
rsif.royalsocietypublishing.org
Research
Cite this article: Nguyen K, Yu N, Bandi MM,

Venkadesan M, Mandre S. 2017 Curvature-

induced stiffening of a fish fin. J. R. Soc.

Interface 14: 20170247.

http://dx.doi.org/10.1098/rsif.2017.0247
Received: 2 April 2017

Accepted: 2 May 2017
Subject Category:
Life Sciences – Engineering interface

Subject Areas:
biomechanics, biomimetics

Keywords:
fish fin, biomechanics, curvature
Author for correspondence:
Shreyas Mandre

e-mail: shreyas_mandre@brown.edu
†Research performed while visiting Brown

University, Providence, RI, USA.
& 2017 The Author(s). Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Curvature-induced stiffening of a fish fin

Khoi Nguyen1,2, Ning Yu3,†, Mahesh M. Bandi1, Madhusudhan Venkadesan2

and Shreyas Mandre4

1Collective Interactions Unit, OIST Graduate University, Onna, Okinawa 904-0495, Japan
2Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520, USA
3Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
4School of Engineering, Brown University, Providence, RI 02912, USA

KN, 0000-0003-1581-6937; NY, 0000-0002-1310-0428; MMB, 0000-0002-8431-9005;
MV, 0000-0001-5754-7478; SM, 0000-0002-1525-8325

How fish modulate their fin stiffness during locomotive manoeuvres remains

unknown. We show that changing the fin’s curvature modulates its stiffness.

Modelling the fin as bendable bony rays held together by a membrane, we

deduce that fin curvature is manifested as a misalignment of the principal

bending axes between neighbouring rays. An external force causes neighbour-

ing rays to bend and splay apart, and thus stretches the membrane. This

coupling between bending the rays and stretching the membrane underlies

the increase in stiffness. Using three-dimensional reconstruction of a mackerel

(Scomber japonicus) pectoral fin for illustration, we calculate the range of

stiffnesses this fin is expected to span by changing curvature. The three-

dimensional reconstruction shows that, even in its geometrically flat state, a

functional curvature is embedded within the fin microstructure owing to the

morphology of individual rays. As the ability of a propulsive surface to trans-

mit force to the surrounding fluid is limited by its stiffness, the fin curvature

controls the coupling between the fish and its surrounding fluid. Thereby,

our results provide mechanical underpinnings and morphological predictions

for the hypothesis that the spanned range of fin stiffnesses correlates with the

behaviour and the ecological niche of the fish.
1. Introduction
Ray-finned fish, or Actinopterygii, use their fins as a general purpose device to

manipulate the surrounding fluid. That the rayed structure of the fin is found

in greater than 99% of all living fish species is a testament to its versatility in

the aquatic environment [1–3]. The fin is used in a wide range of manoeuvres

[4], from holding stationary in spatio-temporally varying turbulent flows to

explosive bursts of motion. Insight into design principles underlying its bio-

mechanics could therefore shed light on the reason behind its overwhelming

dominance in the aquatic realm, and find applications in underwater robotics.

The mechanical stiffness of the fin is a key parameter that influences its

propulsive performance [5–10]. Which structural elements might be responsible

for the fin’s stiffness? The fin stiffness under bending deformations is tacitly

assumed to equal the individual ray bending rigidity multiplied by the number

of rays [11]. Experimentally, an individual ray’s bending rigidity is estimated

by supporting it in a cantilevered loading and measuring the displacement at a

point where a force is applied to deform the ray [12,13]. Here, we show using a

mathematical model that fin curvature along a direction transverse to the rays stif-

fens it to bending beyond this simple picture. The mechanism of this stiffening

underlies the common observation that, under its own weight, a flat sheet of

paper droops but a slightly curved sheet stiffens and barely deforms. Curvature

couples out-of-plane bending of the sheet to its in-plane stretching; the in-plane

elastic properties of the sheet thus become relevant in determining its stiffness.

However, unlike a sheet of paper, rayed fins are composite structures consisting
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Figure 1. Schematics for a model fish fin. (a) A prototypical fish fin has multiple bony rays which attach to a common fin base and are held together by tissue
membranes. (b) We model the fin using elastic beams for rays and distributed springs for membranes. The rays and membranes are of length L and approximate
a transverse curvature by tracing a constant circular arc.
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of hard bony rays interconnected by softer membranes [14,15].

We develop a simple mathematical model that encapsulates the

essence of the bending–stretching coupling applied to the

rayed-fin structure; bending of the rays is mechanically

coupled to the stretching of the membranes. Via this mechan-

ism, the fish can modulate the stiffness of the fin by merely

changing its transverse curvature. We calculate the range of

stiffnesses spanned by a model fin as a function of curvature

and find the important underlying parameters to be the aniso-

tropy in the bending modulus of the rays and the elastic

properties of the membrane under stretching. Finally, an

important result from our model is the definition of the discrete

curvature itself. We identify it to be proportional to the misa-

lignment of the principal axis of bending. By applying this

definition, we identify a ‘functional’ curvature although the

fin may be geometrically flat. We apply our model to a

sample fish fin—a mackerel (Scomber japonicus) pectoral fin—

in which we predict the degree of curvature-induced stiffening

and illustrate the presence of a functional curvature. We

emphasize that the mackerel fin was not chosen for a biological

function it specializes in. It merely serves to illustrate the

mechanical principles, which are the focus of this article.
2. Mathematical model
A fish fin has many features that complicate its elastic behav-

iour. To list a few, individual rays have non-uniform length

and heterogeneous internal structures, and the tissue mem-

branes have nonlinear elasticity (figure 1a). To understand

the underlying mechanics and isolate the essential principle

of bending–stretching coupling, we make the following

simplifying assumptions. The membranes are assumed to

be identical in composition and dimensions, and resist stretch-

ing transverse to the rays with a distributed elastic force. At

every distance x from the fin base, the distributed force

equals the amount of stretching multiplied by a spring

constant k. The fin rays are approximated as linearized

Euler–Bernoulli beams with bending rigidities Bn and Bt

along principal axes that are aligned with the normal and tan-

gent to the fin surface, respectively. The material of the fin rays

and membrane is assumed to be linearly elastic, i.e. the local

strain in the material is linearly proportional to the local
stress. Because of the transverse curvature, the principal bend-

ing directions of each ray are misaligned with its neighbours.

