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a b s t r a c t 

Recent scientific breakthroughs have blurred traditional boundaries between innate and adaptive immunity, re- 
vealing a sophisticated network of tissue-resident cells that deliver immediate, localized immune responses. These 
lymphocytes not only provide rapid frontline defense but also present a paradoxical role in the pathogenesis of 
respiratory diseases such as asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and the long-term 

tissue consequences of viral infections including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). 
This review traverses the intricate landscape of lung-resident lymphocytes, delving into their origins, diverse func- 
tions, and their dualistic impact on pulmonary health. We dissect their interactions with the microenvironment 
and the regulatory mechanisms guiding their activity, with an emphasis on their contribution to both immune 
protection and immunopathology. This review aims to elucidate the complex narrative of these cells, enhancing 
our understanding of the development of precise therapeutic strategies to combat acute and chronic pulmonary 
diseases. Through this exploration, the review aspires to shed light on the potential of harnessing lung-resident 
lymphocytes for the treatment of respiratory conditions. 
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Tasked with filtering thousands of liters of air each day, the lung
ust navigate an intricate balance between repelling microbial invaders

nd tolerating inhaled particles. 1 , 2 At the heart of this balance lies an
nsemble of specialized lung-resident lymphocytes, comprising adaptive
mmune cells including resident B lymphocytes, resident T lymphocytes,
esident 𝛾𝛿 T lymphocyte, mucosal-associated invariant T (MAIT), and
atural killer T (NKT) cells, as well as innate lymphocytes including nat-
ral killer (NK) cells, innate lymphoid cells (ILCs). 3-5 Recent advances
ave redefined our understanding of tissue-resident immunity, eroding
he once-clear demarcations separating innate and adaptive immune re-
ponses. 6 These lung-resident lymphocytes serve as rapid first respon-
ers, poised for immediate action and eliminating the need for exter-
al recruitment, thereby fortifying a tissue-specific layer of immuno-
ogical protection. 7-9 However, emerging research has also unveiled
heir capacity to act as a double-edged sword, contributing to respira-
ory conditions such as asthma, chronic obstructive pulmonary disease
COPD), and post-acute sequelae of severe acute respiratory syndrome
oronavirus-2 (SARS-CoV-2) (PASC). 

This review aims to discuss the complex roles of lung-resident lym-
hocytes. We will explore their origins, differential functions, and their
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mpact on lung health and disease conditions. We will also examine how
hese cells interact with their surroundings and what regulates their
ehavior. Therefore, this review aims to present a nuanced narrative,
apturing the multifaceted roles of lung-resident lymphocytes in both
mmune protection and immunopathology ( Fig. 1 ). We hope to provide
nsights on targeted therapeutic approaches that can leverage or modu-
ate the capabilities of these cells for the treatment of acute or chronic
ung diseases. 

ypes of lung resident lymphocytes 

 lymphocytes 

issue-resident memory T cells (TRM 

) 

Following infections or antigen exposure, naive T cells first differ-
ntiate into effector T cells, which subsequently give rise to circulating
emory T cells that patrol the body or TRM 

cells that reside in the pe-
ipheral organs. TRM 

cells, distinct from central memory T cells (TCM 

)
nd effector memory T cells (TEM 

), exhibit specialized phenotypic mark-
rs including CD103, CD69, and CD49a. 4 , 10 , 11 Transcriptional program-
ing of TRM 

cells involves B-lymphocyte-induced maturation protein-
 (Blimp1), Hobit, RUNX family transcription factor 3 (Runx3), basic
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Fig. 1. Lung-resident lymphocytes as protectors in pulmonary immunity. It showcases how TRM cells launch a comprehensive defense, releasing a suite of cytokines, 
effector molecules, and cytotoxic agents to combat and eliminate diverse pathogens, targeting cells compromised by infection. The diagram also accentuates BRM cells’ 
ability to rapidly transform into antibody-secreting plasma cells upon reencountering viruses, thus fortifying swift immunological defense. Additionally, it portrays 
the role of activated ILC3s in immune protection, detailing their secretion of IL-22 and IL-17, which are instrumental in tissue restoration and attracting neutrophils 
to infection sites. BRM : Resident memory B cell; CCR6: C-C chemokine receptor 6; CXCR3: C-X-C chemokine receptor 3; IFN- 𝛾: Interferon- 𝛾; IL: Interleukin; ILC: Innate 
lymphoid cell; MAIT: Mucosal-associated invariant T; TRM : Tissue-resident memory T cell; TRH : Tissue-resident helper T cell. 
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elix-loop-helix family, member e 40 (Bhlhe40), and Notch1, whereas
rüppel-like factor 2 (KLF2), T cell factor 1 (TCF-1), and eomesoder-
in (EOMES) repress TRM 

formation. 12-14 TRMs develop from circulat-
ng effector T cells in the secondary lymphoid organs, 15 , 16 supported
y common clonal origins of TCM 

