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Understanding cellular differentiation is critical in explaining development and for taming diseases such as cancer. Differentiation
is conventionally represented using bifurcating lineage trees. However, these lineage trees cannot readily capture or quantify all the
types of transitions now known to occur between cell types, including transdifferentiation or differentiation off standard paths.This
work introduces a new analysis and visualization technique that is capable of representing all possible transitions between cell states
compactly, quantitatively, and intuitively. This method considers the regulatory network of transcription factors that control cell
type determination and then performs an analysis of network dynamics to identify stable expression profiles and the potential cell
types that they represent. A visualization tool called CellDiff3D creates an intuitive three-dimensional graph that shows the overall
direction and probability of transitions between all pairs of cell types within a lineage. In this study, the influence of gene expression
noise and mutational changes during myeloid cell differentiation are presented as a demonstration of the CellDiff3D technique, a
new approach to quantify and envision all possible cell state transitions in any lineage network.

1. Introduction

During development, a complex system of tissues and organs
emerges from a single cell by the coordination of cell
division, morphogenesis, and differentiation. Understanding
the differentiation of cell types is necessary to understand-
ing development and its associated defects, for improved
control of stem cell differentiation in therapeutic use and
for taming diseases such as cancer. Cellular differentiation
occurs when a less specialized cell or its progeny becomes
increasingly specialized by acquiring properties that allow
specific functions. In animals, differentiation typically results
in a terminally differentiated state in which a specialized
cell can no longer acquire the properties of other specialized
adult cells. Recent discoveries, however, have shown that
terminally differentiated cells can be reprogrammed to revert
back to multipotent and pluripotent stem cells which have

the potential to differentiate into other cell types [1, 2] or to
transdifferentiate into other specialized cell types [3].

Differentiating cells normally follow well defined paths to
mature cell types. Taken together, these paths are referred to
as a lineage tree. Pluripotent stem cells give rise to progeny
that specialize into more constrained multipotent cells. In
turn, multipotent cells produce a variety of stable, terminally
differentiated cells. This process is usually depicted as a
tree with a pluripotent cell at its root, multipotent cells as
intermediate nodes, and the mature cell types as branch
tips. As an example, a simplified portion of the myeloid
cell lineage tree is illustrated in Figure 1. This figure shows
that common myeloid progenitor stem cells produce two
pluripotent cell types, a megakaryocyte-erythrocyte progeni-
tor and a granulocyte-monocyte progenitor, that in turn pro-
duce terminally differentiated erythrocytes, megakaryocytes,
monocytes, and granulocytes.
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Figure 1: A simplified myeloid lineage tree from [4] where the
terminal nodes are mature terminally differentiated erythrocytes
(ERY), megakaryocytes (MEG), monocytes (MON), and granu-
locytes (GRA). Multipotent cells are the common myeloid pro-
genitor (CMP), megakaryocyte-erythrocyte progenitor (MEP), and
granulocyte-monocyte progenitor (GMP). The color assigned to
each cell type in this figure is also used in the differentiation network
shown in Figure 4.

Intracellular genetic regulatory networks (GRNs) control
differentiation by responding to external (extracellular) and
internal (intracellular) stimuli that reconfigure gene expres-
sion profiles and change cell physiology [5]. There is a grow-
ing body of evidence that cell types are determined by stable
expression patterns of the regulatory networks, referred
to as attractors. Switching between cell types amounts to
transitioning from one attractor to another [6]. The attractor
model explains how cell types can be stable under gene
expression noise and how changes in the expression of a
small number of master regulators can shift the expression
of hundreds of genes as cell types switch.

Regulatory network dynamics are driven by molecular
events within the cell that are subject to noise [7]. Under-
standing the role of noise in gene expression and its effect
on differentiation is essential to gaining insight into cellular
specialization and its errors. If cell types are attractors of
the GRN, these attractors must be robust to noise in order
to maintain particular cell types and to stay on the correct
branches of the lineage tree during differentiation. Failure to
do either canhave dire consequences. For instance, cancer has
been proposed to involve destabilization of attractor states
due to changes in genetic regulatory network dynamics [8]. In
this view, the attractors that correspond to normal cells switch
to new, abnormal attractors characteristic of cancer cells. In
addition to pathological states, transitions between attractor
states of differentiated cells may lead to dedifferentiation,
in which a cell reverts to an earlier multipotent state, or
transdifferentiation, in which a differentiated cell switches
to another adult differentiated cell type [9]. Abnormal type
switching may also result in off-differentiation in which a
multipotent cell fromone branch of a lineage tree is converted
to a differentiated cell on another branch of the tree. Finally,
to maintain a population of multipotent cells, at least some of

