
GigaScience, 9, 2020, 1–12

doi: 10.1093/gigascience/giaa068
TECHNICAL NOTE

TECHNICAL NOTE

Watchdog 2.0: New developments for reusability,
reproducibility, and workflow execution
Michael Kluge, Marie-Sophie Friedl, Amrei L. Menzel
and Caroline C. Friedel *

Institut für Informatik, Ludwig-Maximilians-Universität München, Amalienstr. 17, Munich 80333, Germany
∗Correspondence address: Caroline C. Friedel, LFE Bioinformatik, Institut für Informatik, Ludwig-Maximilians-Universität München, Amalienstr. 17,
Munich 80333, Germany. E-mail: caroline.friedel@bio.ifi.lmu.de http://orcid.org/0000-0003-3569-4877

Abstract

Background: Advances in high-throughput methods have brought new challenges for biological data analysis, often
requiring many interdependent steps applied to a large number of samples. To address this challenge, workflow
management systems, such as Watchdog, have been developed to support scientists in the (semi-)automated execution of
large analysis workflows. Implementation: Here, we present Watchdog 2.0, which implements new developments for
module creation, reusability, and documentation and for reproducibility of analyses and workflow execution. Developments
include a graphical user interface for semi-automatic module creation from software help pages, sharing repositories for
modules and workflows, and a standardized module documentation format. The latter allows generation of a customized
reference book of public and user-specific modules. Furthermore, extensive logging of workflow execution, module and
software versions, and explicit support for package managers and container virtualization now ensures reproducibility of
results. A step-by-step analysis protocol generated from the log file may, e.g., serve as a draft of a manuscript methods
section. Finally, 2 new execution modes were implemented. One allows resuming workflow execution after interruption or
modification without rerunning successfully executed tasks not affected by changes. The second one allows detaching and
reattaching to workflow execution on a local computer while tasks continue running on computer clusters. Conclusions:
Watchdog 2.0 provides several new developments that we believe to be of benefit for large-scale bioinformatics analysis and
that are not completely covered by other competing workflow management systems. The software itself, module and
workflow repositories, and comprehensive documentation are freely available at https://www.bio.ifi.lmu.de/watchdog.

Keywords: workflow management system; bioinformatics; automated biological data analysis; next-generation sequencing;
reusability; reproducibility; open science tools

Background

As a result of improvements in sequencing technologies, se-
quencing costs have decreased massively in recent years [1].
While the first human genome sequence cost ∼$2.7 billion and
took 13 years to complete [2], companies now offer genome
sequencing to private customers using state-of-the-art next-
generation sequencing (NGS) technologies for <$1,000. In ad-
dition, other cellular properties can now be measured at large
scale using NGS. This includes, e.g., the expression of genes

(RNA sequencing [RNA-seq]) [3], protein binding to DNA (chro-
matin immunoprecipitation sequencing [ChIP-seq]) [4], open
chromatin regions (assay for transposase-accessible chromatin
using sequencing [ATAC-seq]) [5], and many more.

As a consequence, data analysis has become more complex
with new challenges for bioinformatics, often requiring mul-
tiple interdependent steps and integration of numerous repli-
cates and several types of high-throughput data. Because man-
ual execution of all required analysis steps is cumbersome, time-

Received: 27 November 2019; Revised: 26 April 2020

C© The Author(s) 2020. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

http://www.oxfordjournals.org
http://orcid.org/0000-0003-3569-4877
mailto:caroline.friedel@bio.ifi.lmu.de
http://orcid.org/0000-0003-3569-4877
http://orcid.org/0000-0003-3569-4877
https://www.bio.ifi.lmu.de/watchdog
http://creativecommons.org/licenses/by/4.0/

2 Watchdog 2.0: New developments for reusability, reproducibility, and workflow execution

consuming, and laborious to repeat, several tools have been
developed for performing large-scale bioinformatics analyses.
One group of tools consists of static analysis pipelines specifi-
cally designed for 1 application, e.g., transcriptome analysis [6,
7]. While these pipelines have the advantage that a particular
analysis can be repeated without great effort, components of
these analysis pipelines are often not easily reusable for other
related applications. As an alternative, workflow management
systems (WMSs) have been developed that support creation of
such analysis pipelines (denoted as workflows in this context)
from reusable components and allow (semi-)automated execu-
tion of these workflows. Popular WMSs are Galaxy [8], KNIME
[9], Snakemake [10], and Nextflow [11] and differ in the imple-
mented set of features, target audience, the required training pe-
riod, usage fees, and more (for more details see the comparison
in the first article on Watchdog [12] and at the end of this article).

Previously, we presented the WMS Watchdog for the dis-
tributed analysis of large-scale experimental data originating,
e.g., from NGS experiments [12]. The core features of Watch-
dog include straightforward processing of replicate data, sup-
port for and flexible combination of distributed computing or re-
mote executors, customizable error detection, user notification
on execution errors, and manual user intervention. In Watch-
dog, reusable components are encapsulated within so-called
modules, which are defined by an XSD file specifying the pro-
gram to execute, input parameters, and return values of the
module. In addition, modules can contain scripts or compiled bi-
naries that are invoked in the module. There are no restrictions
on included software or on the programming language used in
additional scripts. Modules may also deploy required software
internally using Conda [13], Docker [14], or similar tools.

A Watchdog workflow is defined in an XML format and con-
sists of a sequence of tasks and dependencies between tasks.
Each task uses 1 module and the same task can be automati-
cally run on multiple samples or with multiple parameter com-
binations using so-called process blocks. This creates several
subtasks, 1 for each sample or parameter combination. A work-
flow can either be created manually using any XML editor or the
Watchdog graphical user interface (GUI) for workflow construc-
tion. While XML may be more complex than, e.g., YAML or JSON,
it is widely used and numerous XML editors are available, e.g.,
plugins for Eclipse [15]. Furthermore, using the GUI requires nei-
ther understanding of XML nor programming skills and thus al-
lows easy construction of workflows from a pre-defined set of
modules. In this case, the only Watchdog syntax that has to be
learned is how to reference variables.

Workflows can be executed using the Watchdog scheduler
via a command-line interface or the GUI, which are both imple-
mented in Java and thus platform-independent. The Watchdog
scheduler continuously monitors the execution status of tasks
and schedules new tasks or subtasks for execution if all tasks
that they depend on finished successfully. The execution status
of tasks is reported to the user via standard output, a web inter-
face that allows manual intervention and (optionally) email.

In the workflow, different executors can be specified for dif-
ferent tasks. Currently, 3 types of executors are supported (lo-
cal host, remote host via SSH, or computer clusters using SGE
or SLURM). Thus, resource-intensive or long-running tasks can,
e.g., be submitted to a computer cluster while less demanding
tasks may be executed on the local host. Furthermore, Watch-
dog provides a plugin system that allows users with program-
ming skills to add new executor types, e.g., for cloud computing,
without having to change the original Watchdog code (for details
see [12]).

In this article, we present Watchdog 2.0, a new and improved
version of Watchdog with several new developments for module
creation and documentation, reusability of modules and work-
flows, and reproducibility of analysis results, as well as workflow
execution.