and TRM 

cells. 17 In addition, local fac-
ors such as antigen restimulation and respiratory cytokine milieu are
urther required for TRM 

maintenance. 18 , 19 Transforming growth factor-
(TGF- 𝛽) notably guides the maturation of CD103+ CD8+ TRM 

cells,
ith its levels increasing with age. 4 , 20 Compared to CD8+ TRM 

cells,
D4+ TRMs are diverse, evolving into Th1, Th2, and Th17 TRM 

subtypes
epending on the pathogen involved. 21 TRM 

1 cells are particularly ef-
cient in mounting quick responses to influenza reinfections. 4 , 22 Ad-
itionally, a unique CD4+ T-cell subset, termed “tissue-resident helper
 (TRH ) cells ”, has been identified. These cells exhibit features of both
ollicular helper T cells (TFH ) and TRMs and are involved in enhanc-
ng CD8+ TRM 

and lung-resident B-cell responses. 21 , 23-25 In humans,

RM 

research is limited but growing. In human lungs, TRM 

cells ex-
ress low Ki67 compared to other counterparts. 26 Transcriptomic anal-
sis reveals that human lung CD69+ TRMs , both CD4+ and CD8+ , ex-
ibit a unique gene signature, distinct from CD69− counterparts, char-
cterized by upregulated integrins and chemokine receptors (CD103,
D49a, C-X-C motif chemokine receptor [CXCR] 6), downregulated
issue egress markers (C-C motif chemokine receptor [CCR] 7, KLF2,
phingosine-1-phosphate receptor 1 [c], and selectin L [SELL]), and el-
vated cytokines and immunoregulatory molecules (interleukin [IL] 2,
nterferon- 𝛾 [IFN- 𝛾], IL17, IL10, CD101, programmed death-1 [PD-1],
215
 cell immune receptor with immunoglobulin (Ig) and ITIM domains
TIGIT], and cytotoxic T-lymphocyte associated protein 4 [CTLA4]). 27 

D103+ CD8+ TRM 

cells predominantly accumulate in the epithelium,
hereas CD103− CD4+ TRM 

cells are frequently found in the lamina pro-
ria. 28 Unlike in murine models where CD103+ conventional type 1
endritic cells (cDC1) cells are instrumental, human respiratory CD8+ T
ells are more reliant on CD1c+ dendritic cells for their development. 29 

uman TRMs have also been proven to be potentially derived from cir-
ulating memory T cells. Single-cell transcriptome profiling of airway
 cells from human leukocyte antigen (HLA)-disparate lung transplant
ecipients reveals that recipient T cells comprised non-TRM 

and similar

RM 

-like subpopulations, suggesting lung-infiltrating recipient T cells
radually acquire TRM 

phenotypes over months. 30 

esident 𝛾𝛿 T cells 

Gamma/delta ( 𝛾/ 𝛿) T cells are a minor yet crucial subset of T lym-
hocytes with a T-cell receptor (TCR) comprising 𝛾 and 𝛿 chains, serving
s a link between innate and adaptive immunity. 31 Originating from
ommon thymocyte precursors, these cells differentiate into two pri-
ary lineages: 𝛾𝛿T1, reliant on 𝛾𝛿 TCR and CD27 signaling, and 𝛾𝛿T17,
hich requires a complex signaling cascade involving factors such as

ymphotoxin- 𝛽 receptor and TGF- 𝛽. 32 , 33 Post-thymic, 𝛾𝛿T17 cells can
elf-renew in peripheral tissues. In the lung, these cells exhibit varying
 𝛾 and V 𝛿 chains, displaying temporal shifts and spatial distributions in
ifferent organ systems. 34 In adult C57BL/6 mice, lung 𝛾𝛿 T cells mainly
xpress V 𝛾4 and V 𝛾6, primarily situated in the parenchyma. 35 , 36 These
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opulations show dynamic changes over time, supporting the idea of in
itu differentiation and selection. 37 , 38 In human lungs, distinct 𝛾𝛿T cell
ubtypes, identifiable by V 𝛿1, V 𝛾9V 𝛿2, and V 𝛿2 expression, vary no-
ably in the context of different lung conditions, pointing toward their
mportance in lung immunity. 39 , 40 