Figure 2: Waddington’s classic model of an epigenetic landscape
[11]. A developmentally immature cell, represented as a ball at the top
rolls downhill and is deflected right or left at each branch point until
it reaches a catch basin (not shown in this diagram) that corresponds
to a terminally differentiated cell.

these cells must resist differentiation to later stages within the
lineage tree [10].

An early and influential way of viewing differentiation
is Waddington’s [11] epigenetic landscape. Waddington envi-
sioned differentiation occurring on a rugged landscape of
sloping ridges and valleys (see Figure 2). Waddington repre-
sented an undifferentiated cell as a ball at the uppermost point
of the highest valley. Differentiation occurred as this ball
rolled downhill, encountering the ends of ridges that define
branch points between valleys. At each of these branch points,
the ball moved left or right to follow the new sloping valley
to another ridge terminus that separates yet another pair of
valleys. Each ridge terminus represents a progenitor cell in
a conventional lineage tree and the movement to right or left
into a new valley from this branch point represents a commit-
ment of the progenitor to one or another lineage. The ridges
represent barriers that maintain a cell state once it is chosen.

In the decades since Waddington proposed his model,
many investigators have used the concept of an epigenetic
landscape and tailored it to explain a variety of developmental
processes. Waddington himself cautioned that the epigenetic
landscape is an abstraction that could not be rigorously
interpreted [11]. Some recent work has tried to enhance
Waddington’s epigenetic landscape tomove it frommetaphor
to rigorous model [1, 12–15]. However, even with these
extensions, the ridge-and-valley topography of the epigenetic
landscape places a fundamental limit on the number and
kinds of cell type transitions that can be shown. For exam-
ple, representing transdifferentiation between nonadjacent
lineages in Waddington’s model requires jumping over two
or more ridges and showing dedifferentiation requires uphill
movement. Conventional two-dimensional lineage trees suf-
fer from similar problems. Even more significant than diffi-
culties in visually representing nonstandard, yet documented
transitions between cell types is thatWaddington’s epigenetic
landscape and conventional lineage trees both fail to provide
quantification of the probability of any transition. Finally,
epigenetic landscapes and conventional lineage trees show
only a small fraction of the possible transitions between cell
types. Many of these transitions were previously considered
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Table 1: Summary of different kinds of cell type transitions with possible examples from myeloid differentiation tree shown in Figure 1.

Transition Example Definition
Spontaneous-differentiation CMP to MEP Cell switches to a more specialized state
Spontaneous-dedifferentiation MON to GMP Cell reverts to an earlier multipotent state

Off-differentiation GMP to ERY Cell switches to a more specialized state but on a wrong branch of the
lineage tree

Off-dedifferentiation MEG to GMP Differentiated cell reverts to an earlier multipotent state but on a wrong
branch of the lineage tree

Transdifferentiation GRA to ERY Differentiated cell switches to another differentiated state

hypothetical, but with ability to induce pluripotent stem cells
from adult differentiated cells and to induce transdifferen-
tiation between lineages, these changes in cell type are well
known. To illustrate the limitations of standard representa-
tions of cell lineages, a generalized epigenetic landscape like
that shown in Figure 2 that considers 𝑚 cell type attractors
can only represent a maximum of 2𝑚 − log

2
(𝑚 + 1) − 1

cell type transitions.This formulation considers the expected
differentiation transitions within the lineage tree (𝑚− 1) and
transdifferentiation events between adjacently arranged cell
types on the tree (𝑚 − log

2
(𝑚 + 1)). As the number of cell

types in a system increases, the limitations of the epigenetic
landscape become more acute: the number of representable
transitions grows with 𝑂(𝑚), while the number of possible
transitions growswith𝑂(𝑚2). Given that nonstandard attrac-
tor type transitions play key roles in cancer and disease devel-
opment, coupled with the ability to experimentally induce
dedifferentiation and transdifferentiation and the possibility
of off-differentiation events, improvements are needed in the
visualization of cellular differentiation.

