

Received 6 August 2014 Accepted 30 September 2014

Edited by M. Zeller, Youngstown State University, USA

Keywords: crystal structure; hydrogen bonds; π - π stacking; Ni^{II}-Na heterometallic complex; Schiff base

CCDC reference: 1026857 **Supporting information**: this article has supporting information at journals.iucr.org/e

Crystal structure of {µ-6,6'-dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethanylylidene)]diphenolato}-(methanol)(nitrato)nickel(II)sodium

Olesia V. Moroz,^a* Viktor A. Trush,^a Tatiana Yu. Sliva,^a Irina S. Konovalova^b and Vladimir M. Amirkhanov^a

^aTaras Shevchenko National University of Kyiv, Department of Chemistry, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine, and ^bSTC "Institute for Single Crystals", National Academy of Science of Ukraine, 60 Lenina Avenue, Kharkiv 61001, Ukraine. *Correspondence e-mail: ovmoroz@yahoo.com

In the molecular structure of the title compound, $[NaNi(C_{18}H_{18}N_2O_4)(NO_3)(-CH_3OH)]$, the Ni²⁺ ion has a slightly distorted square-planar coordination environment defined by two N and two O atoms which belong to a Schiff base ligand, *viz.* 6,6'-dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethanylylidene)]diphenolate. Seven O atoms form the coordination environment of the Na⁺ ion: four from the Schiff base ligand, two from a bidentate chelating nitrate anion and one O atom from a coordinating methanol molecule. In the crystal, the bimetallic complexes are assembled into chains along the *b*-axis direction *via* weak C-H···O hydrogen-bond interactions. Neighbouring chains are in turn connected through bifurcated O-H···O hydrogen bonds that involve the coordinating methanol molecules and the nitrate anions, and through π - π stacking interactions between phenyl rings of neighbouring molecules.

1. Chemical context

Schiff bases are known to be effective ligands able to coordinate a wide range of different metal ions, and they have been widely utilized in the study of biochemical processes (Lindoy et al., 1976; Correia et al., 2005). Compartmental Schiff base ligands, i.e. tetra- and hexadentate Schiff base ligands with different 'compartments' for different types of metal ions, have been employed extensively as 'blocking ligands'. Typical examples would be e.g. ligands with an N₂O₄ donor set with two Schiff base N-donor sites, two anionic phenolate donor sites, and two additional ether donor sites. The N_2O_2 compartment is generally more favorable for 3d metal ions. The additional O-donor atoms provide the opportunity to accommodate a second metal ion, which might be a 3d-, 4f-, sor *p*-block element, thus allowing the production of di-, tri- or oligonuclear systems (Gheorghe et al., 2006; Costes et al., 2008; Andruh et al., 2009).

Studies on heterometallic complexes began at the end of the 1960s. They are of interest because of their physicochemical properties that arise from the presence of dissimilar metal ions in close proximity. The majority of publications in this field are devoted to the preparation of 3d-4f heterometallic complexes (Costes *et al.*, 1998; Koner *et al.*, 2005; Sakamoto *et al.*, 2001). Metal salicylaldimines, on the other hand, represent a fascinating group of ligands that are not only effective complexing agents for *p*- and *d*-block elements, but also for alkali metal ions similar to the more well known ligand systems such as crown ethers, cryptands *etc.* Much of the interest concerning

research communications

the coordination chemistry of alkali metal ions originates from the development of molecular systems that can mimic naturally occurring molecules that are responsible for the selective transport of these ions, *e.g.* through membranes. Some of the alkali-metal-ion adducts behave as precursors for other potentially interesting molecular species that can be used for small-molecule activation (Gambarotta *et al.*, 1982), electron storage (Gallo *et al.*, 1997) and the production of materials with remarkable magnetic properties, the alkali cation being crucial in determining the three-dimensional network in the solid state (Miyasaka *et al.*, 1996).

In the case of compartmental Schiff base ligands such as *e.g.* $N(imine)_2O(phenoxo)_2O(methoxy/ethoxy)_2$, the metal ion may be either retained in the plane of the O_4 donor set or sandwiched between two sets of the Schiff base O atoms. The former case is usually characterized by a coordination number of eight from two $O(phenoxo)_2O(methoxy/ethoxy)_2$ compartments which belong to different molecules. The latter features a coordination number of six from the O_4 compartment of the Schiff base, and two other donors are provided by coordinating solvent molecules and/or anions. The present paper is devoted to the synthesis and structural analysis of an Ni^{2+} -containing complex [NaNi(L)(CH₃OH)(NO₃)], (I), in which the Na⁺ ion has a seven-coordination geometry and where H₂L is the compartmental Schiff base ligand 6,6'-dimethoxy-2,2'-(ethane-1,2-divldiiminodimethylene)diphenol.

Figure 1

The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.

Table 1				
Hydrogen-bond	geometry	(Å,	°).	

2 ()	,		
$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
0.82	2.24	2.991 (2)	154
0.82	2.49	3.181 (2)	143
0.97	2.65	3.152 (2)	112
	<u>D</u> —H 0.82 0.97	$\begin{array}{c c} D-H & H\cdots A \\ \hline 0.82 & 2.24 \\ 0.82 & 2.49 \\ 0.97 & 2.65 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry codes: (i) x - 1, y, z; (ii) x, y - 1, z.