AIT cells 

MAIT cells constitute a specialized T cell subset vital for mucosal
mmunity, notably in the lungs, particularly in humans. Originating
n the thymus through unique TCR–major histocompatibility complex
MHC) class I-related protein 1 (MR1) interactions with CD4+ CD8+ thy-
ocytes, 41 , 42 they undergo a three-stage maturation process, display-

ng hallmark markers like CD218, CD44, and promyelocytic leukemia
inc finger (PLZF). 43 Species-specific differences of MAIT cells do exist;
ouse MAIT cells diverge into IFN- 𝛾-producing (MAIT-1) and IL-17A-
roducing (MAIT-17) subtypes, but such a bifurcation is not observed in
umans. 43 Post-thymic maturation and expansion of MAIT cells are in-
uenced by microbial exposure, impacting their longevity and function-
lity. 43 , 44 Upon activation, typically TCR-mediated, MAIT cells initiate
 cascade of processes including cytokine release, cytotoxicity, and pro-
iferation. 45-48 Recent findings highlight a unique lung-resident human
AIT cell subtype that includes poly-cytotoxic properties, IL-26 secre-

ion, and selective expression of IFN- 𝛾 and IL-12 receptors, emphasizing
heir rapid pro-inflammatory responsiveness. 49 

KT cells 

Mouse NKT cells, classified into invariant (iNKT) and diverse (dNKT)
ypes, vary in phenotypes and functions. iNKT cells perform both pro-
nd anti-inflammatory roles, while dNKT cells mainly exhibit anti-
nflammatory activity. 50-52 These cells differentiate through four stages,
esulting in three functional subsets: NKT1 (IFN- 𝛾-producing), NKT2
IL-4-producing), and NKT17 (IL-17A-producing). 53-55 Human lung NKT
ells also show diversity, with V 𝛼24 CD4- CD8- cells mainly producing
FN- 𝛾 and V 𝛼24 CD4+ cells known for high IL-4 and IL-13 production. 56 

 lymphocytes 

esident memory B cells (BRM 

cells) 

Compared to memory B cells in the lymphoid organs, lung-resident
emory B cells (BRMs ) exhibit unique markers like CD69, CXCR3, and

re metabolically reprogrammed for minimal cytokine reliance. 7 , 57 , 58 

riginating from germinal centers, they possess distinct transcriptional
rofiles in humans and mice. 57 , 59 , 60 Upon reinfection, CXCR3+ BRMs 
ifferentiate into antibody-producing plasma cells ( Fig. 1 ). 61 In mice,

RM 

cells localize in the inducible bronchus-associated lymphoid tissue
iBALT) via CXCR5 expression, 61-63 and are regulated by transcription
actors like BTB domain and CNC homolog 2 (Bach2), KLF2, and signal
ransducer and activator of transcription 5 (STAT5). 64 , 65 BRM 

cells can
ersist for up to 6 months post-influenza infection. 7 Interestingly, “by-
tander ” BRM 

cells exhibit a CXCR3low phenotype. 59 , 62 Lung BRMs are
henotypically and transcriptionally unique, with higher CD69 and Ig
 levels and more somatic hypermutations than their counterparts in
econdary lymphoid organs. 66 Currently, human BRM 

studies are lim-
ted, but recent findings show that while CD69 is upregulated, CCR6
nd CXCR3 do not delineate tissue residency in humans. 63 

ge-associated B cells (ABCs) 

Age-associated B cells (ABCs), characterized by the presence of
D11c and CD11b expression, are implicated in aging and autoimmu-
ity. 67 , 68 ABCs are increased in frequency with age, and express T-bet,
ut are low with CD21 levels. 69 ABCS play a vital role in managing
iral infections like hepatitis C virus (HCV), human immunodeficiency
irus (HIV), and SARS-CoV-2, and in post-vaccination responses. 70-75 

BC differentiation is influenced by cytokine and antigenic receptors,
ncluding IFN- 𝛾 and Toll-like receptors 7 and 9 ligands. 76-78 The tran-
ition from activated follicular B cells to ABCs is complex and influ-
nced by cytokines such as IFN- 𝛾, IL-21, and IL-4. 78 , 79 In infections
216
nd vaccinations, they form a significant fraction of viral-specific B
ells. 72 , 73 , 80 ABCS are long-lived, possess memory traits, and readily
ecome antibody-secreting cells (ASCS ) upon challenge. 81 In humans,
igh IgA+ memory B-cell frequencies are linked to impaired lung func-
ion and mild-moderate asthma exacerbations. 82 

ther innate lymphocytes in the lung 

LCs 

ILCs primarily inhabit mucosal regions like the respiratory and diges-
ive tracts. Emerging evidence has suggested that ILCs play pivotal roles
n lung homeostasis, pathogen defense, tissue repair, and potentially the
evelopment of chronic lung conditions. 5 , 83 ILCs consist of five major
ubsets: NK cells, ILC1, ILC2, ILC3, and lymphoid tissue inducers (LTi)
ells. 5 , 84 , 85 ILC1s, regulated by T-bet, focus on intracellular infections
nd have varied cytokine responses. 82 , 83 ILC2s, guided by GATA bind-
ng protein 3 (GATA-3), counter extracellular parasites and cause aller-
ies, and are modulated by IL-33, IL-25, and TGF- 𝛽. 86-88 In mice, natural
LC2s are responsive to IL-33, while inflammatory ILC2s, are not present
nder steady-state but are responsive to IL-25. 89 ILC3s, dependent on
etinoid-associated orphan receptor 𝛾t (ROR 𝛾t), are involved in lym-
hoid development and release cytokines like granulocyte-macrophage
olony-stimulating factor (GM-CSF), IL-17, and IL-22. 90 , 91 In humans,
D127+ ILC1 cells can differentiate into ILC3-like cells when exposed to
D103+ dendritic cells secreting IL-2, IL-23, and IL-1 𝛽. 92 Similarly, dur-

