dalian, China) following the operating
instructions. Bluepippin (Sage Science Beverly, MA, USA)
was used to screen full-length cDNA fragments and
construct cDNA libraries with different sizes (1–2, 2–3, and
>3 kb). The constructed libraries were evaluated by Qubit 2.0
Fluorometer and Agilent 2,100. The SMRT sequencing and
NGS was performed with Pacific Bioscience RS II (Pacific
Biosciences, California, United States) platform and
Illumina HiSeq4000 platform (San Diego, CA,
United States) at Biomarker Technology Co. (Biomarker,
Beijing, China), respectively.

Data Filtering and de Novo Assembly
The raw polymerase reads were filtered and the reads of insert
(ROI) were extracted with set parameters (full passes of ≥0 and
quality of >0.75). The ROI sequences were classified into FLNC
and non-full-length reads (NFL) based on the filtering of cDNA
primers and polyA tail signal. The FLNC sequences from the
same isoform were clustered into one consensus sequence using
SMRT Analysis (v2.3.0) software with iterative clustering for
error correction (ICE) algorithm. The Quiver program was
used to polish the consensus sequences and generate the high-
quality isoforms with an accuracy rate of >99%. The quality and
accuracy of Illumina RNA-seq data were detected and the raw
reads with adapter and low-quality reads were filtered.
Subsequently, the low-quality isoforms were further corrected
by the Illumina RNA-seq data using proovread (Hackl et al.,
2014). The CD-HIT program (identity >0.99) was used to de-
redundancy the high-quality isoforms and corrected low-quality
isoforms (Li and Godzik, 2006). Finally, the non-redundant
transcripts with high-quality were constructed.

Analysis of AS Events, SSR, and lncRNA
The non-redundant transcripts with high-quality were
obtained for further alternative splicing (AS) events, simple
sequence repeat (SSR), and long non-coding RNAs (lncRNAs)
analysis. The IsoSeq AS de novo script was used to identity the
AS events (Liu et al., 2017). The FLNC transcripts of water
dropwort were clustered by Cogent software (v1.0). The
General feature format (GFF) file was constructed by
GMAP. The AS events were detected in SUPPA with the
default settings (Wu and Watanabe, 2005). MIcroSAtellite
identification tool (MISA) was used to conduct the SSR

analysis (http://pgrc.ipk-gatersleben.de/misa/). Seven types
of SSRs were identified from the sequences of
transcriptome, including mono-nucleotide repeats, di-
nucleotide repeats, tri-nucleotide repeats, tetra-nucleotide
repeats, penta-nucleotide repeats, hexa-nucleotide repeats,
and compound SSRs. CREMA and RNAplonc were used to
predict the lncRNA in plants (Simopoulos et al., 2018; Negri
et al., 2019). In this study, four common computational
approaches, including coding potential calculator (CPC)
(Kong et al., 2007), coding-non-coding index (CNCI) (Sun
et al., 2013), coding potential assessment tool (CPAT) (Wang
et al., 2013), and Pfam (Finn et al., 2014), were combined to
distinguish the lncRNAs in water dropwort. Based on these
four approaches, lncRNAs have been successfully identified
from long-reads transcriptomes in many species (Cui et al.,
2020; Hou et al., 2021). LncRNAs works through mRNA
binding, and the target genes of lncRNAs were predicted by
LncTar (Li et al., 2015). As an efficient tool for predicting the
target genes of lncRNAs, LncTar has been widely used to
identify the targets in many plants, such as rice (Leng et al.,
2020), Gnetum luofuense (Hou et al., 2021), and Carex
breviculmis (Teng et al., 2019).

Gene Function Annotation
The coding sequences (CDS) was identified by TransDecoder
(v3.0.0) online software (https://github.com/TransDecoder/
TransDecoder/releases) based on the length of open reading
frame (ORF), log-likelihood score, and alignments of
sequences with Pfam database. The function annotation of
non-redundant transcripts was conducted using BLAST
software (v2.2.26) against seven databases, including NCBI
non-redundant protein database (NR), Swiss-prot, gene
ontology (GO), clusters of orthologous groups (COG),
eukaryotic orthology groups (KOG), protein family (Pfam),
kyoto encyclopedia of genes and genomes (KEGG).