2. Structural commentary

The molecular structure of compound (I) with the atom numbering is shown in Fig. 1. Two phenolate O atoms provided by the Schiff base ligand create a double bridge between the Ni²⁺ and Na⁺ ions. The coordination environment of the Ni²⁺ ion is square-planar, formed by two imine N atoms and two phenolate O atoms. The Na⁺ ion has an unusual seven-coordinated geometry in which the ion sits in the plane of the Schiff base O atoms. Further significant interactions with two nitrate O atoms and one O atom from the coordinating methanol molecule, which are located above and below the plane formed by L, complete the coordination sphere. Values for the geometric parameters in (I) are in good agreement with those observed for complexes based on similar Schiff base ligands (Allen et al., 1987; Cunningham et al., 2000; Wang & Shen, 2009; Xiao, 2009). The two phenoxo and two methoxy O atoms of the $O(phenoxo)_2O(ethoxy)_2$ moiety adopt a planar geometry as evidenced by the small mean deviation of the O atoms (<0.02 Å), from the O5/O6/O7/O8 least-squares plane. The deviations of the Na⁺ and Ni²⁺ ions from the O5/O6/O7/O8 plane [0.166 (1) and 0.008 (2) Å, respectively] indicate that Na and Ni are well incorporated in the O(phenoxo)₂O(ethoxy)₂ moiety.

3. Supramolecular features

In the crystal structure, the molecules of the title compound form chains along the *b*-axis *via* weak $C-H\cdots O$ hydrogenbond interactions (Fig. 2, Table 1). The C atom of the ethylene moiety acts as a donor and one O atom of the nitrate anion of the neighboring molecule acts as an acceptor. These chains are further assembled into sheets by a bifurcated $O-H\cdots O$ hydrogen bond (Steiner, 2002), which involves the coordin-

The molecular packing for (I), viewed along the *b* axis. $C-H\cdots O$ interactions are shown as dashed lines.

- 44, 3524-3536.
- Chem. 15, 1724–1727.
- Miyasaka, H., Matsumoto, N., Okawa, H., Re, N., Gallo, E. & Floriani, C. (1996). J. Am. Chem. Soc. 118, 981-994.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sakamoto, M., Manseki, K. & Okawa, H. (2001). Coord. Chem. Rev. 219-221, 379-414.

Table 2 Experimental details.

Crystal data Chemical formula

 $(CH_4O)]$ 502.09 Μ. Crystal system, space group Triclinic, $P\overline{1}$ Temperature (K) 293 7.207 (1), 11.047 (1), 13.619 (1) a, b, c (Å) α, β, γ (°) V (Å³) 95.30 (1), 99.81 (1), 99.05 (1) 1047.2(2)Ζ 2 Radiation type Μο Κα $\mu \,({\rm mm}^{-1})$ 1.00 $0.4 \times 0.2 \times 0.2$ Crystal size (mm) Data collection Diffractometer Nonius KappaCCD Absorption correction Multi-scan (SADABS; Sheldrick, 2003) T_{\min}, T_{\max} 0.690, 0.825 No. of measured, independent and 12718, 6501, 4324 observed $[I > 2\sigma(I)]$ reflections $R_{\rm int}$ 0.020 $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.744 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.035, 0.081, 0.90 No. of reflections 6501 292 No. of parameters H-atom treatment H-atom parameters constrained $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 0.50, -0.32

[NaNi(C₁₈H₁₈N₂O₄)(NO₃)-

Computer programs: COLLECT (Nonius, 1999), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 and SHELXL2014 (Sheldrick, 2008), ORTEP-3 for Windows and WinGX (Farrugia, 2012).

ating methanol molecule and nitrate units (Fig. 3, Table 1) and through π - π stacking interactions, which exist between phenyl rings of neighbouring molecules, with a separation of 3.5845 (11) Å between the centroids formed by the C atoms of the rings [symmetry code: (iii) -x + 1, -y, -z]. For the O- $H \cdots O$ hydrogen bond, the O atom of the methanol molecule acts as a donor and the O atoms of the nitrate anion of the neighbouring molecule act as the acceptors.

4. Synthesis and crystallization

A mixture of 6,6'-dimethoxy-2,2'-(ethane-1,2-diyldiiminodimethylene)diphenol (1 mmol) and nickel nitrate (1 mmol) in methanol (15 ml) was stirred for 30 min at room temperature. Then, sodium nitrate (1mmol) was added, and the mixture was stirred for another 30 min and filtered. The resulting clear orange filtrate was left at ambient temperature for crystallization in air. The red-orange block-shaped crystals were collected by filtration after 6 d, washed with chilled isopropanol and dried on filter paper (yield 0.28 g, 56%).

5. Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H distances of 0.95 (aromatic) or 0.99 Å (methylene), with $U_{iso}(H) =$ $1.2U_{eq}(C)$, C-H = 0.98 Å for methyl H atoms, with $U_{iso}(H)$ =

Figure 3

 $O-H\cdots O$ and $\pi-\pi$ contacts for (I), shown as dashed lines, with ring centroids shown as coloured spheres.

 $1.5U_{eq}(C)$, and O-H = 0.82 Å for the hydroxy group of methanol, with $U_{iso}(H) = 1.5U_{eq}(O)$. Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors are grateful to Dr Y. S. Moroz for his kind assistance in refining the structure.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Andruh, M., Branzea, D. G., Gheorghe, R. & Madalan, A. M. (2009). CrystEngComm, 11, 2571-2584.
- Correia, I., Pessoa, J. C., Duarte, M. T., da Piedade, M. F. M., Jackush, T., Kiss, T., Castro, M. M. C. A., Geraldes, C. F. C. G. & Avecilla, F. (2005). Eur. J. Inorg. Chem. pp. 732-744.
- Costes, J.-P., Dahan, F., Dupuis, A. & Laurent, J.-P. (1998). Chem. Eur. J. 4, 1616-1620.
- Costes, J.-P., Shova, S. & Wernsdorfer, W. (2008). Dalton Trans. pp. 1843-1849.
- Cunningham, D., McArdle, P., Mitchell, M., Chonchubhair, N. N., O'Gara, M., Franceschi, F. & Floriani, C. (2000). Inorg. Chem. 39, 1639-1649.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gallo, E., Solari, E., Re, N., Floriani, C., Chiesi-Villa, A. & Rizzoli, C. (1997). J. Am. Chem. Soc. 119, 5144-5154.
- Gambarotta, S., Arena, F., Floriani, C. & Zanazzi, P. F. (1982). J. Am. Chem. Soc. 104, 5082-5092.
- Shova, S. (2006). Chem. Eur. J. 12, 187-203.
- Koner, R., Lin, H.-H., Wei, H.-H. & Mohanta, S. (2005). Inorg. Chem. Lindoy, L. F., Lip, H. C., Power, L. F. & Rea, T. H. (1976). Inorg.
- Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.