Implementation
Overview

In the following, we describe only new developments that were
added in Watchdog 2.0. The general principle of Watchdog and
features already present in the previously published version re-
main unchanged; thus, we refer the reader to our previous pub-
lication for a detailed introduction to Watchdog [12]. The central
improvements provided by Watchdog 2.0 are the following and
are described in more detail in subsequent sections (see Fig. 1 for
an overview). First, Watchdog 2.0 now provides a GUI for semi-
automatically creating a new module from a software’s help
page. Second, a standardized documentation format for mod-
ules was introduced in Watchdog 2.0. From module documenta-
tion files, a searchable module reference book can then be gen-
erated providing an overview and details on existing modules.
Third, a community platform was created for sharing Watchdog
modules and workflows with other scientists.

Improvements for reproducibility of analysis results com-
prise extensive logging of executed steps, including module and
software versions, and the possibility to automatically generate
a summary of the executed workflow steps, e.g., as a draft for an
article methods section. In addition, we added fully integrated
support for container virtualization or package managers in the
form of so-called execution wrappers, in particular for Docker
containers and the Conda package management system.

Finally, 2 additional execution modes were implemented to
provide more comfort and flexibility in workflow execution. The
resume mode allows execution of a workflow to be restarted
by (re-)running only tasks that previously did not run (success-
fully) or were added or modified compared to the original exe-
cution. The second mode allows the scheduler to be detached
from workflow execution without aborting tasks running on a
computer cluster and reattaching to execution at a later time on
the same or a different computer.

The GUI for module creation and all new command-line tools
described in the following are implemented in Java and thus
platform-independent.

Semi-automated module generation

To make a software package available for use in Watchdog work-
flows, a new module has to be created. Watchdog already pro-
vides a helper script for creating the module XSD file and (op-
tionally) a skeleton Bash script that only has to be extended by
the program call. Nevertheless, this requires manually listing
all parameters for the module. The newly developed GUI mod-
uleMaker [16] now automatically extracts parameters and flags
from a software help page to more conveniently create the cor-
responding module.

The moduleMaker GUI uses sets of regular expressions
matching common help page formats to parse the help page
of a software. Currently, 8 pre-defined regular expression sets
are provided, but users can also define new sets using the GUI
and add them to the pre-defined list. When creating a module
with the GUI, users may either choose 1 particular regular ex-
pression set explicitly or let moduleMaker rank the regular ex-

Kluge et al. 3

Figure 1: Overview on new developments in Watchdog 2.0. New features are broadly grouped into the categories reusability, reproducibility, and workflow execution. Left:

New modules can now be developed in a semi-automated manner from software help pages using a GUI. A standardized documentation format was developed, allowing

the automatic compilation of a reference book of available modules. Public repositories for sharing modules and workflows are now available. Center: Extensive logging
of workflow execution ensures reproducibility of results and allows automated creation of a step-by-step report on analysis methods. Versioning of modules allows
adaption to new requirements with backward compatibility without unnecessary module duplication. Software and module versions are now automatically reported
in the log files. Execution wrappers now allow automatic deployment of software using container virtualization or package managers. Right: Workflow execution

becomes more flexible with the resume and detach/reattach modes. The resume mode allows the resumption of interrupted or modified workflow execution without
unnecessarily rerunning tasks. Detach/reattach allows the scheduler to be shut down on the local host while tasks on a computer cluster continue running and
reattaching to workflow execution on the same or a different computer at a later time.

pression sets based on how well they match the help page. In
the latter case, the user can then examine the results of the n
best-matching regular expression sets (with n user-defined) and
choose the result they consider best. Subsequently, the user can
correct errors in the automatic detection, add additional flags or
parameters, and modify or delete detected parameters. In a next
step, existence checks for input files or directories can be added
and return values for the module can be defined.

Once the user is finished, moduleMaker creates the module
XSD file and a wrapper Bash script for the software that—in
contrast to the skeleton Bash script created by the helper
script—is almost complete. The only manual changes required
by the developer involve assigning values to return values.
This wrapper script checks that required software is installed,
parses parameters, verifies that mandatory parameters are set,
performs existence checks on required input files and directo-
ries, executes the program, performs default error checks after
execution, and writes return values to a corresponding file read
by the scheduler. Optionally, a project file can be saved that
allows modules created with the moduleMaker to be reloaded
and modified at a later time.

Thus, developing a module does not require understanding
XML or the module XSD schema. Furthermore, little or no Bash
scripting experience is required if the GUI or helper script is
used, respectively. The GUI creates a Bash script that is finished
apart from the return value assignment. If the helper script is
used, there is no requirement to use a Bash script to execute the
commands. Any type of executable can be called in the module,
e.g., a Python script. Examples for modules using Python scripts
are included in the new module repository (see below).

Module documentation

While the Watchdog scheduler, features of Watchdog work-
flows, and workflow creation are already comprehensively

documented [12], no convenient way was so far available for
documenting both individual Watchdog modules and the set of
available modules. To address this problem, we developed (i) a
standardized documentation format for modules and (ii) a pro-
gram for creating a nicely formatted, searchable, and updatable
catalog of modules, the so-called reference book (see Fig. 2 for
an example), from the documentation files of individual mod-
ules. The module entry in the reference book describes soft-
ware dependencies, parameters (i.e., input files and values) and
their default values, return values (i.e., output files and values),
and more. Thus, instead of inspecting the module XSD or input
mask in the GUI to obtain this information, users can now sim-
ply browse the reference book.

Documentation format
Individual Watchdog modules are now documented using a
standardized XML format. This contains general module infor-
mation (e.g., author, description, dependencies) and properties
of module parameters and return values (e.g., name, type, de-
scription). The allowed semantic is described by an XSD schema
file, allowing the XML documentation files to be read and further
processed by XML parsing software.

To limit the overhead for creating the module documenta-
tion, a command-line tool (docuTemplateExtractor) is provided
by Watchdog 2.0. The docuTemplateExtractor extracts param-
eter and return value information from the module XSD file
and generates a template documentation file. Module develop-
ers then only have to fill in parts of the XML documentation not
contained in the module XSD file.

As noted above, modules may also contain additional scripts,
which can contain further information useful for documenta-
tion. For example, many scripts utilize an argument parser that
requires a description or default values for each parameter. To
exploit this and guarantee consistency between documentation

4 Watchdog 2.0: New developments for reusability, reproducibility, and workflow execution

Figure 2: Overview page of the module reference book. The main section displays available modules as boxes, showing the module name, date of last change, a short
description, links, and the author of the module. A search bar and category bar can be used to filter the displayed modules using text search or multi-category filters.
In this example, all modules containing the term “bam file” in the description are shown.

and scripts, the docuTemplateExtractor also aims to extract this
information. Because the syntax used by the argument parser
strongly depends on both the scripting language used and the
argument parser, this information cannot be obtained with a
generalized approach. Instead, we developed a plugin system
that allows developers to load custom parameter and return
value extractors by implementing a simple Java interface. Cur-
rently, 2 parameter extractors for Bash- and Python-based mod-
ules are available, which obtain description and default value of
parameters from argument parser definitions. For Bash scripts,
the shFlags library is supported, and for Python, the argparse
library.

Reference book
The reference book is implemented as an HTML web page based
on the UIkit framework [17]. It can be opened with any browser
supporting JavaScript and does not require a dedicated web
server. The reference book can be created from the XML docu-
mentation files using the refBookGenerator command-line tool.
The reference book can be created either for publicly available
modules, personal modules of the user, or a combination of
both. When new modules are added or existing modules are re-
moved, the reference book can simply be regenerated using the
refBookGenerator. Thus, every user can generate their personal-
ized reference book containing the modules they work with or
consider relevant to their work.