A schematic of the fin is shown in figure 1b where bending–

stretching coupling acts parallel to the cross-section shown

(dashed box). With these assumptions, we construct a fin

model with few parameters, yet maintain a meaningful

approximation to the curvature-induced stiffening of rayed fins.
2.1. Bending – stretching coupling in a two-ray fin
The basic unit of bending–stretching coupling is a pair of rays

connected by a single membrane, a two-ray fin (figure 2a). A fin

with multiple (say N ) rays is simply a collective set of two-ray

units, and an exact account of the analogy between an N-ray

and a two-ray fin is presented in appendix A. Figure 2a–c
depicts the kinematics and balance of forces for a two-ray fin

at a distance x from the fin’s base. Each ray has a hard and a

soft principal bending direction, depicted as an anisotropic

rectangular cross-section. The misalignment u between the

principal directions and the membranes encodes the fin’s

transverse curvature, and is defined such that the hard and

soft directions are tangential and normal to the fin surface,

respectively. That is to say, the membrane surface differs

from the fin surface, and this becomes apparent in the N-ray

fin of figure 3a, where the fin surface at any particular ray is

the average orientation of its two neighbouring membranes.

The two-ray fin deforms due to an externally applied

force causing the rays to bend with displacements w(x) and

v(x) along the soft and hard bending directions, respectively.

In turn, this causes the membrane to elongate by 1(x) and

resist further displacement of the rays, thereby stiffening the

fin via bending–stretching coupling.

To quantify the stiffness, we cantilever the model fin at its

base, and apply a point force f at the ray tips x ¼ L along their

normal, soft direction. The stiffness R of the fin is defined as

the ratio of the applied force to the normal displacement of

the tip which manifests as w(L) in the two-ray unit,

R ¼ f
w(L)

, ð2:1Þ

in the limit of small displacements. We determine the influence

of fin curvature and membrane elasticity on R by solving the

mathematical model we develop here. In the absence of the
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Figure 2. Results from the analysis of stiffening by curvature in a two-ray fin. (a) Two rays that are symmetric about a membrane. The rays deform under point
forces f applied at the ray tips along their soft principal bending directions. (b) A cross-sectional view of the two-ray fin at a distance x from the fin base. The
displacement of a ray due to point force loadings is decomposed into its principal components, w(x) and v(x). The membrane stretches by 1(x) due to the dis-
placement. (c) Forces acting on the ray. u is the angle the principal axes form with the membrane, Bt and Bn are the tangential and normal bending rigidities
respectively, and k is the membrane spring constant. (d ) Fin stiffness R transitions between two asymptotic limits as a function of the coupling parameter L/l. The
larger the value of g, the greater the maximal stiffness that can be achieved by an infinitely stiff membrane (L/l!1). (e) Rescaling stiffness as an interpolation
shows that g also acts to delay the transition to stronger coupling, which is characterized by a dashed black line. (Online version in colour.)
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Figure 3. Morphological and functional curvature in rayed-fin model. (a) Schematic of a multi-ray fin with morphological curvature. The curvature may be rep-
resented by the misalignments of the principal bending directions of rays. In this case, the curvature arises because the fin as a whole is bent in a curved shape
transverse to the rays. (b) Schematic of a multi-ray fin with functional curvature. While the fin is morphologically flat, the misalignment between the principal axes
of local fin bending moments causes out-of-plane bending to be coupled with stretching of the membrane, and therefore characterizes the functional curvature.
(c) Planform perspective of the three-dimensional reconstruction of an isolated mackerel pectoral fin using mCT. The mackerel fin is stretched by extending the first
and last rays apart, and held flat between two compressive plates with soft contact surfaces. The bony rays appear bright, whereas the soft elastic membranes
appear dark. (d ) Representative cross-sections of rays taken at fixed distances of 7, 9 and 11 mm from the fin base and taken normal to each ray’s central axis. The
cross-sections are depicted in (c) as white cut-lines. The cross-hairs superimposed on the image depict the principal axes and magnitudes of the anisotropic second
moment of the bright regions, and represent the local bending rigidity of the rays. (e) The angles made by the principal axes of each ray with the plane of the fin
(and the membrane) for three different fixed distances. The difference in angles between any two adjacent rays allows for bending – stretching coupling and
characterizes the functional curvature of this sample fin. The lower angles for the first three rays at 11 mm are likely to be due to the onset of distal branching.
(Online version in colour.)
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membrane and the bending–stretching coupling, the stiffness

R in our model will arise simply due to the bending rigidity

of the rays. Our loading scheme and stiffness definition thus

allows us to determine whether the membrane, when present,

also plays a role. The external point load in our model is

applied on the rays instead of the membranes, accounting for

the transmission of the hydrodynamic force on the membranes

to the rays at the point of attachment, as described in appendix

B. The rationale for ignoring the bulging deformation of the

membrane due to hydrodynamic loading is also developed

in appendix B. Note that limiting the analysis to infinitesimal

displacements implies that the ray curvature along its length

changes infinitesimally due to bending, and does not influence

the simplified analysis we present next.