research communications

Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Steiner, T. (2002). *Angew. Chem. Int. Ed.* **41**, 48–76. Wang, W. & Shen, Y.-M. (2009). *Acta Cryst.* **E65**, m557. Xiao, H.-Q. (2009). *Acta Cryst.* **E65**, m400.

supporting information

Acta Cryst. (2014). E70, 305-308 [doi:10.1107/S160053681402159X]

Crystal structure of {*u*-6,6'-dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethanylylidene)]diphenolato}(methanol)(nitrato)nickel(II)sodium

Olesia V. Moroz, Viktor A. Trush, Tatiana Yu. Sliva, Irina S. Konovalova and Vladimir M. Amirkhanov

Computing details

Data collection: *COLLECT* (Nonius, 1999); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

$\{\mu-6,6'-Dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethanylylidene)]diphenolato\}(methanol) (nitrato)nickel(II)sodium$

Crystal data	
[NaNi(C ₁₈ H ₁₈ N ₂ O ₄)(NO ₃)(CH ₄ O)] $M_r = 502.09$ Triclinic, $P\overline{1}$ a = 7.207 (1) Å b = 11.047 (1) Å c = 13.619 (1) Å a = 95.30 (1)° $\beta = 99.81$ (1)° $\gamma = 99.05$ (1)° V = 1047.2 (2) Å ³	Z = 2 F(000) = 520 $D_x = 1.592 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 12718 reflections $\theta = 2.9-31.9^{\circ}$ $\mu = 1.00 \text{ mm}^{-1}$ T = 293 K Block, white $0.4 \times 0.2 \times 0.2 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer Radiation source: sealed X-ray tube φ scans and ω scans with κ offset Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2003) $T_{\min} = 0.690, T_{\max} = 0.825$ 12718 measured reflections	6501 independent reflections 4324 reflections with $I > 2\sigma(I)$ $R_{int} = 0.020$ $\theta_{max} = 31.9^\circ, \ \theta_{min} = 2.9^\circ$ $h = -8 \rightarrow 10$ $k = -15 \rightarrow 15$ $l = -19 \rightarrow 20$
RefinementRefinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.081$ $S = 0.90$ 6501 reflections	292 parameters 0 restraints Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0431P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

$$(\Delta/\sigma)_{\rm max} < 0.001$$

 $\Delta \rho_{\rm max} = 0.50 \text{ e} \text{ Å}^{-3}$

$$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

Fractional atomic coordinates and is	sotropic or equivalent	isotropic displacement	parameters (Ų)
--------------------------------------	------------------------	------------------------	----------------

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	r	1/	7	[]*/[]	
 N1	1 2085 (2)	0 47014 (14)	0 20473 (11)		
N2	1.5085(3) 1.0634(2)	-0.10231(12)	0.20473(11) 0.31510(10)	0.0300(4)	
INZ	1.0034(2)	-0.12606(11)	0.31310(10) 0.12662(10)	0.0414(3)	
N3	0.87387(19) 1 2115 (2)	-0.13000(11) 0.26716(12)	0.13003(10) 0.10210(14)	0.0384(3)	
01	1.5115(2) 1.1514(2)	0.50710(13) 0.51204(13)	0.19219(14) 0.20620(12)	0.0823(3)	
02	1.1314(2) 1.4575(2)	0.51204 (15)	0.20029(12) 0.21526(12)	0.0892(4)	
03	1.4373(2)	0.33470(16) 0.26010(15)	0.21550(12) 0.20641(10)	0.0840(3)	
04	0.7094 (2)	0.36010 (15)	0.29641 (10)	0.0708 (4)	
H4O	0.6210	0.3/84	0.2582	0.106*	
05	1.04924 (18)	0.14171 (10)	0.31975 (8)	0.0439 (3)	
06	0.87634 (17)	0.10986 (10)	0.14652 (8)	0.0401 (3)	
07	0.7790 (2)	0.29628 (11)	0.06339 (9)	0.0531 (3)	
08	1.1398 (2)	0.36213 (11)	0.41444 (9)	0.0539 (3)	
C1	1.2043 (2)	0.27108 (16)	0.46557 (12)	0.0417 (4)	
C2	1.3145 (3)	0.28976 (19)	0.56084 (13)	0.0504 (4)	
H2	1.3492	0.3688	0.5958	0.060*	
C3	1.3734 (3)	0.1895 (2)	0.60439 (14)	0.0592 (5)	
H3	1.4487	0.2022	0.6683	0.071*	
C4	1.3227 (3)	0.0743 (2)	0.55493 (13)	0.0554 (5)	
H4	1.3625	0.0085	0.5856	0.067*	
C5	1.2091 (2)	0.05142 (16)	0.45629 (12)	0.0419 (4)	
C6	1.1504 (2)	0.15157 (15)	0.41092 (11)	0.0380 (4)	
C7	1.1604 (3)	-0.07053 (17)	0.40535 (13)	0.0457 (4)	
H7	1.2019	-0.1330	0.4399	0.055*	
C8	1.0406 (3)	-0.23159 (17)	0.27149 (14)	0.0585 (5)	
H8A	1.0011	-0.2860	0.3189	0.070*	
H8B	1.1616	-0.2488	0.2568	0.070*	
C9	0.8924 (3)	-0.25411 (15)	0.17663 (15)	0.0578 (5)	
H9A	0.9287	-0.3105	0.1274	0.069*	
H9B	0.7699	-0.2914	0.1905	0.069*	
C10	0.7997 (2)	-0.13762(15)	0.04360 (13)	0.0411 (4)	
H10	0.7711	-0.2136	0.0037	0.049*	
C11	0.7552(2)	-0.03232(15)	-0.00347(11)	0.0366 (3)	
C12	0.6631 (3)	-0.04768 (17)	-0.10544 (12)	0.0455 (4)	