Fig. 2 shows the front page of the module reference book
(generated for all publicly available modules) after searching for
modules containing the term “bam file” in the description. The
main section of the front page provides an overview on all avail-
able modules. Every module is visualized as a box that contains
its name, author, assigned category, and a short description.
The search bar at the top can be used to filter modules using a
keyword search, which can be applied to title, author, category,

and/or description. Alternatively, the modules displayed in the
overview section can be filtered on the basis of authorship, cate-
gory, and update date. Clicking on a module box opens a detailed
view, showing module dependencies, parameters and valid in-
put values, return values, and if applicable citation information
and web links (see Fig. 3 for an example).

Public repositories for module and workflow sharing

Watchdog 2.0 now provides 2 repositories on Github under
the watchdog-wms organization [18] that are dedicated for
sharing modules [19] and workflows [20], respectively, by other
users. To contribute either a module or workflow to one of
the repositories, users have to first create a copy (fork) of the
repository, change or add modules/workflows, commit the
proposed changes to the repository copy, and submit these
changes for review to the original repository via a pull request.
An integration pipeline then checks whether the proposed
changes adhere to essential requirements. If all automatic tests
were successful, the proposed changes can be accepted by
Watchdog team members.

Currently, the module repository contains 60 modules. Each
module is located in a separate directory and must contain
at least the XSD module file and an XML documentation file.
Currently, most available modules focus on sequencing data
analysis, in particular RNA-seq and ChIP-seq analysis. Some
modules provide basic functionalities like file compression or
text search while others fulfill more specific tasks, e.g., differen-
tial gene expression analysis (module DETest), peak detection in
ChIP-seq data (module GEM), or identification of circular RNAs
(modules circRNAfinder and ciri2). By default, modules are
licensed under Apache License 2.0, but a different license can
be assigned to a module by including it in the module folder. A
reference book for all modules in the repository is available [21].

Kluge et al. 5

Figure 3: Detailed view of a module in the reference book. As an example, the detailed view on the indexBam module is shown, containing a short description,
dependencies on third-party software, parameters with valid ranges and descriptions, return values, citation information, and web links. The citation information
will also be included into the step-by-step report automatically created from the workflow execution log file.

It is automatically updated with every commit to the master
branch of the module repository.

Workflows shared in the watchdog-wms-workflows reposi-
tory also have to be located in separate directories. Each work-
flow directory has to contain the XML workflow file, a readme
file, and optionally example data. Workflows should be docu-
mented with inline comments. Furthermore, lines that require
modifications to adapt, e.g., to different computing environ-
ments or input data should be highlighted to allow everyone to
quickly adapt the workflow. We recommend, but do not enforce,
that paths or constant parameter values are not hard-coded in
the task section of the workflow, but rather that global constants
are defined in the settings section. A constant ”CONSTANT” can
then be referenced as ”${CONSTANT}” within process block or
task definitions. If this recommendation is followed, the work-
flow can be quickly adapted to a new environment or data by
modifying only constants and executors.

Currently, the workflow repository contains, e.g., the work-
flow for RNA-seq mapping and differential gene expression
analysis from the original Watchdog release. Additionally, new
workflows are available, e.g., for circular RNA detection with
CIRI2 [22] and circRNA finder [23], ChIP-seq analysis using GEM
(GEM, RRID:SCR 005339) followed by ChIPseeker [24,25], and
download of public NGS data from the NCBI SRA (SRA, RRID:
SCR 004891) [26] followed by alignment with HISAT2 (HISAT2,
RRID:SCR 015530) [27].

Methods for ensuring reproducibility

A critical aspect of any analysis of biological data is the re-
producibility of the results. While the use of a WMS already
contributes to reproducibility, workflows may be modified
between different runs of the workflow, e.g., by changing
parameter values or including or excluding some steps, or the
underlying software may be changed, e.g., by updates to a
new version. This may lead to uncertainty regarding the steps,
parameters, and software environment of the analysis that
produced specific results. Furthermore, when reporting the
individual steps of an analysis, for instance in a publication,
some steps may be unintentionally omitted, making it difficult
for others to reproduce the results. To address these problems,
Watchdog 2.0 includes a number of new developments to
ensure reproducibility of analyses.

Logging and automated reporting
When executing a workflow, Watchdog 2.0 now produces a
time-stamped log file (filename extension .resume) reporting
on the successful execution of each individual task. This log file
is also used for the resume mode (see below). If a task creates
multiple subtasks, e.g., for multiple input samples, successful
execution of each subtask is recorded. For each task/subtask
the log file records the value of each input parameter, as well as
return values.

https://scicrunch.org/resolver/RRID:SCR_005339
https://scicrunch.org/resolver/RRID:SCR_004891
https://scicrunch.org/resolver/RRID:SCR_015530

6 Watchdog 2.0: New developments for reusability, reproducibility, and workflow execution

Figure 4: Result of automated report generation for example workflow. This

example shows the step-by-step analysis report generated with the reportGen-
erator from the execution log file for the RNA-seq example workflow provided
with Watchdog. The workflow was described in detail in our original Watchdog

publication [12]. The annotation file name (a parameter to featureCounts) and
software version numbers in parentheses are automatically obtained from
the log file (see software version logging). For this example, the workflow was
simplified to perform differential gene expression analysis only with DESeq2,

instead of 4 different gene expression analysis methods as previously described.
For modules without paper description (e.g., unzipping or replicate merging),
the report would contain the text “No short description given in documentation
of module module name”. To shorten this example, these sentences were

manually removed, as well as the citation information commonly included in
the module descriptions.

Moreover, a report of the executed steps can be automati-
cally created from the log file using the new command-line tool
reportGenerator provided with Watchdog 2.0 (see Fig. 4 for an
example of the report). For this purpose, the XML documenta-
tion file of each module contains the element paperDescription,
which can be filled with a short description of the module and ci-
tation information. It can also contain references to parameters
of the task or the software version (see below for software ver-
sion logging). The reportGenerator concatenates these descrip-
tions in the order the corresponding tasks were executed and
replaces references by the values reported in the log file. There
is also an option to include PubMed IDs from the module docu-
mentation. The resulting report can then be used as a step-by-
step protocol of the analysis or be further revised for the meth-
ods section of an article.

Module versioning
Modules generally rely on third-party software that can be mod-
ified repeatedly to improve performance, fix bugs, or be adapted
to changing requirements, for instance by adding support for
new types of experimental data. As a consequence, a module
will need to be adapted over time, e.g., by changing the parame-
ters of the module to support new parameters or drop obsolete
ones. At the same time, backward compatibility needs to be en-
sured such that previously defined workflows relying on the old
module version can still be executed. One solution to this prob-
lem would be to duplicate the module and adapt the copy. How-
ever, this leads to unnecessary code duplication because most of
the module XSD file will remain unchanged, and results in code
that is difficult to maintain.

To avoid this problem, Watchdog 2.0 now allows different
versions of a module within 1 module XSD file to be defined
by specifying the minimum and maximum supported module
version for each element in the XSD file. If neither minimum
nor maximum supported version is indicated, the element is
valid for all module versions. This allows input parameters,
return values, or even the executed program call to be changed
between different module versions. When executing a workflow,

the module version for each task will also be recorded in the
log file. By default, the first version of a module is used unless
otherwise specified in the workflow XML file. This guarantees
that workflows defined before a new module version was
introduced do not have to be adapted.