ng severe COPD, ILC2s can transition into ILC1s in the presence of IL-1 𝛽
nd IL-12, raising questions about the prominence of ILC1s in inflamma-
ory conditions and whether they originate predominantly from ILC3s
nfluenced by IL-12 or ILC2s exposed to IL-1 𝛽. 93 A unique chemoattrac-
ant receptor-homologous molecule expressed on Th2 cells (CRTH2)+ 

nd CRTH2- ILC2 subtype was also identified, traceable to naive ILCs,
nd inducible by alarmin signals. 94 Elevated levels of IL-17+ ILC3s were
bserved in the bronchoalveolar lavage fluid (BALF) of patients with se-
ere asthma, 95 while an increased frequency of natural cytotoxicity re-
eptor (NCR)+ ILC3s has been reported in non-small lung cancer patients
nd is associated with lung fibrosis. 96 

K cells 

Lung NK cells originate mostly from bone marrow and constitute
0–20% of lung lymphocytes in humans and about 10% in mice. 97 , 98 

uman NK cells are CD3- CD56+ and further categorized by CD16 ex-
ression. 94-96 Phenotypic variations include CD56dim CD16+ and CD57+ 

KG2A- in humans and CD27- CD11b+ in mice. Both human and mouse
ung NK cells exhibit a differentiated but hypofunctional state, with spe-
ific surface markers such as higher levels of CD49b, CD122, CD43,
y49s, and CD11b, and lower levels of CD51 compared to other tis-
ues. 99 Killer-cell immunoglobulin-like receptor (KIR) expression is cru-
ial for NK cell cytolytic activity and is higher in lung NK cells than in
ther organs. 100 , 101 Tissue-residing NK (trNK) cells make up 10–25% of
uman lung NK cells, primarily CD16- , while circulating CD16+ NK cells
re more prevalent. 102 , 103 trNK cells are identified by positive CD69,
D49a, and/or CD103 expression along with CD56 in humans, and by
ositive CD49a, CD69, and CD11b in mice. 102-107 Human lung trNK cells
roduce cytokines like IFN- 𝛾 and tumor necrosis fctor- 𝛼 (TNF- 𝛼), but
ave lower lytic granule expression. 108 , 109 Their frequency is elevated
n lung cancer tissues, higher than in healthy controls. 104 , 106 , 107 

ung resident lymphocytes in the protection against respiratory 

nfection and chronic respiratory diseases 

ung resident lymphocytes in respiratory viral infection 

ung resident lymphocytes in acute respiratory viral infection 

RM 

and BRM 

. TRMs play a central role in defense against respiratory
iruses including respiratory syncytial virus (RSV), influenza, and SARS-
oV-2. For instance, both CD4+ and CD8+ TRMs in the lung are in-
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uced upon primary RSV infection and persist over 100 days. 110 , 111 In
urine and African green monkey models, airway CD8+ TRMs display-

ng effector/tissue-resident memory phenotypes (CD95+ CD28- /CD69+ 

D103+ ) significantly reduce viral loads. 112 , 113 Human RSV challenge
tudies confirm CD103- -expressing CD8+ TRMs peak on day 10 postin-
ection, correlating with diminished disease severity, and offering pro-
ection against secondary infections. 114 In managing influenza A virus
IAV), lung-residing CD4+ and CD8+ TRMs are key frontline defend-
rs, distinguished by their pro-inflammatory cytokine secretion, such as
FN- 𝛾, TNF, and IL-2. 115 CD8+ TRMs in the lung specialize in rapid an-
iviral actions and express high levels of interferon-induced transmem-
rane protein 3 (IFITM3) and other antiviral molecules. However, these
ells have reduced efficacy against secondary infections and decline in
unction with age, constituting a risk for the elderly. 116-118 In the set-
ing of severe respiratory coronaviruses like SARS-CoV-2, bronchoalve-
lar lavage (BAL) from acute COVID-19 patients reveals a complex ar-
ay of CD8+ TRMs with distinct functionalities. 119-121 Subtypes include
D103− /low TRMs enriched with cytotoxic and inflammatory molecules
nd CXCR6hi effector-like tissue-resident cells, implicating them in both
cute and chronic lung pathology. 122 