In this work, we present a new method that generates
a three-dimensional graph of attractors and all possible
transitions between them to overcome the limitations of a
conventional representation of cellular differentiation. Our
technique, implemented by a tool called CellDiff3D, analyzes
the network of attractors generated by a random Boolean
GRN. In this work, the GRN that simulates myeloid cell dif-
ferentiation is used as a demonstration. A noise analysis of the
network dynamics is performed to identify 𝑚 attractors and
the likelihood of all the possible𝑚(𝑚−1) transitions between
them. This information determines the layout of the graph.
The graph is easy to interpret and qualitatively represents
the likelihood of transitions between cell types, their overall
direction, and rate under the influence of noise. Visualization
of the results of CellDiff3D is achieved by virtual reality
modeling language (VRML) that allows the user to zoom and
rotate the three-dimensional lineage network.TheCellDiff3D
tool can be downloaded from http://www.celldiff3d.org/.

2. CellDiff3D Design and Visualization

2.1. Separation and Flux between Attractors. Weuse themean
first passage time (MFPT) [16] between the attractors of any
given GRN, represented qualitatively as a Boolean network
[17]. MFPT determines the probability and directionality
of each theoretically possible transition between all pairs

of network states. Introduced by Shmulevich et al. [16],
MFPT(𝑎

𝑖
, 𝑎
𝑗
) between a pair of attractors, 𝑎

𝑖
and 𝑎
𝑗
, is an esti-

mate of the average number of state update steps of a Boolean
network that are required to transition from an attractor state
𝑎
𝑖
to an attractor state 𝑎

𝑗
when the network operates under

uniform random noise. Noise is modeled by having each bit
(gene expression value) have a probability of changing states
(a bit flip, from expressed to nonexpressed or vice versa) at
each state update step. LowMFPTs indicate a high likelihood
of a transition between cell states and high MFPTs indicate
low likelihood for this transition. Once MFPT between two
attractors of a network is estimated, then two useful derived
measures of the epigenetic barrier between attractors can be
determined: the separation between attractors and the flux
of transitions between them. Let the separation between two
attractors 𝑖, 𝑗 be

separation (𝑖, 𝑗) = min (MFPT (𝑖, 𝑗) ,MFPT (𝑗, 𝑖)) . (1)

Higher separation implies a lower likelihood of transition
between attractors. Note that separation is symmetric. Flux
establishes the directionality of the transition by quantifying
the difference between the rates (MFPTs) of forward and
reverse transitions between a pair of attractors. The flux
between attractors 𝑖, 𝑗 is defined as

flux (𝑖, 𝑗) = MFPT (𝑖, 𝑗) −MFPT (𝑗, 𝑖) . (2)

Note that flux establishes overall direction of the transi-
tion between cell states and is asymmetric.

2.2. Network Dynamics Visualization. An important element
of GRNs is their behavior under gene expression noise. By
definition, attractors are stable expression states of a genetic
regulatory network, but this stability is relative and expected
to vary depending on the network structure and dynamics.
For example, terminally differentiated cell states are expected
to be more stable than progenitor cells that may be more
sensitive to noise-driven changes in states. High levels of
gene expression noise may cause unexpected or pathological
cell state transitions, with these transitions categorized based
on the relative positions of the source and sink cell types
in the normal lineage tree. Table 1 summarizes five kinds
of transitions between cell types and provides an example
of each case with respect to the cell types in the simplified
myeloid lineage tree shown in Figure 1.

Two of these five transition types are represented easily in
Waddington’s epigenetic landscape: differentiation (moving

http://www.celldiff3d.org/
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“downhill” in the landscape toward more specialized cell
types) and dedifferentiation (loss of specialization shown by
upward movement). Two other transition types cannot be
shown in the classic epigenetic landscape representation: off-
differentiation (differentiation to a cell type not on the normal
lineage path); and off-dedifferentiation (loss of specialization
to a cell type off the normal lineage path). Additionally, the
epigenetic landscape limits visualization of transdifferentia-
tion events (a switch from one adult differentiated cell type to
another) to only those events that occur between adjacently
arranged cell types. As discussed earlier, it is important
to have a way of representing all possible transition types
because off-differentiation and dedifferentiation are likely to
play central roles in cancer [3, 8] and because recent evidence
suggests that transdifferentiation may occur during normal
development [18] as well as being induced in cultured cells
[19].