Software version logging
Watchdog is very flexible with regard to how dependencies to
third-party software in a module can be handled by module de-
velopers. Software can be shipped with the module, loaded via
package and environment management systems like Conda [13],
or be required to be installed on the system that will execute the
corresponding task (e.g., the local host or a computer cluster).
In any case, it is crucial to know which software versions were
run for a particular analysis in order to reproduce the analysis
results or understand differences in outputs between repeated
runs because new software releases often correct errors or may
change the behavior of the software.

Thus, Watchdog 2.0 now implements a general approach for
reporting versions of third-party software used in a module in
the log file. For this purpose, a new attribute in the module XSD
file can be used to define the flag for version printing of third-
party software. During workflow execution, after a task or sub-
task has been completed successfully on a particular computer,
the program call defined in the corresponding module is in-
voked with the version flag on the same computer to retrieve
the installed third-party software version. This software version
is then reported for the task/subtask in the log file. If the version
flag has not been defined in the module, this step is omitted for
the corresponding tasks. This option is also useful for identi-
fying differences in installed third-party software between dif-
ferent executors used for workflow execution, such as the local
host, a computer cluster, or remote executors accessed by SSH.

Execution wrappers
A disadvantage of Watchdog’s flexibility on how installation
of third-party software is handled is that it complicates both
reusability and reproducibility of workflows. Having to install all
required software before modules or workflows can be used can
be cumbersome. Furthermore, to fully reproduce results from a
workflow, users would have to make sure that they (still) have
the same software versions installed as in the original run of a
workflow. Thus, we now implemented execution wrappers to ex-
plicitly support automatic deployment of software via package
managers or container virtualization in Watchdog 2.0. Execution
wrappers are initialized in the settings section of a Watchdog
workflow and are then assigned to individual executors, which
in turn use the wrapper to deploy the software for all tasks they
run. Each executor can be assigned both a package manager and
a container; thus, package managers can also be used within
containers. Furthermore, different packager managers or con-
tainers can be assigned to different tasks by using different ex-
ecutors and corresponding execution wrappers for these tasks.
Execution wrappers are implemented using Watchdog’s plugin
system; thus, the set of available execution wrappers can be ex-
tended by users without having to modify the Watchdog code.

Currently, Watchdog 2.0 provides execution wrappers for
the Conda package manager (Conda, RRID:SCR 018317) [13]
and for Docker container virtualization [14]. To enable use of
Conda for a module, the module directory only has to con-
tain a YAML file defining the default Conda environment (mod-
ulename.conda.yml). For different versions of a module, dif-
ferent Conda environments can be defined (ending in .v[0-
9]+.conda.yml). If no version-specific Conda definition file is

https://scicrunch.org/resolver/RRID:SCR_018317

Kluge et al. 7

found, the default Conda environment for the module is used.
If Conda execution wrappers are not used in a workflow or for a
particular executor, the Conda environment definition will sim-
ply be ignored for the whole workflow or the tasks run by the ex-
ecutor, respectively. Thus, previously developed workflows will
not be affected by these changes.

The Docker execution wrapper allows tasks to be run within
containers built from Docker images using Docker, Podman, or
Singularity. Furthermore, it provides an option for automatically
mounting files and directories on the host machine that are
used in parameters of tasks. This option is enabled by default
but can be disabled. Thus, adding container virtualization to
an executor does not require changes to corresponding tasks.
Similar to the Conda execution manager, module- and module-
version-specific Docker images can be enabled by adding 1 or
more files to the module folder specifying the image name
to be used for the corresponding tasks. An example for using
Docker and Conda in combination is provided in the workflow
for RNA-seq mapping and differential gene expression analysis
available from the workflow repository and with the Watchdog
distribution.

New execution modes

In the original Watchdog version, the Watchdog scheduler
had to run continuously on the computer on which workflow
execution is started. If workflow execution was interrupted,
e.g., by a computer crash or reboot, only a manual restart option
was available. This required the last task finished successfully
to be identified or some analyses to be rerun in case only
some subtasks of a task finished successfully. To avoid this
problem, Watchdog 2.0 now supports 2 additional execution
modes (see Fig. 5). The first one allows workflow execution
to be resumed at any point and rerunning only the tasks or
subtasks in a workflow that did not finish successfully, were
modified, or depended on modified tasks. The second execution
mode allows detachment from workflow execution by shutting
down the Watchdog scheduler on the current computer while
tasks distributed to a computer cluster continue running. The
scheduler can then reattach to the workflow execution at a later
time either from the same or a different computer. This can be
used for instance to reboot the machine running the scheduler
or to switch from a desktop computer to a laptop without
interrupting execution of tasks running on a computer cluster.

Resume mode
As described above, Watchdog 2.0 creates a detailed log file dur-
ing execution of a workflow containing successfully finished
(sub)tasks, as well as their input parameters and return val-
ues. In resume mode, Watchdog 2.0 uses the log file of a pre-
vious workflow run to determine which (sub)tasks have to be
(re-)executed. Individual (sub)tasks are identified by their input
parameter combinations. (Sub)tasks not listed in the log file with
exactly the same input parameter values will be scheduled to be
executed. Furthermore, (sub)tasks that previously finished suc-
cessfully with the same parameters are re-executed if they de-
pend on other (sub)tasks that are (re-)run.

This allows the resumption of not only workflows that were
interrupted unexpectedly (e.g., by hardware failure or power out-
age) but also workflows that were modified, i.e., by changing pa-
rameters for some tasks, without unnecessarily rerunning tasks.
Here, Watchdog 2.0 guarantees that all results are updated that
may be affected by the modification. Furthermore, additional
samples, e.g., for other conditions or more replicates, can be eas-

Figure 5: New execution modes in Watchdog 2.0. (a) Resume mode: From the log

file of a previous workflow execution and the workflow XML file, the Watchdog
scheduler automatically detects (sub)tasks that either have not yet run success-
fully, are new or modified, or require processing of additional samples. Conse-
quently, only these (sub)tasks are executed, as well as all (sub)tasks depending

on them (dependencies indicated as dashed lines). Light red indicates (sub)tasks
that were previously executed successfully; light blue, tasks that were since
modified; dark blue, new tasks that were added; and dark red, additional sub-

tasks that have to be executed because additional samples were added. Dou-
ble lines around tasks indicate which (sub)tasks have to be (re-)executed after
resuming this workflow. (b) Visualization of the detach/reattach mode after re-
suming the workflow shown in (a). In this case, subtasks of D and task E are ex-

ecuted on a computer cluster, while a local executor is used for all other tasks.
In this example, the Watchdog scheduler is originally started on a laptop and
some tasks are scheduled and executed. After a while, a detach request is sent
and no more new tasks are scheduled on the local host. Once the tasks on the

local computer (blue) have finished, the detach file is written and the scheduler
terminates. Subtasks D3 and D4 submitted to the computer cluster (yellow) con-
tinue to be executed. When the user reattaches to workflow execution, this time
on a desktop computer (orange), new tasks are again scheduled.

ily included without rerunning analyses for samples that have
already been processed. Importantly, identification of (sub)tasks
that require (re-)execution is performed automatically without
manual user input. This both reduces the overhead for the user
and eliminates the risk that they may forget some steps that
need to be repeated.