Phylogenetic Analysis
Using PF03936 and PF01397 as queries, the TPS family genes
in water dropwort were identified by HMMER 3.0 software
with an expected threshold value <10−4 (Eddy, 2011). The TPS
family sequences of Arabidopsis thaliana was obtained from
the previous study (Aubourg et al., 2002). The phylogenetic
tree was constructed by MEGA 7.0 using neighbor-joining
method with 1,000 bootstraps (Kumar et al., 2016; Chen et al.,
2017). The TPS genes of water dropwort were divided into
different subfamilies according to the phylogenetic
relationships with the known A. thaliana TPS proteins.

DEGs Analysis
The high-quality Illumina sequencing reads were aligned with
non-redundant transcripts by Bowtie2 (Langmead and
Salzberg, 2012). The expression abundance was quantified
by RSEM based on the transcripts per million (TPM) (Li
and Dewey, 2011). The identification of differentially
expressed genes (DEGs) in different samples were
conducted by DESeq R package based on the read counts
(Anders and Huber, 2010). The transcripts that meet the set
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parameters (Fold Change ≥2 and FDR <0.01) are identified as
DEGs. The GO enrichment analysis of DEGs was conducted
using GOseq-R package (Tian et al., 2016). Kolmogorov-
Smirnov test was employed to correct the p-value, and the
corrected p-value (≤0.05) was considered as significantly
enriched. The enrichment of DEGs in KEGG pathway were
analyzed by KOBAS (Xie et al., 2011). The heatmap were
performed based on the TPM values to investigate the
expression abundance of DEGs in different samples.

qRT-PCR Assay
To validate the availability of transcriptome, qRT-PCR assay was
conducted to further investigate the expression level of DEGs.
The qRT-PCR was carried out based on our previous study (Feng
et al., 2018a). The primers of selected DEGs were designed by
Primer 6.0 software (Supplementary Table S1). OjPP2A was
selected as internal reference gene. The relative expression levels
of DEGs were calculated according to the 2−ΔΔCT method
(Schmittgen and Livak, 2008; Jiang et al., 2014). The
expression of F02.PB35028 in WP sample was used as the
calibrator for qRT-PCR analysis.

Statistical Analysis
Statistical analysis was performed by SPSS 17.0 software.
Correlation analysis between gene expression and volatile
contents in water dropwort were conducted using the
Pearson’s correlation analysis.

RESULTS

Volatile Compound Contents of Water
Dropwort
The volatile compound contents of water dropwort were detected
by SPME-GC-MS equipment (Figure 1A). The results indicated
that the volatile compounds in water dropwort were mainly

composed of terpenoids. The total volatile compound contents
of water dropwort were significantly decreased after the shading
treatment (Figure 1B).

Transcriptome Sequencing and Assembly
In this study, two mixed RNA samples (F01 and F02) were used
to obtain the full-length transcripts with different libraries
sizes (1–2, 2–3, and 3–6 kb). The paired-end reads of different
libraries were listed in Supplementary Table S2. A total of
450,876 polymerase read sequences were obtained from F01,
and 601,168 polymerase read sequences were obtained from
F02. The polymerase reads (length >50 bp and accuracy >0.75)
were filtered, yielding 3,539,289 subreads for F01 and
4,203,996 subreads for F02 samples, respectively. The reads
of insert (ROI), ROI bases, mean read length of insert, and
mean read quality of insert were analyzed in F01 and F02
samples (Supplementary Table S3). The ROI read length
distributions of each size bins were shown in Figure 2

For F01 sample, a total of 77,470 FLNCs were extracted
from the ROIs. The extracted 47,559 consensus FLNC reads
includes 38,186 high-quality isoforms and 9,373 low-quality
isoforms. Meanwhile, 103,548 FLNC reads were obtained from
F02 sample. The extracted 59,819 consensus FLNC reads were
composed of 48,096 high-quality isoforms and 11,723 low-
quality isoforms (Supplementary Table S4). Finally, the high-
quality and corrected low-quality transcripts of F01 and F02
generated 57,743 non-redundant transcripts.