Our method visualizes the different attractor transition
kinds by constructing a 3-dimensional graph in which the
distances between pairs of cell types are their separation
(the minimum MFPTs between each pair) and the favored
direction of the transition is shown by an arrow with a
thickness proportional to the flux. In this way, the graph
provides a quantitative view of these important parameters.
To reach this result, the following steps are taken. First, the
attractors of a given network are determined. Next, noise
analysis (described later) is performed for each attractor pair
and the separation and flux values are calculated. This is
followed bymapping separation and flux values to a weighted
directional graph in which attractors are shown as nodes.
Mapping is done using Graphviz, an open source graphing
application [20]. All these procedures are described in detail
in the Methods Section below. Plotting separation and flux
values using Graphviz produces 3-dimensional layouts of the
graphwhich can be rotated freely in anyweb browser and that
are easy to understand and analyze.

The graphical layout problem for showing cell type
switching is defined in the following way. Let 𝑖

𝑥,𝑦,𝑧
be the

⟨𝑥, 𝑦, 𝑧⟩ coordinate of attractor 𝑖 in the graph visualization,
and let dist(𝑖, 𝑗) be the Euclidean distance between points
𝑖
𝑥,𝑦,𝑧

and 𝑗
𝑥,𝑦,𝑧

. Then, given a graph of 𝑚 attractors defined
as a set of separation (𝑖, 𝑗) | 1 ≤ 𝑖, 𝑗 ≤ 𝑚, the layout is defined
by determining the set of coordinates for each attractor such
that the following summation is minimized:

∑

1≤𝑖,𝑗≤𝑚

(dist (𝑖
𝑥,𝑦,𝑧

, 𝑗
𝑥,𝑦,𝑧

) − separation (𝑖, 𝑗))
2

. (3)

After determining the location of attractors (nodes) in
3D space, flux between pairs of attractors is represented by
arrows (directed edges) of variable width between them with
arrow width proportional to flux. The edge direction is given
by the relationship between MFPT(𝑖, 𝑗) and MFPT(𝑗, 𝑖): if
MFPT(𝑖, 𝑗) < MFPT(𝑗, 𝑖), then the edge is from 𝑖 to 𝑗. The
3D graph is viewable in any web browser using the VRML
viewer plugin (such as Cartona3D) and allows the user to
rotate and zoom the graph to aid viewing, analyzing, and
understanding the relationships between attractors within
complex networks.

GATA-1

Fli-1

EKLF

PU.1

EgrNab SCL

Gfi-1

cJun C/EBP𝛼

GATA-2

FOG-1

Figure 3: The genetic regulatory network used in this work for
modeling myeloid differentiation. Nodes are eleven transcription
factors that control cell lineage and edges are regulatory interactions
between the transcription factors. An arrow signifies activation and
a closed line signifies inhibition. The Boolean regulatory control
functions are not shown. This network was discovered using a new
search algorithm (paper in preparation) that uncovers networks that
can produce a particular set of cell types, but it does not necessarily
find the actual biological network.

2.3. Visualizing the Myeloid Differentiation Network. We
modeled the simplified myeloid lineage network that is
shown in Figure 1 to demonstrate the utility of the visu-
alization technique. The modeling was based on the work
of Krumsiek et al. [4] who considered a network of eleven
transcription factors known to be important in myeloid cell
differentiation. We extended this work by applying a novel
search technique (paper in preparation) to discover a new
Boolean regulatory network that is supported by the literature
and whose dynamics produce all the attractors in the lineage
tree, three attractors representing pluripotent cells, along
with an additional 4 attractors representing the terminally
differentiated cell types. The transcription factor expression
pattern of each of these attractors corresponds to a myeloid
cell type shown in Figure 1. Our GRN discovery method
searches the space of Boolean GRNs converging to a specific
GRN that minimizes the difference between the attractor’s
Boolean expression values and the experimental expression
values of the corresponding cell types. The new inferred
Boolean GRN is illustrated in Figure 3. The essential point
for demonstrating the value of the CellDiff3D approach is
that this network produces transitions between cell types
that cannot be visualized using Waddington’s epigenetic
landscape or conventional lineage trees but can easily be seen
and analyzed using CellDiff3D.