The B-cell response to RSV involves distinct profiles in adenoid tissue
nd peripheral blood, with adenoids being the primary site for induc-
ng high-affinity RSV-specific memory B cells. 123 Unlike conventional
D27+ memory B cells, these cells mainly exhibit atypical IgM+ and/or

gD+ profiles and migrate to the lung upon subsequent RSV exposure,
nhancing local immunity. 124 The roles of BRMs and ABCS in this context
emain underexplored, indicating a research gap for vaccine develop-
ent. BRMs add complexity to the immune response. In mice, these cells

xhibit uniform CCR6 and CXCR3 expression, intermediate CD69 levels,
nd downregulated S1pr1, Klf2, and S1pr5. 7 , 125 In humans, BRMs simi-
arly upregulate CD69 but show variations in CCR6 and CXCR3. 63 Their
otential for rapid conversion to ASCs is indicated by specific marker
xpressions, such as CD80, 5 ′ -nucleotidase ecto (Nt5e), zinc finger and
TB domain containing 32 (Zbtb32), and programmed cell death 1 lig-
nd 2 (Pdcd1lg2). 126-128 T-bet expression in B cells is vital for gener-
ting haemagglutinin (HA) stalk-specific IgG2c antibodies and sustain-
ng neutralizing responses against influenza, thereby differentiating into
emory B cell (MBC) subsets and influencing humoral memory. 129 Poon

t al 120 found that lung-specific IgG+ memory B cells, expressing CD69,
ere closely associated with specific CD4+ T cells and CD8+ TRMs , signi-

ying a potential coordinated immune response with lung resident lym-
hocytes. 

nnate lymphocytes. Lung NK cells exhibit a stage-dependent role in
SV infection, participating in both innate and adaptive immunity. Ini-

ially, NK cells are recruited before T cells and can exacerbate lung
njury via IFN- 𝛾 secretion, but also facilitate T-cell activation for vi-
al clearance. 130-132 As the infection progresses, they shift to a harm-
ul role, inhibiting antibody responses and promoting lung pathol-
gy. 131 , 132 NK cells also modulate Th2 responses, exacerbating severe
SV outcomes. 131 , 133 , 134 NK cells act as immediate antiviral respon-
ers during influenza virus infection. These cells accumulate in the
ungs within 2–3 days postinfection. 135 Direct interaction between NK
ells and influenza HA occurs via NKp46 and can facilitate NK cell
ysis of virus-infected cells. 136 NK cells also contribute to viral clear-
nce through death-receptor pathways, such as influenza-induced TNF-
elated apoptosis-inducing ligand (TRAIL) expression, and blocking this
athway impairs viral clearance. 137 Similarly, ILC1s have also been
hown to contribute to the control of viral infection and dissemina-
ion. 138 ILC2s can facilitate the resolution of inflammation and tissue
epair following respiratory viral injury largely through their produc-
ion of amphiregulin (AREG). 9 , 139 , 140 Additionally, ILCs and NK cells
an also produce IL-22, a known tissue-protective cytokine that pro-
otes inflammation resolution and tissue repair in the respiratory tract,

acilitating host recovery after influenza virus infection. 141 
217
ung resident lymphocytes in post-acute sequelae of viral infection 

More and more evidence has suggested that respiratory viral infec-
ions can lead to enduring complications in both pulmonary and extra-
ulmonary systems. Particularly, viruses like severe influenza and var-
ous coronaviruses can cause persistent lung inflammation and fibrosis
temming from acute diffuse alveolar damage (DAD), emphasizing the
ong-term impact of these acute infections on overall health. 142 , 143 

CD8+ T cells, essential for virus-infected cell clearance, can induce
ersistent tissue damage and fibrotic sequelae if unchecked. 144 , 145 Ag-
ng amplifies post-viral risks, possibly due to the aged lung environment,
hich promotes non-resolving chronic immunopathology that leads to
ersistent pathology and impaired lung function. Virus-specific CD8+ 

RM 

cells accumulate more in aged lung tissues after severe influenza
nfection, but become dysfunctional in providing secondary immunity
gainst heterologous influenza challenge. 20 , 146 Consistently, persistent
D8+ TRM 

cells in COVID-19 survivors have been associated with di-
inished lung function, emphasizing their potential roles in long-term
ulmonary complications. 20 , 122 , 147 Current research has not defini-
ively established a connection between CD4+ TRM 

cells and the pro-
ression of disease following viral infections. However, the identifica-
ion of a pathological CD69+ CD103lo TRM 

cell population, which arises
rom chronic Aspergillus fumigatus exposure and shows proinflammatory
nd profibrotic tendencies, hints at a possible influence of CD4+ TRM 

ells in chronic lung diseases postinfection. This hypothesis gains sup-
ort from the observed prevalence of CD4+ TRM 

cells in patients ex-
eriencing PASC infection, where they appear alongside the associated
XCR3 ligands, suggesting a contributory role in post-viral lung com-
lications. 148–150 Additionally, TRH cells have been identified to boost
D8+ TRM 

and B cell responses, raising queries about their possible
ysfunctional role in postinfection sequelae. 21 , 23 , 24 Our recent study
ompared BAL single-cell RNA sequencing (scRNAseq) data from clini-
al PASC samples and mouse models, revealing abnormal macrophage–
esident T cell interactions in respiratory PASC, and identified IFN- 𝛾 as a
ivotal mediator; neutralizing IFN- 𝛾 postinfection improved lung func-
ion in respiratory PASC mouse models. 147 , 151 

ung resident lymphocytes in bacterial and fungal infection 

Building on the understanding of TRM 

cells in viral infections, it
s important to note that bacteria targeting the respiratory tract can
imilarly induce TRM 