The coupling between ray bending and membrane

stretching because of fin curvature appears in a geometric

relation between the displacements as

1 ¼ 2w sin uþ 2v cos u, ð2:2Þ

and in the balance of forces acting on the rays,

Bnw0000 ¼ �k1 sin u, Btv0000 ¼ �k1 cos u, ð2:3Þ

where primes denote derivatives with respect to x. In the

force balance (2.3), k1 is a distributed elastic force that resists

membrane stretching, whereas Bnw0000 and Btv0000 are the ray

resistances to bending in the normal and tangential direc-

tions, respectively. The rays are clamped at the base, and

loaded at their tips in the normal direction as given by

w ¼ w0 ¼ v ¼ v0 ¼ 0 at x ¼ 0
and w00 ¼ v00 ¼ Btv000 ¼ 0, Bnw000 ¼ �f at x ¼ L:

�
ð2:4Þ

A physical length scale l arises from the competition

between ray bending and membrane stretching. It is found

by eliminating v and w from equations (2.2) and (2.3) and

examining the behaviour of membrane elongation 1, which

satisfies

10000 ¼ � 1

l4
1, where

1

l4
¼ 2k cos2 u

Bt
(1þ g),

g ¼ Bt

Bn

sin2 u

cos2 u
: ð2:5Þ

The scale l is large when the membrane is weak compared

with the rays and small when the membrane is strong. If l is

much longer than the fin length L, the influence of bending–

stretching coupling on the fin stiffness can be ignored, but

if l is much shorter the influence dominates. The coupling

parameter L/l characterizes the strength of this bending–stretch-

ing coupling and the membrane stiffness. Furthermore, the fin

stiffness depends on the purely geometric parameter g, which

characterizes the anisotropic bending of the individual rays.

The two asymptotic behaviours of membrane strength are

understood in detail by considering the direction of ray bend-

ing. When the membrane is weak and the membrane stretching

force is negligible, the rays bend predominantly in the direc-

tion of the applied load, i.e. in the normal, soft direction. The

fin stiffness in this limit, R0, is simply the stiffness of an

Euler–Bernoulli beam of length L in that direction [16],

R0 ¼
3Bn

L3
: ð2:6Þ

At the other extreme when the membrane is strong, the mem-

brane elongation is negligible, and the two rays bend

predominantly perpendicular to the single membrane. The
fin stiffness in this limit, R1, is

R1 ¼
3Bn

L3
(1þ g) ¼ R0(1þ g): ð2:7Þ

Depending on the anisotropy of the rays g, the fin stiffness R1

could be much larger than R0.

To derive the complete dependence of the two-ray fin

stiffness on membrane elasticity, we solve for the membrane

stretching. Equation (2.5) has four fundamental solutions in

terms of the complex number z ¼ eip/4 and its complex con-

jugate �z, namely ezx/l, e�zx=l, e2zx/l and e��zx=l. Only two linear

combinations Z1,2(x/l ) of the four solutions satisfy the

boundary conditions in equation (2.4) at the fin base. In

turn, the solution 1(x/l ) must be a linear combination of

Z1,2(x/l ) satisfying the conditions at the ray tips. Algebraic

manipulation of undetermined coefficients directly yield

1(x), and the membrane stretching at x ¼ L would be given

in terms of j ¼ L/l, Z1,2(x/l ), and their derivatives X1,2 and

Y1,2 as

Z1ðjÞ ¼ coshð�zjÞ � coshðzjÞ,
Z2ðjÞ ¼ z sinhð�zjÞ � �z sinhðzjÞ,

�
ð2:8aÞ

X1ðjÞ ¼ Z001ðjÞ, X2ðjÞ ¼ Z002ðjÞ ð2:8bÞ
and Y1(j) ¼ Z0001 (j), Y2(j) ¼ Z0002 (j), ð2:8cÞ

to obtain

1(L) ¼ 2f sin uL3

Bn
h(j),

where h(j) ¼ 3

j3

X2(j)Z1(j)� X1(j)Z2(j)

X1(j)Y2(j)� X2(j)Y1(j)
: ð2:9Þ

The physical significance of h(L/l ) is apparent from equation

(2.9); h is the membrane stretching at the ray tips, normalized

by the influence of the external point load f acting on the

membrane such that h ranges from zero to unity. The

normal bending at the ray tips is given as

w(L) ¼ fL3

3Bn

Bn cos2 uþ hBt sin2 u

Bn cos2 uþ Bt sin2 u
, ð2:10Þ

and the fin stiffness R is given in terms of h and g as

R ¼ f
w(L)

¼ 3Bn

L3

1þ g

1þ gh
: ð2:11Þ

To highlight the modulation of the fin’s stiffness between its

two limits R0 and R1 as L/l changes with curvature, we

express the stiffness R as an interpolation between the two

limits, as

R ¼ (1� a)R0 þ aR1, where a ¼ 1� h

1þ gh
: ð2:12Þ

As 0 , h , 1, a also ranges between zero and unity and

behaves as an interpolation variable for stiffness. Figure 2d
plots equation (2.11) in terms of the coupling parameter L/l,
whereas figure 2e plots equation (2.12) to demonstrate the

influence of g on bending–stretching coupling.

The dependence of fin stiffness on membrane stiffness L/l
and ray anisotropy g are understood as follows, and demon-

strated in figure 2d,e. Consider first the case of nearly

isotropic rays (g � 1, curves in figure 2d,e). As the membrane

is slightly stiffened but still weak (L/l� 1), the fin stiffness

begins to increase over R0, and is found from (2.12) and

(2.9) as R � R0(1 þ 37kL4sin2u/210Bn þ ... ). In this regime,

the fin stiffness is determined by a combination of the

normal bending and membrane stretching, but the weak
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membrane does not engage the tangential bending mode of

the rays, and fin stiffness is independent of the tangential

bending rigidity. As the membrane stiffness increases so

much that (L/l� 1), the fin stiffness approaches R1 approxi-

mately as R � R1(1� 3
ffiffiffi
2
p

g(l=L)3 þ . . . ). Here, the rays bend

so that the membrane does not stretch, even if that engages

the rays’ stiffer tangential bending mode.

A different picture emerges for highly anisotropic rays

(g� 1, see curves for g ¼ 10, 100 and 1000 in figure 2d,e).

For very weak membranes (L/l� 1), the stiffness remains

independent of tangential bending and is given by R �
R0(1 þ 37kL4sin2u/210Bn þ ... ) as before. However, because

these rays are much stiffer to tangential bending, the membrane

force also results in little tangential bending in the intermediate

range of membrane stiffnesses corresponding to L/l� 1 but

hg� 1. Using the asymptotic form of h( j)/ j23 for j� 1,

this criterion may be translated to 1� L/l� g1/3. In this inter-

mediate range, the fin stiffness may be approximated as

R=R0 � (L=l)3=3
ffiffiffi
2
p

and gains a dependence on the anisotropy

parameter. The stiffness in this range remains smaller than R1.