Figure 4 shows some outputs of the visualization method
applied to simulated myeloid differentiation GRN. Running
themyeloidGRN resulted in four attractors with gene expres-
sion levels that closely match the four terminally differenti-
ated cell types (erythrocytes (ERY), megakaryocytes (MEG),
monocytes (MON), and granulocytes (GRA)). In addition,
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Figure 4: CellDiff3D visualization of the simulated myeloid differentiation network. Each image is a still taken from renderings of VRML
code produced by the modeling method. The transcription factors and their regulatory interactions that comprise the GRN are shown in
Figure 3. Each sphere is one of the myeloid cell types shown in Figure 1. Each row shows three orthographic views of cell type transitions
derived from runs using the wild-type transcription factor network (top row of panel) or with transcription factor mutations in which the
first transcription factor listed does not interact with the second transcription factor (lower rows of panel). The distance between each pair
of cell types is the separation and the arrow direction and thickness are flux. For clarity, low flux edges are not shown. Lavender arrows show
normal differentiation or dedifferentiation along the standard lineage tree from a specialized cell to its immediate progenitor; black arrows
show transdifferentiation, off-differentiation, or off-dedifferentiation.
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Figure 5: CellDiff3D illustration of the effects of two additional mutations that disrupt the myeloid differentiation network. There are
interactions between GATA-2 to PU.1 (middle row) and GATA-1 to PU.1 (bottom row). See Figure 4 for extended caption.

there are three attractors that correspond to the MEP and
GMP progenitors and the CMP stem cell (expression data is
given in [4]).

Each row of Figures 4 and 5 shows three different
orthographic projections of the 3D graph of the attractor
network. The inferred Boolean network generated the seven
stable attractors produced during normal myeloid differen-
tiation (labeled wild type in Figures 4 and 5). Rows below

the wild-type network show how network modifications
(equivalent to mutations) alter the attractor landscape and
how the technique described here can readily visualize these
changes. These mutated GRNs were created by knocking
out the forward interaction link between a transcription
factor and one of its targets by always assigning this link
a value of false then running the network to compute the
MFPT. For example, in the second row of Figure 4, we
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Table 2: Cell type transitions discovered and visualized in the myeloid differentiation network shown Figure 3 and in mutationally altered
forms of this network.

Figure Network Cell type switch Kind

Figure 4(a) Wild type

CMP⇒MON Spontaneous-differentiation
MEP⇒ GMP Off-differentiation
MEG⇔ CMP High separation
MEP⇒ GMP Off-differentiation
MEP⇔MEG Low separation

Figure 4(b) EgrNab/Gfi-1
CMP⇒MEG Spontaneous-differentiation
ERY⇒ GRA Transdifferentiation
GRA⇔ CMP Low separation

Figure 4(c) Fli-1/EKLF

MEG⇒ CMP Spontaneous-dedifferentiation
MEG⇒MON Transdifferentiation
MEG⇒ GMP Off-differentiation
MEG⇔MON Low separation
GMP⇔MON High separation

Figure 5(b) GATA-2/PU.1

GRA⇒ CMP Spontaneous-dedifferentiation
MEP⇒MON Off-differentiation
GMP⇒ ERY Off-differentiation
GMP⇒MEG Off-differentiation

Figure 5(c) GATA-1/PU.1 MON⇒ GMP Transdifferentiation

fix the value of the link from transcription factor EgrNab
to transcription factor Gfi-1 in the network shown in
Figure 3.

A key point in interpreting the visualized lineage net-
works is understanding flux and separation. For example,
in the wild-type network of Figure 4, note the wide spacing
between the granulocyte (GRA; orange) andmegakaryocyte-
erythrocyte precursor (MEP; green) cells and the narrowness
of the arrow that connects these cells.The large distance indi-
cates that there is a low probability for this cell type transition,
the direction of the arrow shows the overall direction of this
infrequent transition, and the narrow width of the arrow
indicates that there is relatively little difference between the
forward and reverse rates of the transitions between these
cells. Therefore, this is an infrequent and low flux transition.
Similarly, the wide separation and lack of an arrow (signalling
a very low flux) indicate that granulocyte (GRA; orange) and
monocyte (MON; pink) terminal differentiation is stable and
transdifferentiation is rare.