-cell responses, with distinct roles for CD4+ TRM 

ells in local protection. Unlike viral infections, respiratory CD4+ TRM 

ells serve a key role in protecting against respiratory tract bacterial
nfections compared to CD8+ TRM 

cells. 152-154 Severe Streptococcus

neumoniae (Spn) infection can often cause pneumonia, and in mouse
odels, repeated Spn challenge elicited a robust CD4+ TRM 

17 response,
roviding lobe-specific protection against reinfection through IL-17-
ediated neutrophil recruitment. 153 , 155 Additionally, these CD4+ 

RM 

cells can prevent pneumococcal colonization on the respiratory
ucosa and contribute to the control of Mycobacterium Tuberculosis

 M. tuberculosis ) infections. 156 , 157 Vaccine strategies inducing lung TRM 

ells, particularly TRM 

17 cells, have shown superior protection against
acterial and fungal infections, including Klebsiella pneumoniae and
ryptococcus gattii . 158 , 159 BRM 

cells are also crucial for pulmonary im-
unity in mice and humans after pneumococcal infections. These cells,
arked by CD69, programmed death ligand 2 (PD-L2), CD80, and CD73,

nhance bacterial clearance and antibody production, highlighting their
ole in antibacterial defense. 160 ILCs regulate tissue inflammation and
omeostasis in response to various pathogens. When intracellular
acterial pathogens enter the mucosal tissue, ILC1s secrete cytokines,
uch as IFN- 𝛾, to limit pathogen spread. During fungal infections, ILC2s
an be activated by epithelial cell-derived alarmins to secrete cytokines
ike IL-13, aiding in the defense against these pathogens. Additionally,
LC3s play a crucial role in bacterial infections by producing IL-22,
hich is essential for bacterial clearance through the regulation of
ntimicrobial gene expression in epithelial cells. 161 Thus, ILCs are
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Fig. 2. Overview of the roles of lung-resident lymphocytes in immunodynamics across various pulmonary conditions. This schematic provides a comprehensive view 

of how these lymphocytes function within the immune landscape of different lung diseases such as asthma, pulmonary fibrosis, COPD, and post-acute sequelae. These 
conditions may be induced by various factors, including allergens and pathogens like influenza, SARS-CoV-2, and RSV. The figure also highlights the specific cytokine 
responses associated with each pulmonary condition, emphasizing the intricate immunological interactions in lung pathophysiology. COPD: Chronic obstructive 
pulmonary disease; EOMES: Eomesodermin; GzmB: Granzyme B; GzmK: Granzyme K; IL: Interleukin; ILC: Innate lymphoid cell; IFN- 𝛾: Interferon- 𝛾; IPF: Idiopathic 
pulmonary fibrosis; PD-1: Programmed cell death 1; PFN: Perforin; RSV: Respiratory syncytial virus; SARS-CoV-2: Severe acute respiratory syndrome coronavirus-2; 
TNF- 𝛼: Tumor necrosis factor- 𝛼; TRM : Tissue-resident memory T cell; trNK: Tissue-residing natural killer. 
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mportant in controlling bacterial and fungal infections through the se-
retion of inflammatory mediators and interactions with other immune
ells. 

ung resident lymphocytes in chronic respiratory diseases 

Chronic respiratory diseases, such as COPD, asthma, and complica-
ions following viral infections, significantly affect global health. Recent
tudies highlight the crucial roles lung-resident lymphocytes may play in
anaging, evolving, or exacerbating these illnesses. These immune cells

re key in various scenarios, exacerbating pulmonary damage post-acute
iral infections and influencing the disease course in chronic pulmonary
onditions, emphasizing the need for a deeper understanding of their
unctions and behaviors in diverse chronic lung diseases ( Fig. 2 ). 

ulmonary fibrosis and COPD 

Pulmonary fibrosis is associated with increased presence of CD4+ 

nd CD8+ TRM 

cells. 4 In mice, Aspergillus fumigatus exposed chronic pul-
onary fibrosis model, lung-resident CD4+ TRMs , specifically the IL-5
218
nd IL-13-producing CD69hi CD103lo CD4+ TRM 