0.6384	-0.1255	-0.1424	0.055*
0.6106 (3)	0.04949 (18)	-0.14969 (12)	0.0489 (4)
0.5500	0.0374	-0.2167	0.059*
0.6459 (2)	0.16813 (16)	-0.09638 (12)	0.0419 (4)
0.6087	0.2342	-0.1276	0.050*
0.7366 (2)	0.18574 (15)	0.00292 (11)	0.0372 (4)
0.7923 (2)	0.08597 (14)	0.05155 (11)	0.0340 (3)
0.7114 (4)	0.39946 (18)	0.02595 (15)	0.0719 (7)
0.7727	0.4218	-0.0287	0.108*
0.7399	0.4676	0.0784	0.108*
0.5755	0.3791	0.0027	0.108*
1.2117 (4)	0.48674 (18)	0.45544 (16)	0.0714 (7)
1.1842	0.5002	0.5217	0.107*
1.1519	0.5405	0.4136	0.107*
1.3475	0.5039	0.4587	0.107*
0.6357 (4)	0.2606 (2)	0.34481 (17)	0.0756 (7)
0.6104	0.1856	0.2994	0.113*
0.5192	0.2755	0.3650	0.113*
0.7275	0.2531	0.4029	0.113*
0.96567 (3)	0.00143 (2)	0.22924 (2)	0.03524 (7)
0.97774 (10)	0.30835 (6)	0.23162 (5)	0.04288 (16)
	0.6384 0.6106 (3) 0.5500 0.6459 (2) 0.6087 0.7366 (2) 0.7923 (2) 0.7114 (4) 0.7727 0.7399 0.5755 1.2117 (4) 1.1842 1.1519 1.3475 0.6357 (4) 0.6104 0.5192 0.7275 0.96567 (3) 0.97774 (10)	0.6384 -0.1255 $0.6106(3)$ $0.04949(18)$ 0.5500 0.0374 $0.6459(2)$ $0.16813(16)$ 0.6087 0.2342 $0.7366(2)$ $0.18574(15)$ $0.7923(2)$ $0.08597(14)$ $0.7114(4)$ $0.39946(18)$ 0.7727 0.4218 0.7399 0.4676 0.5755 0.3791 $1.2117(4)$ $0.48674(18)$ 1.1842 0.5002 1.1519 0.5405 1.3475 0.5039 $0.6357(4)$ $0.2606(2)$ 0.6104 0.1856 0.5192 0.2755 0.7275 0.2531 $0.96567(3)$ $0.00143(2)$ $0.97774(10)$ $0.30835(6)$	0.6384 -0.1255 -0.1424 $0.6106(3)$ $0.04949(18)$ $-0.14969(12)$ 0.5500 0.0374 -0.2167 $0.6459(2)$ $0.16813(16)$ $-0.09638(12)$ 0.6087 0.2342 -0.1276 $0.7366(2)$ $0.18574(15)$ $0.00292(11)$ $0.7923(2)$ $0.08597(14)$ $0.05155(11)$ $0.7114(4)$ $0.39946(18)$ $0.02595(15)$ 0.7727 0.4218 -0.0287 0.7399 0.4676 0.0784 0.5755 0.3791 0.0027 $1.2117(4)$ $0.48674(18)$ $0.45544(16)$ 1.1842 0.5002 0.5217 1.1519 0.5405 0.4136 1.3475 0.5039 0.4587 $0.6357(4)$ $0.2606(2)$ $0.34481(17)$ 0.6104 0.1856 0.2994 0.5192 0.2755 0.3650 0.7275 0.2531 0.4029 $0.96567(3)$ $0.00143(2)$ $0.23162(5)$