Contrast this with the arrow connecting the monocytes
(MON; pink) and common myeloid precursor (CMP; dark
blue) cells shown in the same rowof the figure.The separation
between these cell types is small, indicating a low MFPT
and a high probability of this transition and the thick arrow
connecting the CMP to the MON cells indicates the overall
direction of the cell state transition (CMP to MON) and that
the rate of the CMP to MON forward transition far exceeds
the rate of the reverse transition. Therefore, this is a frequent
and high flux transition.The ability to rotate this graph freely
using the VRML viewer tool adds to the utility of the visual-
ization as the viewer can explore the relationships between all
pairs of cell types within this, or any other, lineage network.

Comparisons of the wild-type network withmutated net-
works in which one of the interactions between transcription

factors is blocked reveal strong differences in lineage network
organization. For instance, in the bottom panel of Figure 4,
our visualization method immediately demonstrates major
alterations in the lineage tree due to blocking Fli-1s regu-
lation of EKLF. In this case, two cell types, megakaryocyte-
erythrocyte progenitor (MEP) and erythrocytes (ERY), are
no longer present.

Finally, the technique developed here is able to reveal
many different kinds of transitions between cell states
(Table 2). Although a GRN that produces attractors that
correspond to myeloid cell types was used in this initial
study, any GRN and its resulting attractors/cell types can
be explored using this approach. Significantly, nonstandard
transitions, such as dedifferentiation, off-differentiation, and
transdifferentiation, are increasingly recognized in normal
and disease states, many of which cannot be shown using
conventional lineage trees. Our method allows their rep-
resentation in 3-dimensional space and provides important
information on their likelihood under either gene expression
noise as shown here, or other driving forces in GRN dynam-
ics.

3. Methods

3.1. Cell Differentiation and Attractor Dynamics. First pro-
posed by Kauffman [17], Boolean networks are one of the
main contributors to our current knowledge of gene regu-
latory networks. They have proved effective in representing
many biological systems including Drosophila development
[21, 22], angiogenesis [23], eukaryotic cell dynamics [24],
and yeast transcription networks [25]. Boolean networks
consist of nodes and directed edges. In GRN modeling,
nodes represent the genes and edges represent the regulatory
influences between the genes.These regulatory influences are
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fully defined by the updating rules for each gene as a logic
function of the inputs. A gene can be either expressed (the
output is true) or not expressed (the output is false).

A Boolean network with 𝑛 genes has 2𝑛 possible states,
denoted as 𝑆. Each network state 𝑠

𝑡
is the collection of all gene

values at time 𝑡, 𝑠
𝑡
= {𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑛
}. Given the current state

𝑠
𝑡
, the next network state 𝑠

𝑡+1
is obtained by applying each

gene’s function to the the current gene values.The gene’s logic
functions are deterministic. Thus, the the mapping function
𝐷(𝑠
𝑡
) that finds the next network state is also deterministic:

𝑠
𝑡+1

← 𝐷(𝑠
𝑡
). By repeatedly applying deterministic updating,

the network dynamics will eventually reach a previously
visited state. This cycle is called an attractor (𝑎). Attractors
can be single states, called point attractors or cyclic attractors
in which the cycle consists of more than one state. Note that
to find all attractors of a given network all possible starting
states need to be considered (the code can be obtained from
http://code.google.com/p/pbn-matlab-toolbox).

In this work, cell types are considered attractors in the
state space of possible gene expression profiles [26] and cell
differentiation ismodeled as the process of transitioning from
one attractor to another [6].

3.2. Simulating and Measuring Noise Dynamics. Noise at the
molecular level plays a key role in many biological processes
including protein folding, transcription factor binding to
DNA, and the rate of initiating transcription and translation
[27, 28]. At the systems level, noise influences the likelihood
of cell type transitions [26]. Noise can bemodeled in Boolean
regulatory networks by randombit flips during network oper-
ation, with these bit flips representing noise-driven changes
in gene expression. Let 𝑠

𝑗
← 𝜂(𝑠

𝑖
, 𝑟) be the spontaneous noise

function that maps a state of the network 𝑠
𝑖
to a new state 𝑠

𝑗

with the addition of noise, implemented as 𝑟 bit flips, with
each single bit flip occurring with probability 𝑝. Noise modi-
fies the probability of state transitions as the states are updated
and the switching among network attractors. Since attractors
represent cell types, measures of noise tolerance can estimate
the magnitude of the barrier between attractors, the so-called
epigenetic barrier. In the following section, three measures of
the epigenetic barrier are introduced and compared.