8 Watchdog 2.0: New developments for reusability, reproducibility, and workflow execution

The Watchdog 2.0 resume mode is illustrated in Fig. 5a for
an example workflow. In this case, a task was modified (task B);
additional samples were added to task D (marked red), requiring
additional subtasks to be run; and additional tasks were added
(F and Z). In resume mode, task B will be rerun because of mod-
ified parameters and task C because it depends on task B. For
task D, only the new subtasks will be executed, but task E will be
repeated because it depends on D. In addition, the newly added
tasks will be run.

It should be noted here that after a workflow has been run at
least once, changes to the workflow should be limited to adding
new (sub)tasks (e.g., for new samples) or dependencies. Remov-
ing (sub)tasks or dependencies between tasks may lead to in-
consistencies with old versions of input data being accidentally
used for a task. Thus, this should only be done with utmost care.

Detach / reattach mode
In most cases, the Watchdog scheduler will run on a laptop or
desktop computer and outsource all resource-intensive tasks
to a distributed computer system, e.g., a computer cluster. Be-
cause execution of long, resource-intensive workflows may take
hours or even days to complete, it may not always be possi-
ble for the Watchdog scheduler to be running continuously on
the host computer. For instance, the host running Watchdog
might require a reboot to install software updates or dedicated
computer cluster submission hosts may not allow long-running
programs. If the Watchdog scheduler is run on a laptop, the
user may want to change locations with their laptop. To sup-
port these use cases, Watchdog 2.0 now provides the option to
detach the scheduler from a running workflow and reattach at
a later time. Notably, the user does not have to decide before
execution whether to use this mode but can decide to detach
at any time after starting execution in either normal or resume
mode.

In Watchdog 2.0, the user can request to detach using a
keystroke combination (Ctrl-C) or a link in the email notifica-
tion. After the request is sent, Watchdog will wait for tasks to
complete that are running either on the local host or a remote
host via SSH, but schedule no further tasks on these executors.
In contrast, Watchdog will continue to submit tasks on clus-
ter executors with workload managers working independently
of Watchdog (currently SGE and SLURM are supported). Once
all tasks on the local and remote hosts are finished, Watch-
dog will save the information on tasks running on cluster ex-
ecutors to a file and then terminate itself. From this moment,
tasks already running on or submitted to computing clusters will
continue running or be scheduled to run by the corresponding
workload managers, but no new tasks can be submitted to these
clusters.

The detach file can then be used at a later time to reat-
tach to workflow execution at the point where it was stopped
previously. Watchdog will then obtain information on the exe-
cution status of tasks that were still running on or submitted
to computer clusters before detaching, i.e., whether they are
still running or finished successfully or with errors, and con-
tinue scheduling tasks on all executors accordingly. Notably, the
Watchdog scheduler can also be reattached on another com-
puter using the detach file, allowing for instance switching from
a laptop at home to a desktop computer at work as illustrated
in Fig. 5b. Moreover, Watchdog 2.0 also provides a command-
line tool to periodically start the scheduler in auto-detach mode.
In this mode, the scheduler checks whether tasks were finished
successfully, submits new tasks if possible, and then terminates
itself automatically.

Comparison to other WMSs

In this article, we present a number of new developments in our
WMS Watchdog. The previously published version of Watchdog
[12] was already extensively compared against the most pop-
ular WMSs for biological analyses, i.e., Galaxy (Galaxy, RRID:
SCR 006281) [8], KNIME (KNIME, RRID:SCR 006164) [9], Snake-
make (Snakemake, RRID:SCR 003475) [10], and Nextflow [11] (see
Fig. 12 in [12] for this comparison). Compared features included,
e.g., availability of GUIs/web interfaces for workflow design, ex-
ecution and monitoring, support for parallel, distributed, and
cloud computing, dependency definition, and many more. This
showed that Watchdog combined features of existing WMSs and
provided novel useful features for execution and monitoring of
workflows for users both with and without programming skills.

Because these features are essentially unchanged, we do not
repeat this comparison here but refer the reader to our origi-
nal publication [12]. In the following, we discuss how Watch-
dog 2.0 compares to these other WMSs regarding the new fea-
tures we present in this article because these were not previ-
ously analyzed. First, we provide a brief description of Galaxy,
KNIME, Snakemake, and Nextflow. For more details, see our orig-
inal publication [12].

Galaxy is targeted at experimentalists without programming
experience and allows data analyses to be performed in the
web browser. Workflows can be constructed on public or pri-
vate Galaxy servers in a web-based user interface from a set of
available tools and can then be executed. New tools for use in
a Galaxy workflow are defined in an XML format specifying the
input parameters for this tool, as well as the program to execute.

KNIME is an open-source data analysis platform based on the
Eclipse integrated development environment (IDE). It provides
a powerful GUI for workflow construction, execution, and visu-
alization of results, which can also be used without program-
ming experience. Java programming skills are required for mak-
ing a new tool available in a so-called node because multiple Java
classes have to be extended.

Snakemake uses a Python-based language to define work-
flows in a so-called Snakefile as a set of rules that describe
how output files are created from input files. Dependencies be-
tween rules are determined automatically on the basis of input
and output files, and the order of rule execution is determined
upon invocation based on these dependencies. Encapsulation of
reusable components can be performed using so-called wrap-
pers. Writing workflows and wrappers requires knowledge of the
Snakemake syntax and some degree of programming skills.

Nextflow extends the Unix pipes model to transfer complex
data between consecutive processes as shared data streams. It
provides its own scripting language based on the Groovy pro-
gramming language to define workflows. Individual analysis
steps are defined as processes in the Nextflow workflow itself;
thus, no actual encapsulation of tools into reusable components
is supported. Similar to Snakemake, programming experience is
required to define workflows and no GUI is provided.

For the following comparison, features were grouped broadly
into categories reusability, reproducibility, and workflow execu-
tion. A summary of the comparison is presented in Table 1.

Reusability
For this part of the comparison, we focused on features that sup-
port development and sharing of tools (modules in Watchdog,
tools in Galaxy, nodes in KNIME, rules in Snakemake, processes
in Nextflow) for (re-)use in multiple analysis workflows as well
as sharing and repurposing of existing workflows (F1–F7 in Ta-

https://scicrunch.org/resolver/RRID:SCR_006281
https://scicrunch.org/resolver/RRID:SCR_006164
https://scicrunch.org/resolver/RRID:SCR_003475

Kluge et al. 9

Ta
b

le
1:

C
om

p
ar

is
on

of
W

at
ch

d
og

w
it

h
4

ot
h

er
co

m
m

on
ly

u
se

d
W

M
Ss

.