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0603 (11)	0.0439 (9)	0.0431 (8)	0.0079 (8)	0.0013 (7)	0.0085 (7)
0.0517 (9)	0.0324 (7)	0.0464 (8)	0.0153 (6)	0.0169 (7)	0.0103 (6)
0.0379 (8)	0.0283 (7)	0.0493 (8)	0.0060 (5)	0.0091 (6)	0.0051 (6)
0.0755 (12)	0.0449 (9)	0.1300 (14)	0.0208 (8)	0.0217 (10)	0.0081 (9)
0.0728 (11)	0.0523 (9)	0.0915 (11)	0.0276 (8)	0.0203 (8)	0.0175 (7)
0.0702 (12)	0.0779 (11)	0.0851 (11)	-0.0239 (9)	-0.0063 (8)	0.0156 (9)
0.0659 (10)	0.0912 (11)	0.0610 (9)	0.0337 (9)	0.0065 (7)	0.0143 (8)
0.0570 (8)	0.0342 (6)	0.0367 (6)	0.0132 (5)	-0.0063 (5)	0.0041 (5)
0.0512 (7)	0.0295 (6)	0.0350 (6)	0.0094 (5)	-0.0055 (5)	0.0019 (4)
0.0809 (10)	0.0335 (6)	0.0400 (6)	0.0180 (6)	-0.0087 (6)	0.0025 (5)
0.0715 (9)	0.0379 (7)	0.0434 (7)	0.0095 (6)	-0.0106 (6)	-0.0001 (5)
0.0384 (10)	0.0475 (10)	0.0373 (8)	0.0068 (7)	0.0027 (7)	0.0043 (7)
0.0466 (11)	0.0605 (12)	0.0384 (9)	0.0031 (9)	0.0000 (8)	0.0025 (8)
0.0523 (13)	0.0792 (15)	0.0418 (10)	0.0118 (10)	-0.0052 (8)	0.0112 (10)
0.0549 (13)	0.0717 (14)	0.0440 (10)	0.0226 (10)	0.0022 (8)	0.0227 (9)
0.0403 (10)	0.0495 (10)	0.0397 (9)	0.0145 (8)	0.0076 (7)	0.0131 (7)
0.0339 (9)	0.0467 (10)	0.0344 (8)	0.0092 (7)	0.0049 (6)	0.0089 (7)
0.0502 (11)	0.0501 (11)	0.0467 (10)	0.0230 (8)	0.0145 (8)	0.0231 (8)
0.0886 (16)	0.0380 (10)	0.0563 (11)	0.0250 (10)	0.0168 (10)	0.0146 (8)
0.0685 (14)	0.0264 (9)	0.0742 (13)	0.0049 (8)	0.0038 (10)	0.0070 (8)
0.0410 (10)	0.0290 (8)	0.0507 (10)	0.0018 (7)	0.0107 (7)	-0.0052 (7)
0.0338 (9)	0.0360 (8)	0.0386 (8)	0.0031 (6)	0.0076 (6)	0.0006 (6)
0.0492 (11)	0.0443 (10)	0.0379 (9)	0.0016 (8)	0.0075 (7)	-0.0079 (7)
	$\begin{array}{c} U^{11} \\ \hline 0.0603 (11) \\ 0.0517 (9) \\ 0.0379 (8) \\ 0.0755 (12) \\ 0.0728 (11) \\ 0.0702 (12) \\ 0.0659 (10) \\ 0.0570 (8) \\ 0.0512 (7) \\ 0.0809 (10) \\ 0.0512 (7) \\ 0.0809 (10) \\ 0.0715 (9) \\ 0.0384 (10) \\ 0.0715 (9) \\ 0.0384 (10) \\ 0.0466 (11) \\ 0.0523 (13) \\ 0.0466 (11) \\ 0.0523 (13) \\ 0.0446 (11) \\ 0.0523 (13) \\ 0.0403 (10) \\ 0.0339 (9) \\ 0.0502 (11) \\ 0.0886 (16) \\ 0.0685 (14) \\ 0.0410 (10) \\ 0.0338 (9) \\ 0.0492 (11) \\ \end{array}$	U^{11} U^{22} 0.0603 (11)0.0439 (9)0.0517 (9)0.0324 (7)0.0379 (8)0.0283 (7)0.0755 (12)0.0449 (9)0.0728 (11)0.0523 (9)0.0702 (12)0.0779 (11)0.0659 (10)0.0912 (11)0.0570 (8)0.0342 (6)0.0512 (7)0.0295 (6)0.0809 (10)0.0335 (6)0.0715 (9)0.0379 (7)0.0384 (10)0.0475 (10)0.0523 (13)0.0792 (15)0.0549 (13)0.0717 (14)0.0403 (10)0.0495 (10)0.0339 (9)0.0467 (10)0.0586 (16)0.0380 (10)0.0685 (14)0.0290 (8)0.0338 (9)0.0360 (8)0.0492 (11)0.0443 (10)	U^{11} U^{22} U^{33} 0.0603 (11)0.0439 (9)0.0431 (8)0.0517 (9)0.0324 (7)0.0464 (8)0.0379 (8)0.0283 (7)0.0493 (8)0.0755 (12)0.0449 (9)0.1300 (14)0.0728 (11)0.0523 (9)0.0915 (11)0.0702 (12)0.0779 (11)0.0851 (11)0.0659 (10)0.0912 (11)0.0610 (9)0.0570 (8)0.0342 (6)0.0367 (6)0.0512 (7)0.0295 (6)0.0350 (6)0.0809 (10)0.0379 (7)0.0434 (7)0.0384 (10)0.0475 (10)0.0373 (8)0.0466 (11)0.0605 (12)0.0384 (9)0.0523 (13)0.0792 (15)0.0418 (10)0.0403 (10)0.0495 (10)0.0397 (9)0.0339 (9)0.0467 (10)0.0344 (8)0.0502 (11)0.0501 (11)0.0467 (10)0.0886 (16)0.0380 (10)0.0563 (11)0.0685 (14)0.0290 (8)0.0507 (10)0.0338 (9)0.0360 (8)0.0386 (8)0.0492 (11)0.0443 (10)0.0379 (9)	U^{11} U^{22} U^{33} U^{12} 0.0603 (11)0.0439 (9)0.0431 (8)0.0079 (8)0.0517 (9)0.0324 (7)0.0464 (8)0.0153 (6)0.0379 (8)0.0283 (7)0.0493 (8)0.0060 (5)0.0755 (12)0.0449 (9)0.1300 (14)0.0208 (8)0.0728 (11)0.0523 (9)0.0915 (11)0.0276 (8)0.0702 (12)0.0779 (11)0.0851 (11) -0.0239 (9)0.0659 (10)0.0912 (11)0.0610 (9)0.0337 (9)0.0570 (8)0.0342 (6)0.0367 (6)0.0132 (5)0.0512 (7)0.0295 (6)0.0350 (6)0.0094 (5)0.0809 (10)0.0335 (6)0.0400 (6)0.0180 (6)0.0715 (9)0.0379 (7)0.0434 (7)0.0095 (6)0.0384 (10)0.0475 (10)0.0373 (8)0.0068 (7)0.0466 (11)0.0605 (12)0.0384 (9)0.0031 (9)0.0523 (13)0.0717 (14)0.0440 (10)0.0226 (10)0.0403 (10)0.0495 (10)0.0397 (9)0.0145 (8)0.0389 (9)0.0467 (10)0.0230 (8)0.0886 (16)0.0380 (10)0.0563 (11)0.0250 (10)0.0685 (14)0.0264 (9)0.0742 (13)0.0049 (8)0.0410 (10)0.0290 (8)0.0507 (10)0.0018 (7)0.0338 (9)0.0360 (8)0.0386 (8)0.0031 (6)0.0492 (11)0.0443 (10)0.0379 (9)0.016 (8)	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0603 (11)0.0439 (9)0.0431 (8)0.0079 (8)0.0013 (7)0.0517 (9)0.0324 (7)0.0464 (8)0.0153 (6)0.0169 (7)0.0379 (8)0.0283 (7)0.0493 (8)0.0060 (5)0.0091 (6)0.0755 (12)0.0449 (9)0.1300 (14)0.0208 (8)0.0217 (10)0.0728 (11)0.0523 (9)0.0915 (11)0.0276 (8)0.0203 (8)0.0702 (12)0.0779 (11)0.0851 (11) $-0.0239 (9)$ $-0.0063 (5)$ 0.0559 (10)0.0912 (11)0.0610 (9)0.0337 (9)0.0065 (7)0.0570 (8)0.0342 (6)0.0367 (6)0.0132 (5) $-0.0063 (5)$ 0.059 (10)0.0335 (6)0.0400 (6)0.0180 (6) $-0.0087 (6)$ 0.0512 (7)0.0295 (6)0.0350 (6)0.0094 (5) $-0.0055 (5)$ 0.0809 (10)0.0335 (6)0.0400 (6)0.0180 (6) $-0.0087 (6)$ 0.0715 (9)0.379 (7)0.0434 (7)0.0095 (6) $-0.0106 (6)$ 0.0384 (10)0.0475 (10)0.0373 (8)0.0068 (7)0.0027 (7)0.0466 (11)0.0605 (12)0.0384 (9)0.0031 (9)0.0000 (8)0.0523 (13)0.0717 (14)0.0440 (10)0.0226 (10)0.0022 (8)0.0549 (13)0.0717 (14)0.0447 (10)0.0226 (10)0.0022 (8)0.0502 (11)0.0501 (11)0.0397 (9)0.0145 (8)0.0076 (7)0.0685 (14)0.0264 (9)0.0742 (13)0.0049 (8)0.0038 (10)0.0685 (14)