3.2.1. Hamming Distance. Hamming distance is the direct
measure of the difference between corresponding elements
of two bit vectors. In GRNs, Hamming distance measures
the differences in expression levels between two network
states. Differences between gene expression profiles are used
to identify cell type or cell physiology [29]. However, as a
measure of the epigenetic barrier between states, Hamming
distance does not utilize 𝜂(𝑠, 𝑟) and also ignores the con-
straints that regulatory network dynamics impose upon state
transitions 𝐷(𝑠). For these reasons, Hamming distance is a
poor measure of the epigenetic barrier.

3.2.2. Transitory Perturbation (Single-Bit-Flip). An alterna-
tive measure of the likelihood of attractor transition under
expression noise was introduced by Villani et al. [30]. Once
the set of attractors is identified, this measure inserts noise

as a single bit flip one-off event followed by deterministic
updating. So given 𝑎

𝑖
as an attractor state, 𝑠

𝑖
← 𝜂(𝑎

𝑖
, 1) is

applied to a single bit, and then the network defined updating
rules are applied determinatively until an attractor state 𝑎

𝑗
←

𝐷
∗
(𝑠
𝑖
) is reached. For each attractor and each bit, the process

is repeated. Let 𝑐
𝑖,𝑗
, 1 ≤ 𝑖, 𝑗 ≤ 𝑚 (where 𝑚 is the number

of attractors), be the count of cases when 𝑎
𝑗
← 𝐷
∗
(𝜂(𝑎
𝑖
, 1)).

Then, 𝑃(𝑎
𝑖
, 𝑎
𝑗
) = 𝑐

𝑖,𝑗
/𝑚. For each pair of attractors {𝑎

𝑖
, 𝑎
𝑗
},

𝑃(𝑎
𝑖
, 𝑎
𝑗
) is the portion of single one-step bit flips (transitory

perturbations) in the nodes of all states of attractor 𝑎
𝑖
which

will result in a transition from 𝑎
𝑖
to 𝑎
𝑗
under noise-free

dynamics.
This single-bit-flip measure of likelihood of network

transition under noise efficiently estimates the epigenetic
barrier (since it is 𝑂(𝑛𝑚)), but it assumes that expression
noise is an infrequent event during network dynamics.

3.3. Mean First Passage Time. Introduced by Shmulevich et
al. [16], mean first passage time (MFPT) is the the average
time it takes to reach state 𝑦 from state 𝑥 in the presence
of noise. Mathematically, first passage time (FPT) is defined
as 𝐹
𝑘
(𝑠
𝑥
, 𝑠
𝑦
), the probability that starting in state 𝑠

𝑥
; the first

time the system visits a state 𝑠
𝑦
will be at time 𝑘; in Boolean

networks, time is measured as the number of state updates.
MFPT is then defined as

MFPT (𝑠
𝑥
, 𝑠
𝑦
) = ∑

𝑘

𝑘𝐹
𝑘
(𝑠
𝑥
, 𝑠
𝑦
) , (4)

where the 𝐹
𝑘
itself is formulated as

𝐹
𝑘
(𝑠
𝑥
, 𝑠
𝑦
) = ∑

𝑠
𝑧
∈{0,1}

𝑛

,𝑧 ̸= 𝑦

𝑝
𝑥𝑧
𝐹
𝑘−1

(𝑠
𝑧
, 𝑠
𝑦
) . (5)

In this recursive formula, 𝐹
1
(𝑠
𝑥
, 𝑠
𝑦
) is the probability of

direct transition from state 𝑠
𝑥
to 𝑠
𝑦
. 𝑝
𝑥𝑧

is the probability of
transition from state 𝑠

𝑥
to state 𝑠

𝑧
. Probabilistically, there are

two ways to reach state 𝑠
𝑧
from 𝑠

𝑥
; either 𝑠

𝑧
is a deterministic

target for 𝑠
𝑠
and no bit flips occur due to the noise or an

aggregate of bit flips drives the transition from 𝑠
𝑥
to 𝑠
𝑧
.