C
at

eg
or

y
N

o.
Fe

at
u

re
W

at
ch

d
og

G
al

ax
y

K
N

IM
E

Sn
ak

em
ak

e
N

ex
tfl

ow

R
eu

sa
bi

li
ty

F1
Su

p
p

or
t

fo
r

to
ol

cr
ea

ti
on

C
om

m
an

d
-l

in
e/

G
U

I
C

om
m

an
d

-l
in

e1
Ec

li
p

se
W

iz
ar

d
N

o
N

A
F2

To
ol

d
oc

u
m

en
ta

ti
on

X
M

L
ba

se
d

X
M

L
ba

se
d

X
M

L
ba

se
d

Y
A

M
L

ba
se

d
2

N
A

F3
To

ol
re

fe
re

n
ce

bo
ok

W
eb

p
ag

e
ge

n
er

at
or

Pa
rt

of
G

U
I

Pa
rt

of
G

U
I

W
eb

p
ag

e
ge

n
er

at
or

N
A

F4
To

ol
ve

rs
io

n
in

g
Y

es
Y

es
Y

es
Y

es
N

A
F5

Sh
ar

in
g

of
to

ol
s

R
ep

os
it

or
y3

To
ol

Sh
ed

4
K

N
IM

E
H

u
b5

/N
od

eP
it

6,
∗

R
ep

os
it

or
y7

N
A

F6
Sh

ar
in

g
of

w
or

kfl
ow

s
R

ep
os

it
or

y3
To

ol
Sh

ed
4

K
N

IM
E

H
u

b5
/N

od
eP

it
6,

∗
R

ep
os

it
or

y8
n

f-
co

re
9,

∗

F7
R

ep
u

rp
os

in
g

of
w

or
kfl

ow
s

X
M

L
ed

it
/G

U
I

G
U

I
G

U
I

C
op

y
Sn

ak
efi

le
C

om
m

an
d

-l
in

e
R

ep
ro

d
u

ci
bi

li
ty

F8
So

ft
w

ar
e

ve
rs

io
n

lo
gg

in
g

Y
es

N
o

N
o

Y
es

N
o

F9
So

ft
w

ar
e

d
ep

lo
ym

en
t

Ex
ec

u
ti

on
w

ra
p

p
er

s,
C

on
d

a,
D

oc
ke

r
C

on
d

a,
D

oc
ke

r
N

o
C

on
d

a,
D

oc
ke

r
C

on
d

a,
D

oc
ke

r

F1
0

C
re

at
io

n
of

w
or

kfl
ow

re
p

or
t

Y
es

Li
st

vi
a

h
is

to
ry

St
at

ic
d

es
cr

ip
ti

on
10

H
T

M
L

re
p

or
t

H
T

M
L

re
p

or
t

F1
1

C
it

at
io

n
ex

p
or

t
Y

es
Y

es
N

o
N

o
N

o
Ex

ec
u

ti
on

F1
2

R
es

u
m

e
w

or
kfl

ow
Y

es
N

o
Y

es
Y

es
Y

es
F1

3
Pr

oc
es

s
on

ly
u

p
d

at
ed

ta
sk

s
Y

es
N

o
Y

es
Y

es
11

Y
es

F1
4

Pr
oc

es
s

on
ly

n
ew

re
p

li
ca

te
s

Y
es

N
o

N
o

Y
es

11
Y

es
F1

5
D

et
ac

h
/r

ea
tt

ac
h

Y
es

Y
es

12
N

on
-f

re
e

fe
at

u
re

13
Y

es
14

N
o

T
h

e
se

le
ct

ed
W

M
Ss

ar
e

co
m

p
ar

ed
ag

ai
n

st
W

at
ch

d
og

ba
se

d
on

fe
at

u
re

s
gr

ou
p

ed
br

oa
d

ly
in

to
th

e
ca

te
go

ri
es

re
u

sa
bi

li
ty

,
re

p
ro

d
u

ci
bi

li
ty

,
an

d
ex

ec
u

ti
on

.
N

A
:

n
ot

ap
p

li
ca

bl
e.

1
Py

th
on

-b
as

ed
co

m
m

an
d

-l
in

e
p

ro
gr

am
(P

la
n

em
o)

.
2
N

o
ex

p
li

ci
t

d
oc

u
m

en
ta

ti
on

of
p

ar
am

et
er

s
bu

t
ex

am
p

le
Sn

ak
efi

le
an

d
w

ra
p

p
er

so
u

rc
e

co
d

e
is

p
ar

t
of

th
e

d
oc

u
m

en
ta

ti
on

.
3
[1

8]
.4

[2
8]

.5
[2

9]
.6

[3
0]

.7
[3

1]
.8

[3
2]

.9
[3

3.
]10

A
d

es
cr

ip
ti

on
th

at
w

as
m

an
u

al
ly

cr
ea

te
d

fo
r

a
sp

ec
ifi

c
w

or
kfl

ow
ca

n

be
d

is
p

la
ye

d
bu

t
is

n
ot

d
yn

am
ic

al
ly

cr
ea

te
d

.11
Fl

ag
”–

li
st

-p
ar

am
s-

ch
an

ge
s”

or
”–

li
st

-i
n

p
u

t-
ch

an
ge

s”
in

co
m

bi
n

at
io

n
w

it
h

th
e

”–
fo

rc
er

u
n

”
fl

ag
.12

C
li

en
t:

an
yt

im
e/

se
rv

er
:i

f
jo

bs
ar

e
n

ot
ex

ec
u

te
d

lo
ca

ll
y

on
th

e
se

rv
er

.13
N

on
-f

re
e

SG
E

ex
te

n
si

on
or

K
N

IM
E

se
rv

er
re

q
u

ir
ed

.14
Se

n
d

in
g

of
a

T
ER

M
si

gn
al

st
op

s
sc

h
ed

u
li

n
g

of
n

ew
jo

bs
an

d
w

ai
ts

fo
r

al
lr

u
n

n
in

g
jo

bs
to

fi
n

is
h

;C
tr

l+
C

ki
ll

s
al

lj
ob

s
ru

n
n

in
g

on
th

e
lo

ca
lc

om
p

u
te

r,
w

h
il

e
jo

bs
ru

n
n

in
g

on
a

co
m

p
u

ti
n

g
cl

u
st

er
co

n
ti

n
u

e
to

ru
n

.∗ C
om

m
u

n
it

y
p

ro
je

ct
.

10 Watchdog 2.0: New developments for reusability, reproducibility, and workflow execution

ble 1). Because there is no real encapsulation of tools in Nextflow,
most of these features are not applicable to it.

Support for tool creation (F1) is provided in Galaxy by the
command-line program Planemo, which is similar to the helper
script originally provided by Watchdog for module creation. No-
tably, Planemo also requires all parameters for a new tool to be
added manually. For KNIME, an Eclipse extension (KNIME Node
Wizard) is available, which generates the project structure, the
plug-in manifest, and all required Java classes. However, the Java
classes only contain the basic backbone (in particular, no pa-
rameters or flags) and have to be massively extended by the de-
veloper. Snakemake does not provide any software or script for
defining wrappers.

All 3 WMSs allow documenting (F2) tools and their parame-
ters in XML or YAML format. In the case of Snakemake, the spec-
ification does not require explicit documentation of parameters
and input and output. Instead, an example Snakefile showing
the use of the wrapper has to be provided. A reference book con-
taining information on all available tools (F3) can be generated
for Snakemake wrappers as a separate web page. This contains
the example Snakefile, the code of the wrapper, author informa-
tion, and software dependencies. In contrast, the documenta-
tion of KNIME nodes and Galaxy tools, respectively, is displayed
on their respective GUI/web interface during workflow creation.
Furthermore, all 3 WMSs perform tool versioning (F4).

For sharing tools (F5) or complete workflows (F6) with other
users, Galaxy and KNIME operate dedicated sharing platforms
[28, 29], while Snakemake provides source code repositories sim-
ilar to Watchdog 2.0 [31, 32]. Furthermore, dedicated sharing
platforms are operated by the KNIME and Nextflow community
[30, 33].