As the membrane stiffness further increases, a stage is reached

where the membrane force is strong enough to bend the rays

in the tangential direction. It is in this regime that the tangential

bending of rays appreciably reduces the stretching of the mem-

brane, the interpolation parameter a transitions between

zero and unity, and the fin stiffness is a significant fraction of

R1. Based on (2.12), this implies gh(L/l ) ¼ O(1), i.e. L/l ¼
O(g1/3). Finally, for an even larger membrane stiffness, corre-

sponding to the regime where L/l� g1/3, a approaches unity,

and, similar to the case of isotropic rays, the stiffness approaches

R1 approximately as R � R1(1� 3
ffiffiffi
2
p

g(l=L)3 þ . . . ).

Whether the fin is highly anisotropic or nearly isotropic,

the criterion for spanning the range of fin stiffness compares

L/l with g1/3. The important distinction between isotropic

and anisotropic rays is that the anisotropic bending of the

rays leads to a much stiffer fin, i.e. R1/R0 ¼ 1 þ g� 1.
2.2. Design criterion for stiffness modulation
The range of stiffness accessible to a fin depends on the range

of curvature, from zero to umax, it can reasonably impose on

itself. Changing curvatures simultaneously changes the coup-

ling parameter L/l and the ray anisotropy g. Here, we derive

the influence of the curvature on these parameters and apply

the result of the previous subsection to determine the range

of stiffness accessible to a fin. If (L/l )max is much less than

(gmax)1/3, where ‘max’ denotes the respective values at

umax, then the fin can only access the minimal stiffness R0

determined by the normal stiffness of rays, and stiffening

by curvature would be impractical in such a fin. If (L/l )max

is comparable to or greater than (gmax)1/3, the fin can span

at least an appreciable fraction of the range between the mini-

mal stiffness R0 and maximal stiffness R1, and this condition

is the design criterion by which to check if stiffening by cur-

vature is practical. As R1 also depends on curvature, we limit

the rest of this analysis to gmax� 1 in the interest of the

case that R1� R0. We show in appendix A that choosing

umax ¼ p/4 for the two-ray fin provides a quantitative com-

parison with the parameters for the N-ray fin, in which case

L
l

� �
max

¼ L
k

Bn
þ k

Bt

� �1=4

and gmax ¼
Bt

Bn
: ð2:13Þ
The design criterion for stiffening compares the maximum

coupling a fin can achieve (L/l )max with (gmax)1/3. If (L/l )max

is comparable to (gmax)1/3, then the fin may access the tran-

sition regime between R0 and R1 and span an appreciable

fraction of the range. The dashed black line in figure 2e is repre-

sentative of (L/l )max ¼ (gmax)1/3. On the other hand, if (L/

l )max� (gmax)1/3, the fin is past the transition and accesses a

stiffness marginally close to R1. It can practically span the

entire range of stiffness. Under the assumption that Bt� Bn

(or g� 1), these conditions simplify to

L k
Bn

� �1=4
� Bt

Bn

� �1=3
for spanning the whole range and

L k
Bn

� �1=4
� Bt

Bn

� �1=3
for spanning an appreciable fraction

of the range,

9>>>=
>>>;

ð2:14Þ

where � stands for ‘approximately in the range of’. Analo-

gous analysis for an N-ray fin is presented in appendix A,

which yields the result

L p2k
N2Bn

� �1=4
� Bt

Bn

� �1=3
for spanning the whole range and

L p2k
N2Bn

� �1=4
� Bt

Bn

� �1=3
for spanning an appreciable fraction

of the range,

9>>>=
>>>;

ð2:15Þ

where the extra factor of (p/N )1/2 accounts for the effect of

distributing the bending–stretching coupling over N rays.

We illustrate the application of this criterion to a mackerel

pectoral fin in §3, and propose that the morphology of the

fin could permit the mackerel to modulate its stiffness by at

least 300%.

2.3. Morphological and functional curvature
The principle that underlies curvature-induced stiffening is

the kinematic coupling of the bending of rays and the stretch-

ing of membranes. In addition to the morphological

curvature considered thus far, this kinematic coupling can

also be accomplished in a flat fin by systematic misalignments

of the soft bending directions of adjacent rays. We call this

‘functional curvature’. It is evident in the pectoral fin of a

mackerel, as seen in figure 3d,e, which show cross-sections

of a fin generated using micro-computed tomography

(mCT) at 20–30% along its length from the base while being

held flat between two plates (figure 3c). The effective curva-

ture of rayed fins is a mixture of both forms of curvature, and

information of both the overall shape of the fin and orien-

tation of rays is necessary to adequately model fin stiffness.

We present here the qualitative similarities between the

two types of curvatures, although the quantitative and

specific dependences necessarily differ. Using the first (left-

most) membrane shown in figure 3a as an example, the

geometric relation in the case of morphological curvature is

11 ¼ [w1 sin u1 þ w2 sin u1]þ [v1 cos u1 � v2 cos u1], ð2:16Þ

where the elongation of the first membrane is 11, the normal

displacements of the first and second ray are w1 and w2,

respectively, the tangential displacements are v1 and v2, and

the misalignment of membrane 1 and its neighbouring rays

is u1. Analogously, the first membrane of figure 3b in the

case of functional curvature has a geometric relation as

11 ¼ [w1 sinf1 � w2 sinf2]þ [v1 cosf1 � v2 cosf2], ð2:17Þ
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where f1 and f2 are the angles made by the first membrane

with the first and second rays, respectively. In both curvatures,

membrane stretching is a combination of displacements

of the neighbouring rays. The linear weights differ, and

therefore the mathematical solution may need to be obtai-

ned numerically, but the fin is expected to stiffen due to

bending–stretching coupling.
7

3. Comparison with sample fish fins
We compare the design criteria derived in (2.15) with

geometric measurements obtained from cross-sections of a

mackerel pectoral fin shown in figure 4. For this comparison,

we treat the ray cross-sections as rectangles of dimensions

W � T, and bending rigidities

Bn � EbT3W
12(1� n2)