AS Events, SSR, and lncRNA Analysis
In total, 664 and 870 AS events were detected from the full-
length isoforms of F01 and F02 samples, respectively
(Supplementary Table S5). 28,514 SSRs were identified
from 57,700 non-redundant transcripts (>500 bp)
(Supplementary Table S6). The identified SSRs can be

FIGURE 1 | Themeasurement of volatile compound contents in water dropwort. (A) The gas chromatography of volatile compound in water dropwort. (B) The total
volatile compound contents of water dropwort. The bar represents the mean values of three independent experiments ±SD. Different lowercase letters indicate
significant differences at p < 0.05.
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divided into mono-nucleotide repeats (p1), di-nucleotide
repeats (p2), tri-nucleotide repeats (p3), tetra-nucleotide
repeats (p4), penta-nucleotide repeats (p5), hexa-nucleotide
repeats (p6), and compound SSR(c). The density distribution
of different SSR types indicated that the most abundant SSRs
was mono-nucleotide repeats, followed by di-nucleotide
repeats and tri-nucleotide repeats (Figure 3A). CPC, CNCI,
CPAT, and Pfam databases were used to predict lncRNA. We
found 612 lncRNAs were both present in all four prediction
methods (Figure 3B). The target genes predication of lncRNAs
demonstrated that 96 lncRNAs were predicted to target at least
one gene, among which F02.PB15548 had the maximum target
genes with 19 target genes (Supplementary Table S7).

Coding Sequence Prediction and Functional
Annotation
TransDecoder (v3.0.0) was used to predict the coding sequence
(CDS) from the non-redundant transcripts. A total of 56,307
open reading frame (ORF) was obtained in water dropwort.
The predicted length distribution of the ORF coding protein
sequence indicated that the ORFs encoding 200–300 amino
acid (aa) was the most, followed by that encoding 100–200 aa
and 300–400 aa (Supplementary Figure S1). The transcripts
were blast with the NR, Swiss-prot, GO, COG, KOG, Pfam, and
KEGG databases to obtain the functional annotation. A total of
57,118 non-redundant transcripts were annotated, among
which 27,100 were annotated in GO, 25,644 in KEGG,

FIGURE 2 | The ROI read length distribution of each size bins. (A) The ROI read length distribution of each size bins in F01 sample. (B) The ROI read length
distribution of each size bins in F02 sample. The columns with different colors indicate different read length.

FIGURE 3 | Statistic of SSR density and the prediction of lncRNAs in water dropwort. (A) Density analysis of the different SSR types. p1: mono-nucleotide repeats;
p2: di-nucleotide repeats; p3: tri-nucleotide repeats; p4: tetra-nucleotide repeats; p5: penta-nucleotide repeats; p6: hexa-nucleotide repeats; c: compound SSR. (B)
The venn diagram showing the number of lncRNAs using different prediction methods. CPC: coding potential calculator; CNCI: coding-non-coding index; CPAT: coding
potential assessment tool; Pfam: protein family.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8132165

Feng et al. Terpenoids Biosynthesis in Water Dropwort

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


37,227 in KOG, 48,433 in Pfam, 43,401 in Swiss-prot, 25,353 in
COG, 55,815 in eggNOG, and 56,684 in NR (Supplementary
Table S8).

Phylogenetic Analysis of TPS Family
TPS is the key enzyme in the terpenoid biosynthesis pathway
and contributes to the formation of various terpenoid
backbones (Bohlmann and Keeling, 2008). In this study, 25
TPS family genes were identified from the transcriptome of
water dropwort. The phylogenetic tree was constructed using
the TPS proteins from water dropwort and Arabidopsis. These
TPS family genes were divided into five subfamilies, including
TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g (Figure 4). TPS-b
subfamily has 13 TPS members in water dropwort, which
accounts the highest proportion among all subfamilies.

Analysis of Differentially Expressed Genes
The TPM values were used for visualization and correlation
analysis. The distribution of TPM values in all samples were
shown in Figure 5A. The correlation analysis of expression
levels in different samples was conducted (Figure 5B). As the

petioles of water dropwort were the main edible organs, the
DEGs analysis was conducted in GP and WP. In this study,
5,288 differentially expressed genes (DEGs) were identified
between GP and WP, including 1,253 up-regulated and
4,035 down-regulated DEGs (Supplementary Figure S2).

The GO annotation and enrichment analysis suggested that
the majority of DEGs were classified into three categories:
“biological process,” “cellular component” and “molecular
function” (Figure 6). As for ‘biological process’ category,
the DEGs were the most enriched in ‘metabolic process’.
The results indicated that the DEGs involved in metabolites
biosynthesis play important roles in shading treatment of
water dropwort. In order to investigate the DEGs of various
metabolites pathways in water dropwort, the KEGG analysis
was conducted. Carbon metabolism is the metabolic pathway
with the most DEGs in photosynthetic organisms, followed by
carbon fixation (Supplementary Figure S3). After the shading
treatment, the volatile compound contents of water dropwort
were decreased, and its flavor improved significantly. A total of
22 DEGs were enriched in terpenoid backbone biosynthesis.
We speculated that these DEGs were involved in the regulation
of terpenoid biosynthesis in water dropwort.