Repurposing an existing workflow for new data (F7) requires
different steps in the different WMSs. In Galaxy and KNIME, ex-
isting workflows can be imported and subsequently input files
or values have to be selected/modified in the web interface and
GUI, respectively. For Nextflow, input is provided via command-
line parameters. For Snakemake, relative paths to input files are
hard-coded in the Snakefile. Thus, repurposing a Snakemake
workflow only requires the Snakefile to be copied to a directory
in which input files are stored or linked in the subdirectory struc-
ture used in the Snakefile. In Watchdog workflows, input files
and parameters are also hard-coded but absolute paths are used.
In a well-designed workflow, global constants are defined for in-
put values and files in the settings section and used throughout
the workflow. Thus, repurposing only requires these constants
to be edited either in a text or XML editor or the GUI. This is not
more effort than required by other WMSs, with the exception
of Snakemake. However, it provides more flexibility than Snake-
make regarding how input data are distributed in the file system,
and workflows can be stored anywhere, e.g., in a directory con-
taining all previously developed workflows.

Reproducibility
Here, we focus on features (F8–F11) related to reproducibility
of analysis results carried out at an earlier time, on different
computer systems, and/or by other scientists. Most of the other
WMSs do not support explicit logging of external software dur-
ing workflow execution similar to Watchdog 2.0 (F8). However,
Galaxy, Snakemake, and Nextflow support controlling external
software dependencies and versions with the Conda package
manager or using Docker containers (F9). Furthermore, Snake-
make reports on executed workflows (see next paragraph) dis-
play the Conda environment for each task, including software
versions.

A description of all performed analysis steps (F10) can be ob-
tained in Snakemake and Nextflow through generation of HTML
reports, in which individual steps are listed in a table format
and in the case of Snakemake also visualized as a graph. Galaxy
displays all executed tasks as a list in its analysis history. In
contrast, KNIME supports only static workflow descriptions that
have to be prepared by the workflow developer. The dynamic re-
port created by Watchdog 2.0 from the execution log does not
only list performed steps but includes short descriptions of each
step prepared by module developers with citation information
and (optionally) PubMed IDs (F11). The only other WMS allowing
the declaration of citations for tools is Galaxy. In this case, a list
containing citations for all tools used can be exported after ex-
ecuting a workflow in Galaxy. None of the other WMSs support
creation of a step-by-step report for inclusion in a manuscript
draft similar to Watchdog 2.0.

Execution
All WMSs except Galaxy can resume execution of partly exe-
cuted workflows (F12) and are able to detect new tasks, modi-
fied tasks, or tasks with altered dependencies and consequently
execute only these tasks (F13). With Snakemake and Nextflow,
new samples (e.g., additional replicates) can be included in an
analysis workflow without having to reprocess all samples (F14),
but this option has to be forcibly triggered in Snakemake. This is
not possible for KNIME workflows. One possibility to avoid un-
necessary reprocessing in KNIME is to implement KNIME nodes
that can detect whether the corresponding task was already ex-
ecuted successfully on a sample as done by Hastreiter et al. [34].
However, this adds additional overhead for node development.

Finally, similar execution modes to the detach/reattach mode
of Watchdog 2.0 (F15) are at least partly supported by all com-
pared WMSs apart from Nextflow. Because Galaxy is a web-
based system, the user can log off (detach) and log in (reattach)
at any time and from different client systems. Furthermore, the
Galaxy server can also be restarted while tasks continue running
on a computer cluster if no tasks are executed locally on the
server. In KNIME, remote execution is only possible with non-
free extensions like the KNIME Server or a cluster extension. If
tasks are executed remotely using such an extension, the local
KNIME instance can be detached and reattached to workflow ex-
ecution. Finally, Snakemake provides the option to stop schedul-
ing by sending the TERM signal and waiting for all jobs to be
finished before terminating. Later, workflow execution can then
simply be resumed. However, this mode also stops scheduling
of jobs on computer clusters and waits for jobs running on com-
puter clusters to be finished. Alternatively, Ctrl+C kills the main
Snakemake process and all jobs running on the local computer,
but jobs already running on a computing cluster keep running.
With the correct use of profiles, it is then possible for the work-
flow to check the status of those jobs after a restart.

Conclusion

In this article, we present the new developments in Watchdog
2.0, which focus on improving reusability of modules and work-
flows, reproducibility of analysis results, and convenience of
workflow execution.

To simplify module development, we developed the mod-
uleMaker GUI for semi-automatically creating a module for a
software package by parsing its help page. Manual overhead for
the module creator is then mostly limited to choosing the best
regular expression set, validating and correcting automatically
identified parameters, and adding additional parameters or re-

Kluge et al. 11

turn values considered necessary. Furthermore, we established
public sharing repositories to support and encourage exchange
of developed modules and workflows between scientists. Mod-
ules are now documented in a standardized documentation
format, from which an HTML-based module reference book
can automatically be created. The reference book provides an
overview and details on available modules and can be easily
regenerated to integrate new modules, e.g., modules created by
other developers.

To guarantee reproducibility of workflow results, we intro-
duced module versions and extensive logging of successfully ex-
ecuted steps including parameter values and third-party soft-
ware versions. From the log file of a workflow execution, a re-
port can then be automatically generated that serves both as
a documentation of the analysis steps and as a starting point
for drafting the corresponding methods section of a manuscript.
This not only reduces the effort in creating a description of the
analysis, it also prevents accidental omission of individual steps.
In addition, Watchdog 2.0 now provides integrated support for
automatic deployment of software, in particular with Conda or
Docker, in the form of execution wrappers.

Finally, with the new resume and detach/reattach execu-
tion mode, convenience and flexibility of workflow execution is
greatly enhanced in Watchdog 2.0. The resume mode not only
implements the state of the art for WMSs that allows resump-
tion of interrupted workflow execution, but automatically iden-
tifies and re-executes tasks with modified parameters or addi-
tional input samples as well as downstream tasks that depend
on them. The detach/reattach mode allows shutting down the
Watchdog scheduler on a local computer while jobs continue to
be executed on computer clusters. The user can then reattach
to workflow execution and resume scheduling of tasks at a later
time and even from a different computer.

While many of the new features in Watchdog 2.0 are also
present in other popular WMSs, none are implemented in all of
them. Furthermore, even if these features are available in other
WMSs, the implementations in Watchdog 2.0 often add addi-
tional capabilities, such as, e.g., the possibility to automatically
generate a step-by-step report. Combined with the existing ad-
vantages of Watchdog highlighted in our original publication, we
thus believe that Watchdog 2.0 will be of great benefit to users
with a wide range of computer skills for performing large-scale
bioinformatics analyses in a flexible and reproducible manner.

Availability of Source Code and Requirements
� Project name: Watchdog 2.0
� Project home page: https://www.bio.ifi.lmu.de/watchdog
� Source code: https://github.com/klugem/watchdog, https://

github.com/watchdog-wms
� Operating system(s): Platform independent
� Programming language: Java
� Other requirements: Java 11 or higher, JavaFX 11 or higher for

the GUIs, individual requirements for modules
� License: GNU General Public License v3.0
� DOI: https://doi.org/10.5281/zenodo.3764538
� RRID:SCR 018355
� biotoolsID: biotools:watchdog

Availability of Supporting Data and Materials

Snapshots of the Watchdog 2.0 code and the module and work-
fow repository used for this article are available in the GigaDB
data repository [35].

