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Abstract: The primary objective of this work was to optimize red wine phenolic prediction with
models built from wine ultraviolet–visible absorbance spectra. Three major obstacles were addressed
to achieve this, namely algorithm selection, spectral multicollinearity, and phenolic evolution over
time. For algorithm selection, support vector regression, kernel ridge regression, and kernel partial
least squares regression were compared. For multicollinearity, the spectrum of malvidin chloride
was used as an external standard for spectral adjustment. For phenolic evolution, spectral data were
collected during fermentation as well as once a week for four weeks after fermentation had ended.
Support vector regression gave the most accurate predictions among the three algorithms tested.
Additionally, malvidin chloride proved a useful standard for phenolic spectral transformation and
isolation. As for phenolic evolution, models needed to be calibrated and validated throughout the
aging process to ensure predictive accuracy. In short, red wine phenolic prediction by the models
built in this work can be realistically achieved, although periodic model re-calibration and expansion
from data obtained using known phenolic assays is recommended to maintain model accuracy.

Keywords: mathematical modeling; red wine phenolics; UV–vis spectroscopy

1. Introduction

The phenolic content of wines produced form V. vinifera berries can vary widely for several
reasons, including vineyard practices [1], cultivar [2,3], vineyard geography [3,4], vintage [5], and wine
making practices [6]. Phenolic quantitation is invaluable from a commercial perspective, particularly
for red wines that have a greater and more diverse phenolic content than wines made from white
cultivars [7] due to the duration of skin contact during red wine production [6].

As wine phenolics possess similar chemical structures, they also possess similar ultraviolet–visible
(UV–Vis) spectra. For this reason, several methods aimed at isolating wine phenolics by class have
been developed [8–12]. Analysis of phenolics using HPLC and mass spectrometry has also been
developed [13]. Regardless of the methodology, phenolic analysis by separation is consumptive of
time and resources to obtain accurate results. For that reason, several researchers have attempted to
circumvent this necessity by implementing multivariate statistical analysis.

Modern statistical learning theory began in the 1960s with Rosenblatt’s perceptron [14]. Since
that time, the development of modern computers has permitted highly accurate methods for
identification [15], classification [16], and prediction [17] across many fields, including enology.
For example, Skogerson et al. [18] applied partial least squares regression (PLSR) to predict the phenolic
composition of wine during fermentation from its UV–Vis spectra. Beyond phenolic prediction, Hosu
et al. [19] predicted the antioxidant capacity in Romanian red wines using UV–Vis spectroscopy and
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artificial neural networks. As for alcohol and titratable acidity (TA), Yu et al. [20] used a least squares
support vector machine (LS-SVM) to accurately predict the alcohol content and TA in Chinese rice wine
by recording the wine’s UV–Vis and near-infrared spectrum (350 nm–1200 nm). Sensorial predictive
models have also been constructed. Lombardo and Veaux [21] proposed a nonlinear application of
PLSR using Multivariate adaptive regression splines (MARS) for the sensorial analysis of both red and
white wines.

While modern machine learning approaches have been successfully applied in various ways to
enological analysis, the application of such techniques remains experimental. This study attempted to
measure the validity of phenolic model prediction in three steps:

1. Compare several multivariate regression models to determine which gives the most accurate
predictions for wine phenolics (tannins, anthocyanins, and total iron reactive phenolics).

2. Address phenolic multicollinearity in the UV–Vis spectra by mathematically isolating individual
phenolics through the spectrum of a malvidin chloride standard.

3. Compare the final adapted phenolic model predictions across two vintages and two instruments.

2. Results and Discussion

2.1. Algorithm Comparison and Overall Performance

Table 1 compares the performance of the three algorithms used for phenolic prediction. The first
three rows are for anthocyanins, rows 4 through 6 are for tannins, and rows 7 through 9 are for total
iron reactive phenolics (TIPs). All root mean squared error values were calculated by taking the square
root of the squared sum difference between predicted values and observed values divided by the
number of observations (Equation (1)).

Table 1. Comparison of the predictive performance of support vector regression (SVR), kernel ridge
regression (KRR), and kernel partial least squares regression (KPLSR) for the prediction of anthocyanins,
tannins, and total iron reactive phenolics (TIPs) in red wine. RMSEC is the root mean squared error
of calibration, RMSEP is the root mean squared error of prediction, and RMSECV is the root mean
squared error of cross-validation. R2

C gives R2 values for calibration, R2
P gives R2 values after for

prediction, and R2
CV gives R2 values for cross-validation.