and Bt �
EbTW3

12(1� n2)
, ð3:1Þ

where Eb is the elastic modulus of bone that constitutes the

rays, and n is its Poisson ratio. The dependence on the Poisson

ratio of the subsequent analysis is weak, and we henceforth

neglect it. Therefore, the ratio g ¼ Bt/Bn �W2/T2 quantifies

the bound on the anisotropy parameter. Similarly, the mem-

brane cross-section is modelled to be a parallelogram, which

spaces the rays an amount S, leading to an estimate for its

elasticity constant

k � Ec
T
S

, ð3:2Þ

where Ec is the elastic modulus of the material (collagen) that

makes up the membrane. Using these expressions, the two

sides of the criteria (2.15) for whether the fin design allows it

to span the range of stiffnesses from R0 to R1 may be written as

l:h:s: ¼ L
p2k

N2Bn

� �1=4

� L
12p2Ec

N2EbT2WS

� �1=4

and

r:h:s: ¼ Bt

Bn

� �1=3

� W
T

� �2=3

: ð3:3Þ

Using measurements for the geometric parameters of

sampled rays in the mackerel pectoral fin as shown in

figure 3c, and representative values for the elastic moduli in

equation (3.3), we deduce the importance of bending–stretch-

ing coupling for the fish fin. Translation of sampled cross-

sections to the simple model of a rectangular ray, as shown

in figure 4, yields W ¼ 0.8–1.2 mm, T ¼ 0.5–0.6 mm and

S ¼ 0.2–0.6 mm. We use L ¼ 9 mm for the fin’s length and

N � 10 for the number of rays in the fin. Furthermore, Ec

lies in the range 3–12 GPa [17], while Eb lies in the range
4–20 GPa [18–20]. Based on these estimates, we provide a

range for both sides of the design criteria shown in equation

(3.3). The enhancement of stiffness possible through the bend-

ing–stretching coupling is by a factor 1 þ g ¼ 1 þW2/T2,

realized if the criteria in equation (3.3) are satisfied. Substitut-

ing these numbers in (3.3) yields that the l.h.s. lies in the

range of 10–26, while r.h.s. lies in the range of 1.6–3.5. The

l.h.s. is greater than the r.h.s. by almost a factor of 3 at worst

and an order of magnitude larger at best. Therefore, bend-

ing–stretching coupling is influential at the cross-sections

where these estimates were made.

Based on these observations, we conclude that the bend-

ing–stretching coupling induced by curvature influences the

mackerel pectoral fin stiffness. This fin may be capable of

modulating its stiffness by a factor of 1 þW2/T2 ranging

from 300% to 700% relative to the normal stiffness of its

rays. Similar analysis performed with other fins may be

used to determine whether bending–stretching coupling is

relevant for those fins, and whether the implications of this

article apply to them.
4. Discussion
Our work adds a critical piece to the existing knowledge of fish

fin structure and function. Each fin ray is known to be com-

posed of a bi-layer structure, and differentially pulling the

base of these layers curls the ray [12,21]. It has been assumed

that the rays act as girders [11] and are the sole structural

elements that reinforce the fin. The surface formed by an

assembly of curled rays determines the shape of the fin

surface and the bending of rays is considered as the primary

mechanism imparting stiffness to the fin [22]. The membrane

interconnecting the rays is tacitly assumed to contribute negli-

gibly to the bending stiffness [23–25]. Measurement of fin

stiffness has therefore been considered synonymous with the

measurement of bending rigidity of the rays themselves [22],

and no other parameters are considered. Our analysis points

to the bending–stretching coupling as an important element

for structurally reinforcing the fin. The definition of fin curva-

ture and its contribution to fin stiffness through a composite

ray-membrane structure are the main results of this article.

Observations from mCT imaging of the mackerel fin indi-

cate the presence of a functional curvature. Even when the

pectoral fin is held flat, there remain misalignments of principal

bending direction of neighbouring rays built into the fin’s

skeletal structure. The misalignments are observed in the

cross-section of rays taken normal to each ray’s axis at varying

fractions (20–30%) of the total fin length (figure 3d,e) in a

mackerel pectoral fin. These internal misalignments function-

ally mimic an external transverse curvature and characterize

a functional curvature, i.e. morphological elements that

couple bending and stretching.

The basis of our results lies in principles of mechanics and

mathematics, and we chose the mackerel pectoral fin to illus-

trate these concepts owing to its ease of availability. Are the

results we find applicable across fish species? A comparative

study of fin skeletal cross-sections from diverse fish species

for anisotropy of bending moduli and misalignments of prin-

cipal axes in adjoining rays is needed. The design criteria

derived in §3 are useful to determine whether transverse cur-

vature could stiffen the fin. Curvature without a sufficiently

stiff membrane does not stiffen the fin, and the design criteria
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define this relationship. If a functional curvature is present,

then it must also be included to determine the fin stiffness,

and incorporated in the mathematical models of fin fluid–

structure interactions to adequately model the propulsive

abilities of rayed-fin fishes. The mechanical nature of the

argument, the geometric origin of the coupling between

bending of rays to stretching of the membrane, and the

shared genetic and developmental processes in ray-finned

fish allows us to generalize our results to other fish-fin

structures with rays and membranes.

Quantitative deviations of fish fins from our rayed-fin

models introduce complications but our analysis remains quali-

tatively applicable for real fins. Individual rays tend to segment,

taper and branch towards their distal ends [13]. Both the seg-

mented and branched regions of rays introduce areas of non-

bony tissue that change the material properties of rays, while

tapering changes the ray’s width and thickness. These cause

variations in local parameters, such as the bending moments,

membrane thicknesses and the spacing between rays. As a

result, the strength of bending–stretching coupling also

varies. In our estimates of the design criterion in equations

(3.1)–(3.3), we sampled non-segmented and non-branched

regions in order to approximate the ray as bony material.

Checking for the design criterion, and the strength of bend-

ing–stretching coupling in the segmented or branched regions

would require a characterization of the correct bending rigid-

ities. The principle of curvature-induced bending–stretching

coupling, however, remains equally applicable.