2 subset, were identi-
ed as mediators of fibrotic processes. 150 In patients with interstitial

ung diseases, an upregulation of CD103+ CD4+ T cells exhibiting a
-helper 1-like effector phenotype was noted in the airway, corrobo-
ated by elevated IFN- 𝛾 and IL-13-double producing CD4+ T cells in BAL
uid. 28 , 162-164 We have also reported increased CD8+ TRM 

cells in the
arenchymal tissue adjacent to fibrotic areas in idiopathic pulmonary
brosis (IPF) patients. 144 These observations necessitate further inves-
igation to ascertain the specific protective or pathological functions of
D4+ and CD8+ TRM 

cells in the pathogenesis and progression of pul-
onary fibrosis. ILC2s in IPF are implicated in the disease’s progression

hrough their increased production of IL-13, which is stimulated by el-
vated levels of IL-25 in lung tissues. 165 , 166 This IL-13 release, in turn,
riggers collagen deposition, thereby contributing to lung fibrosis. 

CD8+ TRM 

have been identified as key contributors in in COPD patho-
enesis and progression, and their levels positively correlate with smok-
ng intensity. 167 , 168 IFN- 𝛾 derived from tissue-resident lymphocytes in-
luding TRM 

s can hinder alveolar stem cell growth and worsen emphy-
ema. 169 The involvement of TRM 

cells, specifically CD8+ TRMs , offers
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 potential avenue for targeted therapeutic strategies aimed at amelio-
ating the symptoms and progression of COPD. Elevated B cell counts
n COPD lungs are associated with disease severity and impaired IgA-
ediated mucosal immunity, implicating a role in COPD progression. 170 

 cell-rich lymphoid follicles are predominantly linked with the emphy-
ema phenotype, and their signaling functions appear to be protective
uring acute exacerbations, although further studies are needed for con-
rmation. 171 

Mouse and human COPD models also reveal marked changes
n CD49a+ trNK cells, more so than circulating NK cells, corre-
ating with disease severity. Upon re-exposure to influenza A, spe-
ialized trNK cell populations, notably CD49a+ CD49b+ EOMES+ and
D49a+ CD49b− EOMESlo , exhibit increased activation and markers of
issue residency such as NKG2D, CD103, and CD69. 172 Human COPD
amples display greater ex vivo influenza responsiveness, potentially
orsening inflammation. 172 In contrast, IPF lung explants show fewer

otal and circulating NK cells but more pro-inflammatory trNK cells
ith altered gene expression. Blood samples indicate skewed cytokine-

nduced NK (ciNK) to trNK ratios, indicating impaired recruitment and
ystemic accumulation, consistent with previous findings on trNK dys-
unction in IPF. 173 

sthma 

In mouse models of asthma, CD4+ TRMs are found to persist in the
ungs for an extended period and are critical for promoting asthma
ymptoms upon allergen re-exposure, dependent on IL-2 and IL-7 sig-
aling. 174 , 175 Research using a house dust mite allergen-based murine
odel reveals that although inhibiting circulatory T cell migration re-
uces the initial expansion of TRM 

cells, subsequent allergen challenges
till lead to robust lung inflammation and TRM 

cell accumulation, em-
hasizing the role of TRM 

cells in the exacerbation of asthma symp-
oms independently once established. 176 Human studies corroborate
his, showing that patients with moderate to severe asthma have ele-
ated levels of airway CD4+ TRM 

cells expressing pathogenic cytokines
uch as IL-9, as well as the IL-33 receptor, suppression of tumorigenicity
 (ST2). 177-179 Additionally, these TRM 

cells display a tissue-adaptation
ignature distinct from TCM 

cells, contributing to different aspects of air-
ay inflammation, including mucus metaplasia and eosinophil activa-

ion, which are key components in the exacerbation and maintenance of
sthma symptoms. 174 , 175 , 180 Therefore, strategies targeting both the de-
elopment and effector functions of lung-resident T cells are essential for
anaging and potentially preventing the exacerbation of asthma. This is
articularly crucial in severe cases, where CD103-expressing CD4+ TRM 

ells contribute to a pro-inflammatory state associated with persistent
irway inflammation and remodeling. 181 

ILCs, particularly ILC2s, are critical modulators of allergic asthma,
rchestrating eosinophilic recruitment via IL-5 and epithelial barrier dis-
uption through IL-13 secretion. 182 , 183 The regulatory role of ILC2s in
llergic asthma is complex, involving not only the neuropeptide neu-
omedin U, which potently activates ILC2s and an inducer of asthma, but
lso a diverse set of molecular modulators such as IL-1 𝛽, arginase 1, and
ranscription factors like interferon regulatory factor 7 (IRF7). 184-186 

herapeutic implications 

The involvement of different lung resident lymphocyte popula-
ions in the pathophysiology of various lung disease conditions sug-
ests that it might be promising to target these cells for develop-
ng new therapeutics. Emerging research accentuates that CD8+ TRM 

ells are fundamentally implicated in the pathogenesis of COPD, un-
erscored by their pronounced accumulation in the lung tissues of af-
ected individuals and their critical role in mediating pulmonary dam-
ge consequent to prolonged smoking exposure, thereby spotlighting
hese cells as pivotal targets for the innovation of effective therapeu-
ic strategies aimed at mitigating COPD’s progression and its associ-
ted exacerbations. Notch signaling, which is essential for lung TRM 

cell
219
aintenance, 187 , 188 could be targeted with AL101, an Food and Drug
dministration (FDA)-designated drug for adenoid cystic carcinoma

NCT03691207), to dampen chronic exuberant TRM 

-mediated lung dis-
ases such as COPD, asthma, etc. 