Phenolic
Algorithm R2

C RMSEC R2
P RMSEP R2

cv RMSECV

AnthocyaninsSVR 0.84 55.27 0.87 57.80 0.96 43.69
AnthocyaninsKRR 0.87 48.61 0.87 54.99 0.91 54.34

AnthocyaninsKPLSR 0.84 54.47 0.89 50.43 0.94 49.77
TanninsSVR 0.91 98.06 0.94 94.18 0.97 68.70
TanninsKRR 0.92 97.80 0.94 97.55 0.95 105.68

TanninsKPLSR 0.84 124.20 0.90 121.45 0.97 77.84
TIPsSVR 0.88 217.55 0.92 215.47 0.94 219.33
TIPsKRR 0.92 186.73 0.92 219.26 0.93 225.07

TIPsKPLSR 0.87 218.71 0.90 237.79 0.90 228.00

Equation (1): Root mean squared error (RMSE) equation.

RMSE =
√∑

(P − O)2/N (1)

where P is equal to predicted values, O is equal to observed values, and N is equal to the number of
observations.

Root mean squared errors of calibration (RMSEC) in some cases were smaller than that of root
mean squared errors of prediction and cross-validation (RMSEP and RMSECV), while the R2 values
for prediction and cross-validation (R2

P and R2
CV) were generally larger than R2 values for calibration

(R2
C). In these cases, the RMSEC was always smaller than the RMSEP regardless of cost, so these
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sets were optimized by choosing the cost that maximized the R2
P. Support vector regression (SVR)

outperformed the other two algorithms overall.
The initial model for this project was built from data acquired using a single spectrophotometer

from a single vintage. While the model calibrated and validated well, new predictions made were quite
poor as the spectrophotometer available was different from that used in the original work. Beyond
different spectrophotometers, the vintage and the grape-growing regions were also different in the
new data set, unlike previous work which utilized a single fruit source and vintage [18,22]. This was
addressed in three steps. The first two steps addressed spectral multicollinearity issues independent of
the instrument in use, and the third step addressed the different instrumentation issues.

2.2. Spectral Multicollinearity

In the UV–Vis absorbance spectra of red wine, the spectra of several phenolics overlap including
the ones measured here. This can be problematic in building predictive models as it becomes
difficult to determine exactly how much absorbance at a given wavelength in the spectra is due to a
particular phenolic compound or compound class. For assay measurement of phenolics by UV–visible
absorbance, the compounds of interest are typically isolated chemically before the final absorbance is
recorded [12,23]. Anthocyanins, for example, can be isolated by dropping the pH [24]. Tannins can be
isolated through protein precipitation [25], while polymeric pigment isolation can be accomplished
through bisulfite bleaching [26]. A goal of this work was to eliminate or at least minimize the need
for chemical isolation of phenolics. To achieve this, the spectra for individual phenolics were isolated
mathematically. For anthocyanins, this was easily achieved by only considering the visible spectra
(430 nm–700 nm) to make predictions as TIPs and tannins have no absorbance in the visible range. For
TIPs and tannins, absorbance in the UV range of the spectra (230 nm–429 nm) due to the presence of
anthocyanins had to first be estimated and removed. To calculate this estimate, the entire spectrum of
the malvidin chloride (MC) standard was transformed such that the absorbance at each wavelength
was a percentage of the sum total, such that the spectrum summed to one. Next, the portion of each
spectrum in the raw data due to anthocyanins below 430 nm was estimated by multiplying each
wavelength in the transformed MC spectrum below 430 nm by the raw wine spectra at 520 nm divided
by the transformed MC spectra at 520 nm (Equation (2)). Lastly, each calculated anthocyanin spectrum
below 430 nm was subtracted from each raw wine spectrum below 430 nm to give the final spectra for
TIPs and tannins.

Equation (2): The phenolic spectra used to predict tannins and total iron reactive phenolics (TIPs)
was generated by multiplying each point in the transformed malvidin chloride (MC) spectra below
430 nm by the raw sample spectra at 520 nm divided by the MC spectra at 520 nm.

For i rows and j columns in each spectrum@1:430 nm:

Transformed Spectrai,j = MCj × (Raw spectra@520nmi /MC@520 nmi) (2)

It is important to emphasize that the predictive models presented are meant to predict the chemical
phenolic composition of a given red wine only rather than its perceived sensorial aspects [27]. While
the sensorial perception of a wine is obviously important, building such a model is beyond the scope
of this work.