When theMFPT between two states is low, it implies that,
starting from the first state, the second state is easily reached
by molecular noise. Figure 6 shows 𝐹

𝑘
and 𝑘𝐹

𝑘
for the tran-

sition between two arbitrary attractors. As this figure shows,
the 𝑏 to 𝑎 transition has a lower MFPT compared with 𝑎 to
𝑏. Note that when an attractor has more than one state; that
is, it is a cyclic attractor, the MFPT is calculated for each state
separately and then is averaged over all states of that attractor.

At each network state update 𝐷(𝑠) there is a probability
that the state will change as a function of the Hamming
distance (ℎ) between the current state and the subsequent
state 𝑠

𝑡+1
← 𝐷(𝜂(𝑠

𝑡
, 𝑟)). MFPT models uniform expression

noise by considering probabilistic bit flips at every possible
state of the network and deriving the distribution of passage
times from analysis of the corresponding Markov process.
Statistically, the probability distribution of bit flips can be seen
as a binomial distribution, and thus the probability of 𝑟 bit
flips, 𝜂(𝑠

𝑎
, 𝑟), is ( 𝑛𝑟 ) 𝑝𝑟(1 − 𝑝)𝑛−𝑟, where 𝑝 is the probability of

a single bit flip and 𝑛 is the total number of bits.
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Figure 6: (a) 𝐹
𝑘
(probability of first visit at time step 𝑘) plotted for two arbitrary attractors, called 𝑎 and 𝑏 in a random Boolean network for

1000 steps (𝑘). The red curve is for the transition from 𝑏 to 𝑎 that has a low MFPT compared to the reverse transition; 𝑎 to 𝑏 is shown with
the blue curve; (b) 𝑘𝐹

𝑘
plotted for the 𝐹

𝑘
curves in (a). Note that MFPT is the centroid of the area under the 𝑘𝐹

𝑘
curve.

Mean first passage time quantifies the epigenetic barriers
between all attractor states during network execution.There-
fore, this work only considers MFPT because of its realism
in modeling expression noise. However, the time required
for MFPT computation is an exponential function of the
number of genes, so if the number of genes in the network is
large, calculatingMFPTmay become intractable. In this case,
transitory perturbation can be used as a possible alternative.

4. Summary

In this work, we developed a technique and a supporting
method for visualization, CellDiff3D, that estimates the like-
lihood and directionality of noise-driven transitions between
different cell types and allows the three-dimensional visual-
ization of these relationships. A Boolean network model of
myeloid cell differentiation [4] was used as a demonstration
system for this research.

Themetric ofmeanfirst passage time (MFPT) assesses the
likelihood that noise in the GRN for myeloid differentiation
will trigger a transition between cell types. LowMFPT values
indicate a high probability of a cell type transition. The
difference in MFPTs for forward (cell type A to cell type B)
and reverse (cell type B to cell type A) transitions provides
a measure termed flux. Flux is analogous to the difference in
forward and reverse rates of a chemical reaction and it gives
the anticipated direction and the strength of the directionality
in transitions between cell types.

Our technique calculated the MFPT separation and flux
between all pairs of cell types in a simplified myeloid lineage
tree that included onemultipotent stem cell, two intermediate
cells, and four terminal cell types to produce a graph to
display all 42 pairwise relationships 𝑚(𝑚 − 1) where 𝑚 = 7

between the myeloid cell types. A VRML-based graphics tool
was employed as part of CellDiff3D to visualize all attractor
type transitions by placing all pairs of different cell types in
3-dimensional space. It shows the likelihood of a transition
between cell types as the separation between each pair and
the directionality of the transition as arrowswith a width pro-
portional to the flux.The VRML output, viewable in any web
browser (with the proper plugin), allows the free rotation and
zooming of the differentiation network to reveal its features.
It can be used for any cell differentiation network, can include
manymore than the 7 cell types considered here, and is capa-
ble of showing all possible transitions (e.g., dedifferentiation
and transdifferentiation) between different types of cells. Our
technique readily revealed changes in the dynamics of muta-
tionally altered myeloid differentiation networks, the loss of
cell types, and unusual cell type transitions that included ded-
ifferentiation, transdifferentiation, and off-differentiation.

This work has introduced a 3D graph approach to visu-
alize the influence of noise on cell type switching of wild-
type and mutated regulatory networks. However, the system
is not limited to noise analysis and can incorporate other
influences that drive cell type switching. The CellDiff3D tool
can be downloaded from http://www.celldiff3d.org/.
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