Curvature-induced stiffening provides an alternative

explanation for the enhancement of thrust due to ‘cupping’

of biomimetic fins. Cupping is the term for kinematics of

the fin that transversely curves into the flow as it flaps

[9,26–28]. This shape is achieved by oscillating the first and

the last fin rays with greater amplitude than the rest, and/

or with a phase that leads the one in between. The fluid vor-

ticity pattern observed in the wake of cupped fins bears the

signature of enhanced thrust. We postulate that the enhanced

thrust is a result of stiffening the fin to out-of-plane bending

deformation. The force transmitted by the fin depends on the

acceleration of the surrounding fluid it can produce; the

greater the fluid acceleration, the greater the transmitted

force. A soft fin, when actuated at its base, would deform

under the transmitted load instead of pushing the surrounding

fluid. Thus flexibility of the fin limits its ability to transmit

forces. By contrast, a stiffer fin is able to transmit stronger

forces before deforming; independent calculations and exper-

iments varying the flexibility of the oscillating fins confirm

the increase in maximum thrust generated by stiffer fins

[5–9,22–24,29,30]. It may be for this reason that cupping is

commonly observed in fish caudal fin kinematics [21,31,32].

The rayed-fin analysis identifies key material parameters

and structural elements that are critical for accurately predict-

ing propulsive performance, and should be incorporated to

improve mathematical models. Most models of propulsion

simply ignore the three-dimensional nature of the fluid–

structure interaction [5–7,33]. Those that do incorporate

three-dimensionality [23–25] treat the rays as nonlinear

Euler–Bernoulli beams made of linear elastic material but do

not consider anisotropic bending moduli. Furthermore, the

membrane is assumed to be inextensible in the transverse

direction. Part of the reason for these simplifications may be

the lack of experimental characterization of the anisotropic

nature of ray bending or of the elastic properties of the
membrane. By ignoring the anisotropy, the stretching of the

membrane, the attachment of the membrane to the rays and

the resulting torsion, bending–stretching coupling induced

by curvature is inadequately modelled. As our analysis

shows, these assumptions imply operation in a very limited

space of the bending–stretching coupling. For this reason,

the elastic properties of the interconnecting membrane, the

anisotropic bending moduli and the torsional stiffness of

the rays are important to experimentally quantify in fish and

incorporate in a mathematical model before their predictions

are representative.

Another important factor that needs to be better under-

stood is how an external transverse curvature arises in a

fish fin. The musculature at the base of the fin could actively

deform the fin in a curved shape. The fish may manipulate

the joints at the base of the fin that curves it in the same

manner as we curve a sheet of paper holding it only at one

edge. The action, for example, of the interradialis muscles dis-

tributed at the base of caudal fins in concert with the basal

skeletal structure [28,34] may bring about such an effect.

Yet another manner of inducing curvature could be through

non-uniform bending of fin rays via differential actuation of

their hemitrichs [12,21]. The shape of the fin is then deter-

mined by the combined influence of bilamellar ray bending,

membrane stretching and ray torsion. The specific manner

of attachment between the membrane and the adjacent rays

may cause the rays to twist along their axes, thereby compli-

cating the calculation of bending force on account of the

anisotropic bending moduli. Such torsion of the rays is there-

fore an important effect to evaluate and include in

computational models which omit its effect [23–25].

The rayed-fin analysis forms the basis of a preliminary

mechanical design of biomimetic fins to span a specified

stiffness range. The rays are first designed by selecting a

cross-section so that the minimum stiffness, R0 from (2.6),

and the maximum stiffness, R1 from (2.7), take on the desired

values. The membrane stiffness is then determined by selecting

S so that the criterion (3.3) implies that the whole range of the

designed stiffness is spanned.

The analysis also forms a mechanical basis for the hypoth-

esis that underlying the anatomy of the fish fin structure and

its ability to modulate stiffness [35] is the need to be man-

oeuvrable. Such manoeuvrability is reflected in a variety of

propulsive modes [4,36] the fish use, or in their ability to

rapidly deform their body with or without a burst of momen-

tum exchange with the surrounding fluid [37]. Fish can also

benefit from flow structures in the environment by either

reducing their energy consumption or increasing their swim-

ming speed [38–42]. These abilities rely upon the possibility

of selectively engaging or disengaging the mechanical force

transmission between the body and the surrounding fluid.

The curvature-induced stiffness modulation is the mechanical

design that imparts the fins with this ability.

At the core of the mechanical design is the principle that a

surface with small mechanical impedance moving relative to

surrounding fluid experiences a small hydrodynamic force.

A surface that easily bends and deforms can only support a

weak external force. This principle is manifest in theoretical,

computational and experimental studies of fluid–structure

interaction as a limit on the hydrodynamic force generated

by flexible propulsive surfaces [5–9,22–24,29]. Thus, the

force transmission between the fish body and the fluid is dis-

engaged when the fin is flat and soft, and engaged when the
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Figure 5. An N-ray fin with N rays and N21 membranes. In this example,
N ¼ 5. The tangent axis of each ray forms an angle u with neighbouring mem-
branes and the rays trace out a constant transverse curvature. Each ray has a set
of normal and tangent axes with bending values wj (x) and vj (x), respectively,
for the jth ray and the elongation for the jth membrane is 1j (x).

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170247

8
fin is curved and stiff. Based on the above argument, it is

likely that the range of stiffnesses spanned by fins of a species

is selected based on its preferred behaviour and correlates

with the ecological niche it occupies.