2.3. Instrumentation

In an ideal world, every UV–Vis absorbance spectrophotometer would be identical in every way.
This is of course not the case but having the ability to apply the same predictive model across different
instruments would be advantageous. For that reason, two different instruments were compared in this
study, namely the Genesys 10S produced by Thermo Fisher Scientific (Waltham, MA) and the Cary 14
spectrophotometer produced by Olis (Bogart, GA) to address this issue. The two instruments differed in
several areas, including instrument sensitivity, absorbance quantification range, and available spectral
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range. The first data set compared several different dilutions for data acquired using the Genesys 10S
spectrophotometer. Once the optimal dilution for that instrument was determined, a new sample set
was acquired from a new vintage and a different region. Several different ratios of model wine to
wine were tested in the Cary 14 spectrophotometer until the scaled spectra of the new samples closely
resembled the average of the scaled spectra from the Genesys S10 data set. The difference in optimal
dilutions between the two spectrophotometers was considerable (a 1:5 dilution was optimal for the
Genesys S10, 1:25 was optimal for the Cary 14).

Unfortunately, simply calibrating an instrument using an accepted standard is not a reliable way
to apply a multivariate predictive model across different instruments. Beyond absorbance sensitivity
(spectral resolution), other variations such as signal to noise ratio and ultraviolet absorbance to visible
absorbance ratio can and do vary between instruments. For this reason, whenever a predictive model
is implemented with a new instrument, it is strongly recommended that a subset of data using the
new instrument be added to the original data set. The subset should contain both assay data and the
concomitant spectral data. The combined data set should then be calibrated and validated to maximize
model predictive accuracy using the new instrument.

2.4. Phenolic Evolution

Polymeric pigments are formed through reactions of tannins, other phenolics, and keto-acids with
anthocyanins [6,11,12,28]. The spectral data acquired in this study suggests a significant change in
color occurred within the first month after fermentation was complete. Table 2 shows that correlations
between phenolic assay measurements and the respective absorbance values of the wine at 520 nm
and 280 nm fluctuated greatly over time. Table 3 demonstrates that by the fourth week, there was a
significant negative correlation between anthocyanins and TIPs as well as anthocyanins and tannins.

Table 2. Comparison of correlations between values obtained by assay and that same wine’s absorbance
values at 520 nm as well as 280 nm at different time points after fermentation was complete. Assay data
used to calculate correlation coefficients was a subset of that used for modeling (n = 44).

Phenolic ID Initial Week 1 Week 2 Week 3 Week 4

Anthos @520 0.75 0.04 0.80 −0.03 −0.04
TIPs@520 0.71 −0.59 0.54 0.54 0.22

Tannin@520 0.04 0.44 0.47 0.36 0.11
Anthos@280 0.45 0.57 0.63 0.04 0.44

TIPs@280 0.73 0.89 0.94 0.61 0.36
Tannin@280 0.43 0.89 0.94 0.54 0.34

Table 3. Comparison of correlations between values obtained by assay between anthocyanins and
total iron reactive phenols (TIPs) as well as between anthocyanins and tannins. By the fourth week,
there was a significant negative correlation between anthocyanins and the other two phenolics and
between anthocyanins and tannins, suggesting pigmentation. Assay data used to calculate correlation
coefficients were a subset of that used for modeling (n = 44).

Phenolic ID Initial Week 1 Week 2 Week 3 Week 4

TIPs 0.69 0.33 0.51 0.01 −0.63
Tannins 0.03 0.19 0.44 0.10 −0.61

While spectral transformation did greatly improve predictive power for tannins and TIPs, there
remained a certain level of inherent error for tannins and TIPs as there is no wavelength in the UV
spectra in which tannins and TIPs do not overlap. TIPs are very heterogeneous by nature, and for this
reason, there are no established external standards available for TIPs. This makes spectral isolation
of tannins and TIPs difficult if not impossible. Despite this, tannin and TIP models performed well,
with root mean squared error values below ten percent. This suggests that spectral transformation by
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removing the calculated malvidin chloride spectra was enough to generate trustworthy tannin and TIP
spectra, so long that the model was re-calibrated by combining the old data set with some new data.

Just as with tannins and TIPs, polymeric pigment formation institutes a significant source of
predictive error as the formation of such pigments significantly changes the overall correlation between
the assay data with any given point in the spectra. For example, while fermenting wines had the
highest correlation with measured anthocyanins at 524 nm (0.87), wines four weeks after fermentation
was complete had the highest correlation with measured anthocyanins at 357 nm (0.82). Unfortunately,
the model applied in this study did not calibrate for polymeric pigments, although it is difficult to say
how accurate a predictive model for polymeric pigments built using UV–Vis spectroscopy could be.
As mentioned, the spectra of tannins and TIPs overlap, which presents an inherent source of error in
tannin and TIP prediction. Polymeric pigments represent a very heterogeneous group of compounds
that could be formed not only from covalent interactions between tannins and anthocyanins but
also through such interactions between tannins and TIPs, or tannins, anthocyanins, and TIPs. While
tannin and TIP models can be adjusted by mathematically removing the estimated spectra of malvidin
chloride, an accurate adjustment is difficult for polymeric pigments due to the heterogeneity of the
class and, therefore, the heterogeneity of the spectra. Phenolic oxidation over time only further adds
to the complexity of such a model. When considering all of these factors together, it becomes more
apparent as to why there are no obvious trends among the correlation values depicted in Tables 1 and 2.