supporting information

C13	0.0497 (11)	0.0615 (12)	0.0309 (8)	0.0046 (9)	0.0022 (7)	0.0003 (8)
C14	0.0421 (10)	0.0480 (10)	0.0357 (8)	0.0098 (7)	0.0044 (7)	0.0083 (7)
C15	0.0378 (9)	0.0377 (9)	0.0352 (8)	0.0079 (7)	0.0036 (6)	0.0043 (6)
C16	0.0326 (9)	0.0327 (8)	0.0346 (8)	0.0039 (6)	0.0041 (6)	0.0009 (6)
C17	0.111 (2)	0.0414 (11)	0.0596 (12)	0.0280 (11)	-0.0082 (12)	0.0091 (9)
C18	0.0865 (18)	0.0455 (12)	0.0671 (13)	0.0025 (11)	-0.0136 (12)	-0.0035 (10)
C19	0.0713 (17)	0.0801 (17)	0.0719 (15)	0.0061 (13)	0.0154 (12)	0.0002 (13)
Ni1	0.03972 (13)	0.02768 (11)	0.03891 (12)	0.00921 (8)	0.00475 (8)	0.00648 (8)
Na1	0.0529 (4)	0.0312 (3)	0.0421 (3)	0.0085 (3)	0.0013 (3)	0.0039 (3)

Geometric parameters (Å, °)

N1—O3	1.230 (2)	C4—C5	1.427 (2)
N1-01	1.2372 (19)	C4—H4	0.9300
N102	1.246 (2)	C5—C6	1.403 (2)
N1—Na1	2.8961 (19)	C5—C7	1.420 (2)
N2—C7	1.293 (2)	С7—Н7	0.9300
N2—C8	1.468 (2)	C8—C9	1.503 (3)
N2—Ni1	1.8433 (13)	C8—H8A	0.9700
N3—C10	1.290 (2)	C8—H8B	0.9700
N3—C9	1.473 (2)	С9—Н9А	0.9700
N3—Ni1	1.8371 (13)	С9—Н9В	0.9700
O1—Na1	2.5512 (19)	C10—C11	1.432 (2)
O2—Na1	2.4806 (16)	C10—H10	0.9300
O4—C19	1.412 (3)	C11—C16	1.408 (2)
O4—Na1	2.3837 (17)	C11—C12	1.416 (2)
O4—H4O	0.8151	C12—C13	1.352 (3)
O5—C6	1.3139 (18)	C12—H12	0.9300
O5—Ni1	1.8396 (11)	C13—C14	1.402 (2)
O5—Na1	2.3644 (12)	C13—H13	0.9300
O6—C16	1.3148 (17)	C14—C15	1.380 (2)
O6—Ni1	1.8339 (10)	C14—H14	0.9300
O6—Na1	2.3288 (12)	C15—C16	1.413 (2)
O7—C15	1.3689 (19)	C17—H17A	0.9600
O7—C17	1.412 (2)	C17—H17B	0.9600
O7—Na1	2.4666 (13)	C17—H17C	0.9600
O8—C1	1.371 (2)	C18—H18A	0.9600
O8—C18	1.418 (2)	C18—H18B	0.9600
O8—Na1	2.5364 (13)	C18—H18C	0.9600
C1—C2	1.380 (2)	C19—Na1	3.125 (3)
C1—C6	1.416 (2)	C19—H19A	0.9600
C2—C3	1.394 (3)	C19—H19B	0.9600
C2—H2	0.9300	C19—H19C	0.9600
C3—C4	1.349 (3)	Ni1—Na1	3.3749 (7)
С3—Н3	0.9300		
O3—N1—O1	120.31 (19)	O6—C16—C11	123.80 (14)
O3—N1—O2	121.67 (18)	O6—C16—C15	117.42 (13)