Abbreviations

ATAC-seq: assay for transposase-accessible chromatin using se-
quencing; ChIP-seq: chromatin immunoprecipitation sequenc-
ing; GUI: graphical user interface; IDE: integrated development
environment; JSON: Javascript Object Notation; NCBI: National
Center for Biotechnology Information; NGS: next-generation
sequencing; RNA-seq: RNA sequencing; SSH: Secure Shell;
SRA: Sequence Read Archive; WMS: workflow management
system.

Competing Interests

The authors declare that they have no competing interests.

Funding

This work was supported by grants FR2938/7-1, FR2938/10-1, and
CRC 1123 (Z2) from the Deutsche Forschungsgemeinschaft (DFG)
to C.C.F.

Authors’ Contributions

M.K. developed the software and wrote the manuscript. M.-S.F.
tested Watchdog 2.0 and implemented modules and the work-
flow for the analysis of circular RNAs in high-throughput se-
quencing data. A.L.M. implemented the moduleMaker GUI un-
der supervision of C.C.F. and M.K. C.C.F. tested the software,
helped in revising the manuscript, and supervised the project.
All authors read and approved the final manuscript.

References

1. Hayden EC. Technology: The $1,000 genome. Nature
2014;507:294–5.

2. International Human Genome Sequencing Consortium. Fin-
ishing the euchromatic sequence of the human genome. Na-
ture 2004;431:931–45.

3. Wang Z, Gerstein M, Snyder M. RNA-Seq: A revolutionary tool
for transcriptomics. Nat Rev Genet 2009;10:57–63.

4. Furey TS. ChIP-seq and beyond: New and improved method-
ologies to detect and characterize protein-DNA interactions.
Nat Rev Genet 2012;13:840–52.

5. Buenrostro JD, Wu B, Chang HY, et al. ATAC-seq: A method
for assaying chromatin accessibility genome-wide. Curr Pro-
toc Mol Biol 2015;109:21.29.1–9.

6. Guo W, Tzioutziou N, Stephen G, et al. 3D RNA-seq - a pow-
erful and flexible tool for rapid and accurate differential ex-
pression and alternative splicing analysis of RNA-seq data
for biologists. bioRxiv 2019, doi.org/10.1101/656686.

7. Sundararajan Z, Knoll R, Hombach P, et al. Shiny-Seq:
Advanced guided transcriptome analysis. BMC Res Notes
2019;12:432.

8. Taylor J, Schenck I, Blankenberg D, et al. Using Galaxy to per-
form large-scale interactive data analyses. Curr Protoc Bioin-
formatics 2007;Chapter 10:Unit 10.5.

9. Berthold MR, Cebron N, Dill F, et al. KNIME: The Konstanz In-
formation Miner. In: Studies in Classification, Data Analysis,
and Knowledge Organization (GfKL 2007). Heidelberg-Berlin:
Springer; 2007:319–26.

10. Köster J, Rahmann S. Snakemake–a scalable bioinformatics
workflow engine. Bioinformatics 2012;28:2520–2.

11. Di Tommaso P, Chatzou M, Floden EW, et al. Nextflow en-
ables reproducible computational workflows. Nat Biotechnol
2017;35:316–9.

https://www.bio.ifi.lmu.de/watchdog
https://github.com/klugem/watchdog
https://github.com/watchdog-wms
https://doi.org/10.5281/zenodo.3764538
https://scicrunch.org/resolver/RRID:SCR_018355

12 Watchdog 2.0: New developments for reusability, reproducibility, and workflow execution

12. Kluge M, Friedel CC, Watchdog – a workflow management
system for the distributed analysis of large-scale experimen-
tal data. BMC Bioinformatics 2018;19:97.

13. Conda. https://conda.io. Accessed 11 November 2019.
14. Docker. https://www.docker.com/. Accessed 1 April 2020.
15. McAffer J, Lemieux JM, Aniszczyk C. Eclipse Rich Client

Platform. 2nd ed. Boston, MA: Addison-Wesley Professional;
2010.

16. moduleMaker. https://github.com/watchdog-wms/module
Maker. Accessed 23 April 2020.

17. Ulkit. https://getuikit.com. Accessed 11 November 2019.
18. Watchdog WMS Community, https://github.com/watchdog-

wms/. Accessed 23 April 2020.
19. Watchdog’s module repository, https://github.com/watchdo

g-wms/watchdog-wms-modules. Accessed 23 April 2020.
20. Watchdog’s workflow repository, https://github.com/wat

chdog-wms/watchdog-wms-workflows. Accessed 23 April
2020.

21. Watchdog’s module reference book, https://watchdog-wms
.github.io/watchdog-wms-modules. Accessed 23 April 2020.

22. Gao Y, Zhang J, Zhao F. Circular RNA identification based on
multiple seed matching. Brief Bioinform 2018;19:803–10.

23. Westholm JO, Miura P, Olson S, et al. Genome-wide analysis
of Drosophila circular RNAs reveals their structural and se-
quence properties and age-dependent neural accumulation.
Cell Rep 2014;9:1966–80.

24. Guo Y, Mahony S, Gifford DK. High resolution genome wide
binding event finding and motif discovery reveals transcrip-

tion factor spatial binding constraints. PLoS Comput Biol
2012;8(8):e1002638.

25. Yu G, Wang LG, He QY. ChIPseeker: An R/Bioconductor pack-
age for ChIP peak annotation, comparison and visualization.
Bioinformatics 2015;31(14):2382–3.

26. Leinonen R, Sugawara H, Shumway M, et al. The Sequence
Read Archive. Nucleic Acids Res 2011;39:D19–21.

27. Kim D, Paggi JM, Park C, et al. Graph-based genome align-
ment and genotyping with HISAT2 and HISAT-genotype. Nat
Biotechnol 2019;37:907–15.

28. Galaxy Tool Shed. https://toolshed.g2.bx.psu.edu. Accessed
11 November 2019.

29. KNIME Hub. https://hub.knime.com. Accessed 11 November
2019.

30. NodePit. https://nodepit.com. Accessed 11 November 2019.
31. SnakeMake Wrappers repository. https://bitbucket.org/sn

akemake/snakemake-wrappers. Accessed 11 November
2019.

32. SnakeMake Workflows repository. https://github.com/snake
make-workflows. Accessed 11 November 2019.

33. nf-core. https://nf-co.re. Accessed 11 November 2019.
34. Hastreiter M, Jeske T, Hoser J, et al. KNIME4NGS: A com-

prehensive toolbox for next generation sequencing analysis.
Bioinformatics 2017;33:1565–7.

35. Kluge M, Friedl MS, Menzel AL, et al. Supporting data for
”Watchdog 2.0: New developments for reusability, repro-
ducibility, and workflow execution.” GigaScience Database
2020; https://dx.doi.org/10.5524/100758.

https://conda.io
https://www.docker.com/
https://github.com/watchdog-wms/moduleMaker
https://getuikit.com
https://github.com/watchdog-wms/
https://github.com/watchdog-wms/watchdog-wms-modules
https://github.com/watchdog-wms/watchdog-wms-workflows
https://watchdog-wms.github.io/watchdog-wms-modules
https://toolshed.g2.bx.psu.edu
https://hub.knime.com
https://nodepit.com
https://bitbucket.org/snakemake/snakemake-wrappers
https://github.com/snakemake-workflows
https://nf-co.re
https://dx.doi.org/10.5524/100758