3. Materials and Methods

3.1. Instrumentation

UV–Vis spectra from 230–700 nm were collected in 1 nm increments using a Genesys 10S UV–Vis
spectrophotometer (Thermo Scientific, Waltham, MA, USA) Samples were diluted as necessary using
model wine to obtain an absorbance of less than 2.0 absorbance units at 230 nm. Model wine was
produced by combining 120 mL of 90 proof ethanol with 880 mL of deionized water and adjusting the
pH to 3.3 using 0.1 N HCl. Tannin, anthocyanin, and total iron reactive phenolic measurements were
done on all samples according to the methods of Harbertson and Spayd [12].

3.2. Sample Collection and Analysis

For model construction, spectral and assay data collected at a commercial facility in Napa Valley,
CA during the 2010 vintage was combined with spectral and assay data collected from a university
facility in Richland, WA during the 2016 vintage for a total of 323 samples. Samples were collected
daily throughout fermentation. Fermenting samples were sterile filtered and divided. One portion of
each sample was used to conduct UV–visible assays for tannins [25], anthocyanins, and iron reactive
phenols [5]. The remaining portion of each sample was used for collection of the entire UV–Vis
spectrum from 230 nm to 700 nm at one nanometer increments of the sample.

To track phenolic evolution over time, 45 samples were collected from a university facility in
Richland, WA in one-week intervals starting immediately after fermentation ended during the 2016
vintage. UV–visible assays for anthocyanins [5], tannins [25], and total iron reactive phenolics [5] were
conducted on a portion of each sample. The remaining portion of each sample was used to gather data
for the entire UV–Vis spectrum from 230 nm to 700 nm in one nanometer increments.

3.3. Model Comparison

Three regression algorithms were compared: support vector regression (SVR) [29], kernel ridge
regression (KRR) [30], and kernel partial least squares regression (KPLSR) [31]. Regardless of the
method, an optimal weight value was determined to ensure maximum model performance: for SVR,
the value was the cost function, for KPLSR, it was the number of components, and for KRR, it was the
alpha term. For cross-validation, each data set was randomized and then divided into two subsets.
Approximately 90% of the total set was treated as the training set, and the remaining 10% was treated



Molecules 2020, 25, 1576 6 of 8

as the test set. The training set was used to calibrate the model by comparing predicted values with the
measured assay values being careful not to overfit the model. Once built, the model was used to make
predictions using the spectral data alone of the corresponding test set. This process was repeated ten
times. For algorithms where there was no minimum weight limit (SVR, KRR), the minimum weight
was set when the coefficient of determination for measured versus predicted concentrations of the
phenolic in question was less than 0.5. The weight value was then systematically increased until the
coefficient of determination for the test sets reached a maximum and began to decrease. The optimal
weight for each algorithm was chosen to be that which gave the most accurate predictions when a new
spectral data was applied. This process was repeated for each phenolic class tested.

3.4. Software

All data analysis and plotting were conducted using the R project for statistical computing.
For SVR, the e1071 package version 1.7-2 [32] was used, for KRR, the glmnet version 3.0-2 [33] and
chemometrics version 1.4.2 [34] packages were used, for PLSR, the pls package version 2.7-2 [35] was
used, and for cross validation, the caret [36] package was used.

4. Conclusions

Phenolic prediction by recording the entire UV–Vis spectra of wine can realistically be achieved if
models are periodically updated to account for phenolic evolution over time. Furthermore, different
spectrophotometers can be used to make predictions using the same model if a small subset of
calibration samples is added to the model. From the three algorithms compared, support vector
regression gave the most accurate predictions. In closing, while this work did demonstrate what is
needed to be done to obtain and maintain reliable phenolic predictions for young wines from UV–Vis
spectral data, a clear-cut method to obtain reliable phenolic predictions for aging wines without the
need for assay data remains elusive. It may be necessary to calibrate models over the entire lifespan of
a wine set to realistically construct assay free models but the amount of work this constitutes is very
small compared to the reference analysis.
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