Inducing a curvature by purely basal actuation is a

simple solution to the problem of stiffness modulation in pro-

pulsive surfaces. The alternative strategy of incorporating

muscular actuation throughout the propulsive surface and

using neural control to manipulate stiffness is also possible,

but appears to suffer many drawbacks compared with the

curvature-induced stiffening. The additional mass of the

actuators imposes a lower bound on the impedance of such

structures. This issue is further exacerbated by the added

muscle needed to move the hypothetical muscles within the

propulsive surface themselves! The logistical problem of

signal and energy transmission networks (e.g. innervation

and vasculature) increases the complexity and fragility of

the design. Based on these considerations, the curvature-

induced stiffening surface appears to have performance

advantages, which could form the basis of a bioinspired

propulsive appendage.
5. Conclusion
We have presented an essential model analysing the stiffen-

ing of a fish fin when curved transverse to the fin rays. The

stiffening occurs because the curvature couples the out-of-

plane bending of rays to the in-plane stretching of the elastic

membrane connecting the rays. As a function of its geometric

and material parameters, we have calculated the range of

stiffnesses spanned by a fin with changing curvature. We pos-

tulate that this range evolves in response to the selection

pressures imposed by the ecological niche the fish species

occupies. Furthermore, our analysis of such stiffening has

led to a functional definition of curvature itself, which we

have found to be present even when the fin appears geome-

trically flat. We have made many simplifying assumptions in

our analysis to derive insight into the mechanics of fish fin

stiffness. There undoubtedly are quantitative deviations

from our predictions due to violations of our assumptions

by real fish fin structures. Furthermore, there is variability

in the material properties of tissues in the fin. Yet, our math-

ematical model captures the principle that transcends these

complications and uncertainties; the misaligned directions

of the anisotropic bending modulus engage the stretching

of the intervening membrane.
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Appendix A. N-ray fin
With few modifications, the bending–stretching coupling

formalism of the two-ray fin applies equally well to the N-
ray fin. The key difference is that we decompose the N-ray

fin into N independent Fourier modes and analyse each

mode separately. The dependences of stiffness for each Four-

ier mode on curvature are similar to each other and to the

two-ray stiffness.

Fin curvature mediates the coupling between the bending

of rays and stretching of membranes of the N-ray fin in

the same manner as the two-ray fin. Figure 5 shows a

cross-section of the N-ray fin at a distance x from the fin

base. The bending–stretching coupling of the N-ray fin

appears as a geometric relation for every pair of adjacent

rays, which satisfies

1j ¼ (wj þ w jþ1) sin uþ (vj � v jþ1) cos u,

for j ¼ 1, 2, . . . , N � 1, ðA 1Þ

where wj(x) and vj(x) are the displacements of the jth ray

along the normal and tangent axes, respectively, and 1j(x)

is the elongation of the jth membrane. The coupling

also appears in the balance of ray resistance to bending

and membrane spring distributed forces for each ray,

namely,

Bnw0000j ¼ �k(1 j�1 þ 1j) sin u,

Btv0000j ¼ �k(1 j�1 � 1j) cos u, for j ¼ 1, 2, . . . , N, ðA 2Þ

where non-existent 0th and Nth membranes have zero

elongation (10 ¼ 1N ¼ 0). Each ray is clamped at the base and

is loaded at the ray tips by fj along the normal direction as

wj ¼ w0j ¼ vj ¼ v0j ¼ 0 at x ¼ 0

and w00j ¼ v00j ¼ Btv000j ¼ 0, Bnw000j ¼ fj at x ¼ L:

)
ðA 3Þ

A Fourier decomposition of the N-ray fin transforms the

coupling mechanics into equations that are similar to the

two-ray fin. The decomposition trades the displacements

wj(x) and vj(x), elongations 1j(x) and loads fj for their corre-

sponding Fourier coefficients ŵm(x), v̂m(x), 1̂m(x) and f̂m(x),

respectively, and satisfies

1j¼
PN

m¼1 1̂m sin pmj
N

� �
, wj¼

PN
m¼1 ŵm sin pm(j�1=2)

N

� �
and vj¼

PN
m¼1 v̂m cos pm(j�1=2)

N

� �
, fj¼

PN
m¼1 f̂m sin pm(j�1=2)

N

� �
:

9=
;

ðA 4Þ

Under this decomposition, the geometric relation for each
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pair of adjacent rays described in equation (A 1) transforms to

1̂m¼2ŵmsmþ2v̂mcm, where

sm¼ sinucos
mp

2N

� �
, cm¼ cosusin

mp

2N

� �
: ðA5Þ

Likewise, the balance of forces on the jth ray in equation (A 2)

becomes

Bnŵ0000m ¼�2k1̂msm, Btv̂0000m ¼�2k1̂mcm, ðA6Þ

and the clamping at the base and loading at the tip of

equation (A 3) becomes

ŵm¼ ŵ0m¼ v̂m¼ v̂0m¼0 at x¼0 and

ŵ00m¼ v̂00m¼Btv̂000m¼0, Bnŵ000m¼ f̂m at x¼L:

)
ðA7Þ

Furthermore, a physical length scale lm and ray anisotropy

parameter gm can be extracted for each Fourier mode as

1̂0000m ¼�
1

l4m
1̂m, where

1

l4m
¼4kc2

m

Bt
(1þgm), gm¼

Bt

Bn

s2
m

c2
m
: ðA8Þ

The multiplicative constants differ but the Fourier mode

mechanics in equations (A 5)–(A 8) mirror the two-ray fin

mechanics. Consequently, the Fourier modes can be under-

stood as a set of two-ray fins with separate length scales lm
and ray anisotropy parameters gm.

The curvature-induced stiffening of an N-ray fin is an

emergent property of the collective sum of its sinusoidal

modes, and is fundamentally a result of a competition

between ray bending and membrane stretching. This compe-

tition appears in similar form for the two-ray fin and for all

the modes. Although stiffening in the N-ray fin is a convo-

luted result of the competition in each mode, it retains the

same qualitative behaviour as a two-ray fin. That is to say,

the N-ray fin can be similarly understood as a combined

effect of normal bending, and tangential bending and mem-

brane stretching, but with contributions from multiple rays

and membranes.