FIGURE 4 | The phylogenetic analysis of TPS family proteins from water dropwort and Arabidopsis. The TPS family genes in water dropwort were identified by
HMMER 3.0 software using PF03936 and PF01397 as queries. The TPS genes of water dropwort and Arabidopsis are represented by different colored shapes,
respectively. The phylogenetic tree was constructed by MEGA 7.0 using neighbor-joining method with 1,000 bootstraps.
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FIGURE 5 | The statistic of TPM values among all water dropwort samples. (A) The distribution of TPM values in different water dropwort samples. (B)The heat map
for correlation analysis of expression levels in different water dropwort samples. GP: green petioles; GL: green leaf blades; WP: white petioles; WL: white leaf blade.

FIGURE 6 |GO enrichment analysis of DEGs. Each gene was classified into at least one GO term, and all these genes were grouped into three categories, namely,
molecular function, cellular component, and biological process.
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FIGURE 7 | Heatmap of DEGs transcript abundances in terpenoids backbone biosynthesis pathway in water dropwort. GP: green petioles; GL: green leaf blades;
WP: white petioles; WL: white leaf blade. Red and blue colors represent high and low transcript abundances, respectively.

FIGURE 8 | qRT-PCR assay of selected DEGs in terpenoids backbone biosynthesis pathway in water dropwort. The bar represents the mean values of three
independent experiments ±SD. WP: white petioles; GP: green petioles.
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Transcription Profiles of Genes Involved in
Terpenoids Biosynthesis
The volatile terpenoids of water dropwort were decreased after
the shading treatment. We analyzed the transcription profiles of
DEGs in the terpenoids backbone biosynthesis pathway. The
results indicated that the transcription levels of the DEGs were
down-regulated after the shading treatment (Figure 7). To
further verify the reliability of transcriptome data, 12 DEGs
including DXS (F01.PB13304), HDS (F01.PB19227), HDR
(F01.PB4573), GGPS (F01.PB9526, F02.PB11697, and
F02.PB8158), SPS (F02.PB14607, F02.PB6913), and TPS
(F02.PB12265, F02.PB17907, F02.PB13799, and F02.PB35028)
in terpenoid biosynthesis pathway were selected to perform
qRT-PCR assay (Figure 8). The expression levels of terpenoids
biosynthesis genes in white petioles were down-regulated
compared to green petioles, which were consistent with the
results of RNA-Seq. Pearson’s correlation analysis indicated
that the expression levels of terpenoids biosynthesis genes
were positively correlated with the volatile contents in water
dropwort (Supplementary Table S9).

DISCUSSION

In view of the rising importance of aquatic vegetables, more and
more studies on water dropwort have been reported in recent
years (Park et al., 2015; Gao et al., 2020). However, the research
on molecular mechanisms in water dropwort is still lagging far
behind other crop species. In this work, the full-length
transcriptome of water dropwort was constructed by the
integrative analysis of the PacBio SMRT and Illumina RNA
sequencing. A total of 57,743 non-redundant transcripts were
obtained from the full-length transcriptome. The SSR, lncRNAs,
and AS events were analyzed based on the full-length
transcriptome. SSR is also known as microsatellites, which is a
type of short tandem repetitive DNA sequences with 1–6 bases
pairs (Toth et al., 2000). SSRs have been widely applied in
population genetics, genetic linkage mapping, and molecular
breeding (Kumar et al., 2015; Nachimuthu et al., 2015). A
total of 28,514 SSRs were identified from the non-redundant
transcripts, and the mono-nucleotide repeats were the most
abundant SSRs. LncRNAs are a kind of non-coding RNA,
which play important roles in biological processes by acting
on target genes (Wang and Chang, 2011). Based on CPC,
CNCI, CPAT, and Pfam databases, 612 lncRNAs were
recognized and their target genes were predicted. The SSRs
and lncRNAs obtained from the full-length transcriptome will
provide useful information for future research on water
dropwort.