Similarly, TGF- 𝛽 signaling, crucial for TRM 

cell development and im-
licated in pulmonary fibrosis, 189 , 190 could be moderated to alleviate

RM 

-induced lung damage, although its blockade poses toxicity risks
ue to its diverse tissue roles. IL-21, which augments CD8+ T cell re-
ponses after influenza infection, 4 , 191 is another target. IL-21 block-
rs, like avizakimab (NCT03371251) in trials for systemic lupus ery-
hematosus (SLE), can be potentially beneficial for preventing inflam-
ation and lung fibrosis after viral pneumonia. 192 As dupilumab tar-

ets the IL-4R 𝛼, inhibiting the IL-4 and IL-13 pathways crucial in type 2
nflammation, 193 its speculated interaction with lung-resident lympho-
ytes could herald a new era in managing chronic respiratory conditions
ike COPD. Its established efficacy, highlighted in the phase 3 clinical
rial (NCT03930732), not only provides immediate therapeutic benefits
ut also sets the stage for future investigations into its long-term impact
n pulmonary immune modulation and disease progression. 194 

In this context, the SECOVID study (NCT04948203), another phase
 clinical trial, investigating the use of sirolimus in COVID-19 pneumo-
ia patients presents a significant therapeutic implication. Given mam-
alian target of rapamycin (mTOR)’s critical role in lung resident lym-
hocyte regulation and its influence on TRM 

and memory B cell func-
ions, sirolimus, an mTOR inhibitor may offer a strategic approach
o mitigating pulmonary fibrosis. By modulating mTOR pathways, 195 

irolimus could potentially stabilize or even reverse the pathological im-
une responses and fibrotic processes exacerbated by severe COVID-19,
roviding a hopeful avenue for preventing long-term pulmonary compli-
ations. Considering the crucial role of TRM 

cells in sustaining inflamma-
ion and tissue damage post-viral infection, Paxlovid’s role, particularly
ts component nirmatrelvir (NCT05595369), was studied in a phase 2
linical trial, which extends beyond antiviral action, offering a poten-
ial therapeutic strategy to modulate TRM 

cell activity. Curtailing viral
eplication promptly might impede the persistent stimulation of TRM 

ells, thereby preventing their excessive responses that contribute to
rolonged lung pathology and the progression of conditions like PASC. 

Emerging strategies, such as intranasal boosters with adenovirus-
xpressing spike protein 196 and novel adjuvants like S100A4, AS03, or
F59, show promise in enhancing lung-specific immunity and broaden-

ng the B-cell repertoire, potentially offering an innovative approach to
ortify the respiratory system against pathogens. 197-199 While prior vac-
ination is shown to be effective in reducing the risk of PASC develop-
ent to subsequent infection, whether vaccination after the occurrence

f infection is still effective in reducing PASC risk remains debatable. 200 

he complex etiology of PASC, involving dysregulated CD8+ T cell–
acrophage interactions and abnormal immune–epithelial dynamics,
ighlights potential interventions targeting cytokines like IFN- 𝛾, TNF,
nd IL-1 𝛽 for improved pulmonary recovery. 147 , 201 A better understand-
ng of the pathophysiology of PASC aligns with existing strategies to mit-
gate chronic lung diseases through targeted therapies such as Notch and
GF- 𝛽 signaling and IL-21 modulation, etc, emphasizing a comprehen-
ive approach to managing long-term respiratory immune challenges. 

onclusions 

In summary, the intricate delicacy of the respiratory tract is under
he vigilant watch of a dynamic immune system that walks a fine line be-
ween immune protection and immune pathology. While resident lung
mmune cells serve as the first responders to airborne threats, they also
an overreact, leading to undesirable outcomes like inflammation and
brosis. Just as a two-faced coin, the role of these cells can either be

ifesaving or detrimental, contingent upon the context in which they
perate. Unlocking the secrets of tissue-resident immune populations in
he lung could, therefore, provide transformative avenues for therapeu-
ic interventions. Although animal studies offer valuable insights, the
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ocus is now shifting toward immune regulation research in human tis-
ues to demystify how these cells function in situ , paving the way for
uture therapeutic strategies and prevention measures. 
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