To estimate the range of stiffnesses spanned by the fin,

let us consider the simplification of a single Fourier mode,

m ¼ 1. In this case, the angle u ranges from 0 for a flat fin to

p/2N for a half-cylindrical fin (to maintain analogy with

results in (2.13)–(2.15)). The expression for l1 then simplifies to

1

l41
¼ 4k

c2
1

Bt
þ s2

1

Bn

� �
: ðA 9Þ

This corresponds to a maximum value of L/l1 governed by

L
l1

� �
max

¼ k1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin (p=N)

p 1

Bt
þ 1

Bn

� �1=4

: ðA 10Þ

In the limit, N� 1 and Bt� Bn, this expression simplifies to

L
l1

� �
max

¼
ffiffiffiffi
p

N

r
k

Bn

� �1=4

: ðA 11Þ

Similarly, g1 spans the range

0 � g1 �
Bt

Bn

sin2 (p=2N) cos2 (p=2N)

cos2 (p=2N) sin2 (p=2N)
¼ Bt

Bn
: ðA 12Þ

Equation (A 10) has an extra factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin (p=N)

p
for L/l1 that

accounts for the presence of N rays, compared with L/l in

(2.13) for the two-ray analysis, while the upper bound on g

in (A 12) agrees with that in (2.13). It can be easily verified

that using a half-cylinder instead of a quarter-cylinder does

not change the scaling of the bounds on the stiffness of
the N-ray fin. But the analogous substitution u ¼ p/2 in the

two-ray analysis yields an unbounded value of g, which is

not representative of the N-ray fin. Therefore, to maintain ana-

logy with the N-ray fin, we use p/4 as a representative value of

u in the two-ray fin analysis. Furthermore, imposing the

condition that L/l1 � g1/3 in (A 11) and (A 12) leads to (2.15).
Appendix B. Bulging of membrane
We finally show that the out-of-plane bulging of the mem-

brane, if present, merely influences the parameters we

substitute in the model, but does not change the model

itself. In our model, we have assumed the external force to

be exerted on the rays, but the membrane presented at least

as much area to the surrounding fluid as the rays, if not

more. In addition, we assumed that the membrane defor-

mation is restricted to stretching in the plane, but in

practice the membrane could also bulge out of plane. Here

we show that the hydrodynamic pressure acting on the mem-

branes is transmitted to the adjoining rays through a bulging

deformation of the membrane.

Consider the schematic shown in figure 6 of a cross

section of two adjacent rays and the connected membranes

to model the influence of the hydrodynamic pressure differ-

ence acting on the membranes. At this cross section, the

pressure causes the jth membrane to bear a tension Tj aligned

transverse to the rays, and to bulge with curvature kj. The

pressure difference is related to the tension and the curvature

by the Young–Laplace equation as

P ¼ kjTj: ðA 13Þ

The tension in the membrane is established due to the rays

being pulled apart by the fish’s musculature, in which case we

consider the tension to be an externally imposed parameter. If

the magnitude of the tension is much greater than PS (S is the

width of the membrane), then k ¼ P/jTj � P/PS ¼ 1/S.

In this case, the out-of-plane deformation due to bulging

kS2� S, and therefore the bulging causes a negligible

change in the overall shape of the membrane, except for

one factor. The bulging changes the local orientation of the

membrane where it attaches to the ray by a small amount

D ¼ sin21(kS/2) ¼ sin21(PS/2jTj). This slight redirection of

the membrane tensions Tj21 and Tj on both sides of a ray

leads to an unbalanced force, as shown in figure 6b, of

2jTjsinD ¼ PS perpendicular to the fin surface. Note that PS
is merely the force of hydrodynamic pressure P acting on a

membrane of length S, which is being transmitted to the

rays. Parallel to the fin surface the membrane tension from

the opposite sides cancel out to leading order. It is around

this base state that our analysis in §2 and in appendix A applies.

A further differential in the displacement of the rays that

stretch the membrane contributes to the unbalanced force, as

written in (A 1).

While our analysis in §2 directly treats the case of a taut

membrane and a small bulge, an essentially identical model

results in the general case in which the membrane may be

slack. In the general case, consider the free body diagram for

half the membranes on either side of a ray, as shown by the

shaded region AA0 and BB0 in figure 6c. The hydrodynamic

force on the membrane is balanced by the force exerted by

the ray at points A0 and B0 of attachment to the membrane.
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Figure 6. Schematic used to estimate the influence of membrane bulging. (a) The cross section of rays (shaded rectangles) and membranes (curves) is externally
loaded by a hydrodynamic pressure difference across the membrane surface, which is labelled P (arrows). This loading causes the membranes to bulge out of plane
and a tension T to develop in them. (b) The resultant of the tensions from the membranes on the two sides of a ray is, to leading order, perpendicular to the fin.
(c) Shaded rectangles between AA0 and BB0 show the control volume for constructing a free body diagram. The membranes attach to the rays at the points A0 and
B0, respectively. (Online version in colour.)
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This result follows independent of the tension in the membrane

and its deformation. The unbalanced force on the rays perpen-

dicular to the fin surface that results from the membrane

attachment may in this manner be ultimately traced to the

hydrodynamic pressure force on the membrane. The fictitious

state where the rays are undeformed but the membrane bulges

out in response to the hydrodynamic pressure is the reference

state about which we consider the deformation of the rays.

Deformations about this state essentially lead to the model

described by equations (A 1)–(A 3).

As the rays deform about this state, the tension in the mem-

branes and the angle at the points of attachment change. The

unbalanced force on the rays changes as the rays deform; the

change in the unbalanced force to leading order is proportional

to these deformations, which themselves are proportional to

the amount of bending of the rays. The proportionality con-

stants are embodied in a lumped parameter, which we
represent by k, the membrane stiffness. The case of a slack

membrane may be considered to be equivalent to the limit of

vanishingly small k in the linear response regime. In this

manner, our model provides a useful approximation in the gen-

eral case whether or not the membrane is stretched by the

action of musculature connected to the fish fin. As described

earlier, we considered the external loading on the fin to be

applied at the tips of the rays to mimic experimental measure-

ments of the fin stiffness; however, applying the external force

on the rays instead of the membranes is not a limitation of our

analysis. Furthermore, the response of the fin to a point load is

essentially a Green’s function for determining the deformation

under distributed loading. In this manner, our solution

provides the foundation for developing and implementing a

method that relates the distributed hydrodynamic pressure

loading to the deformation of the fin structure using a

Green’s function.
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