O1—N1—O2	118.02 (17)	C11—C16—C15	118.78 (13)
O3—N1—Na1	166.28 (12)	O7—C17—H17A	109.5
O1—N1—Na1	61.59 (11)	O7—C17—H17B	109.5
O2—N1—Na1	58.35 (10)	H17A—C17—H17B	109.5
C7—N2—C8	118.06 (14)	O7—C17—H17C	109.5
C7—N2—Ni1	126.55 (12)	H17A—C17—H17C	109.5
C8—N2—Ni1	115.16 (11)	H17B—C17—H17C	109.5
C10—N3—C9	118.99 (14)	O8—C18—H18A	109.5
C10—N3—Ni1	126.49 (11)	08—C18—H18B	109.5
C9—N3—Ni1	114.51 (11)	H18A—C18—H18B	109.5
N1-O1-Na1	93 16 (12)	08-C18-H18C	109.5
N1—O2—Na1	96 34 (11)	H18A - C18 - H18C	109.5
C19 - O4 - Na1	108 10 (13)	H18B - C18 - H18C	109.5
C19 - O4 - H4O	108.2	Ω_{4} C_{19} N_{21}	46 47 (10)
$N_{2} - O4 - H4O$	119.0	04-C19-H19A	109 5
C605Ni1	127.75 (10)	N_{21} C_{19} H_{19A}	79.9
$C_{0} = 05 = N_{1}$	127.75(10) 125.60(10)	Ω_{1} C_{10} H_{10B}	109.5
$N_{1} O S N_{2}$	125.00(10) 106.12(5)	Na1 C10 H10B	109.5
$C_{16} O_{6} N_{11}$	100.12(3) 127.72(10)	$H_{10A} = C_{10} = H_{10D}$	100.5
C16 - O6 - Na1	127.73(10) 122.06(0)	$n_{19}A - c_{19} - n_{19}B$	109.5
$V_{10} = 00 = Na1$	125.90(9) 107.75(5)	$V_4 = C_{19} = H_{19}C$	109.3
$\frac{1}{10000000000000000000000000000000000$	107.73(3) 118.60(12)	$\mathbf{M}_{\mathbf{M}} = \mathbf{M}_{\mathbf{M}} = $	0/.4
$C15 = 07 = N_{c1}$	118.09 (15)	H19A—C19—H19C	109.5
C15 - 07 - Na1	118.60 (9)	HI9B—CI9—HI9C	109.5
C1/-O/-Nal	122.69 (10)	06 - N11 - N3	95.02 (5)
C1_08_C18	118.12 (13)	06—N11—05	83.21 (5)
Cl—O8—Nal	118.85 (9)	N3—N11—O5	178.04 (5)
C18—O8—Na1	120.66 (11)	06—Ni1—N2	177.63 (6)
08—C1—C2	125.03 (16)	N3—Ni1—N2	87.08 (6)
O8—C1—C6	113.83 (13)	O5—Ni1—N2	94.71 (6)
C2—C1—C6	121.13 (16)	O6—Ni1—Na1	41.09 (3)
C1—C2—C3	119.59 (18)	N3—Ni1—Na1	135.99 (4)
C1—C2—H2	120.2	O5—Ni1—Na1	42.30 (3)
С3—С2—Н2	120.2	N2—Ni1—Na1	136.74 (5)
C4—C3—C2	120.82 (16)	O6—Na1—O5	62.62 (4)
С4—С3—Н3	119.6	O6—Na1—O4	105.64 (6)
С2—С3—Н3	119.6	O5—Na1—O4	102.21 (5)
C3—C4—C5	121.15 (18)	O6—Na1—O7	64.88 (4)
C3—C4—H4	119.4	O5—Na1—O7	127.21 (5)
C5—C4—H4	119.4	O4—Na1—O7	86.56 (5)
C6—C5—C7	121.30 (15)	O6—Na1—O2	139.36 (6)
C6—C5—C4	118.75 (17)	O5—Na1—O2	136.66 (5)
C7—C5—C4	119.95 (16)	O4—Na1—O2	103.03 (6)
O5—C6—C5	123.93 (15)	O7—Na1—O2	88.99 (5)
O5—C6—C1	117.52 (14)	O6—Na1—O8	125.89 (5)
C5—C6—C1	118.55 (14)	O5—Na1—O8	63.39 (4)
N2—C7—C5	125.72 (15)	O4—Na1—O8	82.22 (5)
N2—C7—H7	117.1	O7—Na1—O8	166.29 (5)
С5—С7—Н7	117.1	O2—Na1—O8	85.91 (5)