Water dropwort was a popular vegetable in East Asia on
account of its nutritional values and distinctive flavor (Ji et al.,
2021). By using SPME-GC-O technology, terpenoids were
investigated to be the characteristic aroma components in
water dropwort. Terpenoids are widely existed in plants
tissues and contribute to the formation of distinct smells
(Dudareva et al., 2004). Water dropwort with a high

concentration of terpenoids will emit undesirable flavor (Seo
and Baek, 2005). Shading treatment was an effective approach
to improve the flavor in the production of water dropwort.
Whereas now, the changes of terpenoids and related molecular
mechanism during shading treatment in water dropwort
remains unknown. Current results demonstrated that the
volatile compound contents of water dropwort were
significantly decreased after shading treatment. Altered
volatile substance content was related to the flavor
improvement of water dropwort. Similarly, the high levels
of flavonols resulted in the bitter flavor of tea, and the
flavonols contents of tea were increased under UV-B and
decreased after shading treatments (Zhao et al., 2021).

The key regulatory genes and related molecular
mechanisms play an important role in plant growth and
terpenoids biosynthesis (Feng et al., 2020; Nagegowda and
Gupta, 2020). The DEGs analysis was conducted to investigate
the molecular mechanism of water dropwort during shading
treatment. In “biological process” category, the DEGs were the
most enriched in “metabolic process,” suggesting the
regulation of metabolites biosynthesis is of great importance
in water dropwort during shading treatment (Young et al.,
2010). KEGG analysis showed that DEGs in photosynthesis-
related pathways resulted in the albino of water dropwort,
which were induced by the lack of light after shading
treatment. Previous study also reported that the
photosynthetic pathway and chlorophyll content of
Tetrastigma hemsleyanum Diels et Gilg were affected by
shading treatment (Dai et al., 2009). A total of 22 DEGs
were enriched in terpenoid backbone biosynthesis pathway
based on the transcriptome analysis, suggesting these DEGs
were involved in the terpenoids biosynthesis in water
dropwort. Integrative analysis of transcriptome and
metabolome demonstrated that the biosynthesis of
sesquiterpene in Sindora glabra was regulated by the DEGs
in terpenoid backbone biosynthesis pathway (Yu et al., 2021).

Terpenoids were synthesized using C5 isoprene as substrate
under the catalysis of various enzymes in plants (Nagegowda,
2010). At present, the genes related to terpenoids biosynthesis
in water dropwort are still unclear. In this work, qRT-PCR
assay verified that the DEGs identified from transcriptome
were down-regulated after shading treatment, such as DXS
(F01.PB13304), HDS (F01.PB19227), HDR (F01.PB4573), and
TPS (F02.PB12265, F02.PB17907, F02.PB13799, and
F02.PB35028). DXS is the first rate-limiting enzyme in MEP
pathway, which catalyze the condensation of glyceraldehyde 3-
phosphate (G3P) and pyruvate to form 1-deoxy-D-xylulose-5-
phosphate (DXP) (Rohdich et al., 2003). The DXS has been
reported in pepper, rubber tree, potato, and masson pine
(Bouvier et al., 1998; Seetang-Nun et al., 2008; Henriquez
et al., 2016; Li et al., 2021). HDS is 1-hydroxy-2-methyl-2-
(E)-butenyl-4-diphosphate synthase, which is responsible for
the biosynthesis of 1-hydroxy-2-methyl-2-(E)-butenyl-4-
diphosphate (HMBPP) (Gutierrez-Nava et al., 2004). In the
last step of MEP pathway, HDR catalyzed the conversion of
HMBPP into IPP and DMAPP (Laule et al., 2003). The
polyprenyl diphosphates generated from IPP and DMAPP
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was further converted into various terpenoid backbones by the
enzymes of known TPS family (Bohlmann et al., 1998; Huang
et al., 2017). In the future works, the above DEGs associated
terpenoids biosynthesis will be selected for further functional
verification in water dropwort.

CONCLUSION

In conclusion, we constructed the full-length transcriptome
and obtained 57,743 non-redundant transcripts from water
dropwort. To the best of our knowledge, this study is the first to
report a full-length transcriptome in water dropwort. The AS
events, SSR, and lncRNAs were predicted based on the
transcriptome. The volatile compound contents of water
dropwort were decreased after the shading treatment. 22
DEGs in terpenoid backbone biosynthesis pathway were
differentially expressed. The current study identified the
terpenoids biosynthesis genes and will be helpful for
investigating the mechanism of terpenoids biosynthesis in
water dropwort. Also, the full-length transcriptome in our
study will establish a basis for functional genomics and genetic
engineering breeding in water dropwort in the future.
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