N2—C8—C9	109.13 (14)	O6—Na1—O1	102.51 (5)
N2—C8—H8A	109.9	O5—Na1—O1	95.38 (5)
С9—С8—Н8А	109.9	O4—Na1—O1	151.34 (6)
N2—C8—H8B	109.9	O7—Na1—O1	100.68 (6)
С9—С8—Н8В	109.9	O2—Na1—O1	50.02 (5)
H8A—C8—H8B	108.3	O8—Na1—O1	85.75 (6)
N3—C9—C8	109.49 (14)	O6—Na1—N1	124.94 (5)
N3—C9—H9A	109.8	O5—Na1—N1	114.82 (5)
С8—С9—Н9А	109.8	O4—Na1—N1	126.53 (6)
N3—C9—H9B	109.8	07—Na1—N1	98.99 (5)
С8—С9—Н9В	109.8	O2—Na1—N1	25.31 (4)
Н9А—С9—Н9В	108.2	08—Na1—N1	81.61 (5)
N3-C10-C11	125.54 (14)	Ol—Nal—Nl	25.25 (4)
N3—C10—H10	117.2	06—Na1—C19	88.26 (6)
C11—C10—H10	117.2	05—Na1—C19	77.74 (6)
C16-C11-C12	119.08 (15)	04—Na1—C19	25.43 (6)
C16-C11-C10	120.98 (14)	07—Na1—C19	95 80 (6)
C12-C11-C10	119 84 (14)	Ω^2 —Na1—C19	126 74 (6)
C13 - C12 - C11	120 74 (15)	08—Na1—C19	77 25 (6)
C13 - C12 - H12	119.6	Ω_1 —Na1—C19	162.98 (6)
C11 - C12 - H12	119.6	N1—Na1—C19	146 80 (6)
C12 - C13 - C14	121 20 (15)	06—Na1—Ni1	31.17(3)
C12—C13—H13	119.4	05—Na1—Ni1	31.58 (3)
C14—C13—H13	119.1	04—Na1—Ni1	10842(5)
C15-C14-C13	119.21 (16)	07—Na1—Ni1	96.03 (3)
C15—C14—H14	120.4	Ω^2 —Na1—Ni1	148 38 (4)
C13—C14—H14	120.1	08—Na1—Ni1	94 97 (3)
07	125.11 (15)	01—Na1—Ni1	98 44 (4)
07	113.90 (12)	N1—Na1—Ni1	123.52 (4)
C14-C15-C16	120.99 (15)	C19—Na1—Ni1	83 90 (5)
	120.99 (10)		05.90 (5)
O3—N1—O1—Na1	164.40 (14)	C12—C13—C14—C15	0.3 (3)
O2-N1-O1-Na1	-15.51 (17)	C17—O7—C15—C14	6.0 (3)
O3—N1—O2—Na1	-163.87 (15)	Na1—O7—C15—C14	-172.37 (14)
O1-N1-O2-Na1	16.04 (18)	C17—O7—C15—C16	-173.20 (18)
C18—O8—C1—C2	9.2 (3)	Na1—O7—C15—C16	8.43 (19)
Na1—O8—C1—C2	171.84 (14)	C13—C14—C15—O7	-179.79 (16)
C18—O8—C1—C6	-169.82 (18)	C13—C14—C15—C16	-0.6 (3)
Na1—O8—C1—C6	-7.19 (19)	Ni1-06-C16-C11	0.5 (2)
O8—C1—C2—C3	-179.16 (17)	Na1—O6—C16—C11	170.80 (12)
C6—C1—C2—C3	-0.2 (3)	Ni1-06-C16-C15	-179.59 (11)
C1—C2—C3—C4	-0.6 (3)	Na1—O6—C16—C15	-9.3 (2)
C2—C3—C4—C5	0.6 (3)	C12—C11—C16—O6	179.76 (15)
C3—C4—C5—C6	0.1 (3)	C10—C11—C16—O6	3.2 (3)
C3—C4—C5—C7	178.98 (19)	C12—C11—C16—C15	-0.2 (2)
Ni1—O5—C6—C5	-1.7 (2)	C10-C11-C16-C15	-176.70 (15)
Na1—O5—C6—C5	-172.10 (12)	O7—C15—C16—O6	-0.1 (2)
Ni1—O5—C6—C1	177.62 (12)	C14—C15—C16—O6	-179.34 (15)

Na1O5C6C1 C7C5C6O5 C4C5C6C1 C4C5C6C1 O8C1C6O5 C2C1C6O5	7.2 (2) -0.5 (3) 178.43 (16) -179.72 (16) -0.8 (3) 0.7 (2) -178.41 (16)	O7-C15-C16-C11 C14-C15-C16-C11 C16-O6-Ni1-N3 Na1-O6-Ni1-N3 C16-O6-Ni1-O5 Na1-O6-Ni1-O5 C16-O6-Ni1-Na1	179.82 (15) 0.6 (2) -4.68 (14) -176.25 (6) 176.15 (14) 4.58 (6) 171 57 (17)
$\begin{array}{c} C_2 = C_1 = C_0 = C_3 \\ C_2 = C_1 = C_0 = C_3 \\ C_2 = C_1 = C_0 = C_3 \\ C_3 = N_2 = C_7 = C_5 \\ C_6 = C_5 = C_7 = N_2 \\ C_4 = C_5 = C_7 = N_2 \\ C_4 = C_5 = C_7 = N_2 \\ C_7 = N_2 = C_8 = C_9 \\ N_1 = N_2 = C_8 = C_9 \\ N_1 = N_3 = C_9 = C_8 \\ N_2 = C_8 = C_9 = N_3 \\ C_1 = N_3 = C_1 = C_1 \\ N_1 = N_3 = C_1 \\ C_1 = C_1 = C_1 \\ C_1 \\$	$\begin{array}{c} 0.9 (3) \\ 174.90 (17) \\ 0.6 (3) \\ 1.0 (3) \\ -177.89 (17) \\ 168.53 (17) \\ -16.6 (2) \\ 160.57 (16) \\ -20.5 (2) \\ 22.7 (2) \\ 173.00 (16) \\ -5.7 (3) \\ -0.5 (3) \\ -177.00 (17) \\ -0.2 (3) \\ 176.39 (16) \\ 0.1 (3) \end{array}$	C9-N3-Ni1-O6 C9-N3-Ni1-N2 C9-N3-Ni1-N2 C9-N3-Ni1-N2 C10-N3-Ni1-Na1 C9-N3-Ni1-Na1 C6-O5-Ni1-O6 Na1-O5-Ni1-O6 C6-O5-Ni1-N2 Na1-O5-Ni1-N2 C6-O5-Ni1-N2 C6-O5-Ni1-N3 C7-N2-Ni1-N3 C8-N2-Ni1-O5 C8-N2-Ni1-O5 C7-N2-Ni1-Na1 C8-N2-Ni1-Na1	$\begin{array}{c} -171.60 \ (13) \\ -171.60 \ (13) \\ -171.71 \ (15) \\ 9.50 \ (13) \\ 3.64 \ (18) \\ -175.15 \ (10) \\ -176.40 \ (15) \\ -4.48 \ (6) \\ 2.46 \ (15) \\ 174.39 \ (6) \\ -171.92 \ (17) \\ 178.85 \ (16) \\ 4.44 \ (14) \\ -1.95 \ (16) \\ -176.35 \ (13) \\ 3.57 \ (19) \\ -170.84 \ (11) \end{array}$

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D··· A	D—H··· A
04—H4 <i>O</i> …O1 ⁱ	0.82	2.24	2.991 (2)	154
O4—H4 <i>O</i> ···O3 ⁱ	0.82	2.49	3.181 (2)	143
C8—H8 <i>B</i> ····O2 ⁱⁱ	0.97	2.65	3.152 (2)	112

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*, *y*-1, *z*.