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Abstract: We present a detailed study of the field-dependent specific heat of the bimetallic ferromag-
netically coupled chain compound MnNi(NO2)4(en)2, en = ethylenediamine. For this material, which
in zero field orders antiferromagnetically below TN = 2.45 K, small fields suppress magnetic order.
Instead, in such fields, a double-peak-like structure in the temperature dependence of the specific
heat is observed. We attribute this behavior to the existence of an acoustic and an optical mode in
the spin-wave dispersion as a result of the existence of two different spins per unit cell. We compare
our experimental data to numerical results for the specific heat obtained by exact diagonalization
and Quantum Monte Carlo simulations for the alternating spin-chain model, using parameters that
have been derived from the high-temperature behavior of the magnetic susceptibility. The interchain
coupling is included in the numerical treatment at the mean-field level. We observe remarkable agree-
ment between experiment and theory, including the ordering transition, using previously determined
parameters. Furthermore, the observed strong effect of an applied magnetic field on the ordered state
of MnNi(NO2)4(en)2 promises interesting magnetocaloric properties.

Keywords: quantum spin chains; specific heat; quantum Monte Carlo simulations; exact diagonaliza-
tion; mean-field theory

1. Introduction

Alternation in spin systems, be it of the magnetic coupling, the local symmetry, or the
spin value, induces new and exotic types of magnetic ground states and excitations [1–18].
In particular, this is exemplified in novel bimetallic chain systems, viz. molecule-based
chain systems with alternately arranged magnetic units carrying quantum spins S1 and
S2 of different sizes. The ability to synthesize mixed-spin-chain materials [9,19–27] has
stimulated theoretical investigations [10–18,28–35]. The magnon dispersion relation of
such chains splits into an optical and an acoustic mode because of the two differently
sized quantum spins S1 and S2 per unit cell, both for antiferromagnetic coupling along
the chain [10–17,35] as well as ferromagnetic coupling [18,28,29,32–34]. Although ground
state and fundamental excitations of a Heisenberg ferromagnet are simple, thermodynamic
properties are very sensitive to interactions of the magnon excitations, as is evidenced
by the ferromagnetic uniform spin-1/2 Heisenberg chain (compare chapter 11.3 of [36]
and references therein). Computations for bimetallic Heisenberg chains show that the two
energy scales associated to the acoustic and the optical spin excitation modes are reflected
by “double-peak” kind of features in the specific heat cp(T) for both antiferro- [10–17] and
ferromagnetic [18,28,29] coupling.
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Similar predictions have been made for chains of mixed classical and quantum spins as far
back as 1975 [37]. In spite of this long history, experimental verification of the features expected
in the specific heat is lacking. In fact, experimental tests of mixed-spin-chain models are
scarce [38–40], since most materials available contain elements with larger spins [20–22,41–44],
which are difficult to be treated adequately in theoretical calculations [10–17].

Here, we present a verification of the two energy scale prediction via a detailed study
of the specific heat cp of MnNi(NO2)4(en)2, en = ethylenediamine = C2N2H4, in zero
and applied fields. After the field-induced suppression of long-range antiferromagnetic
order, we observe a double-peak-like structure in the temperature dependence of cp for
MnNi(NO2)4(en)2. We compare our findings with the results of numerical calculations
for an S1 = 1, S2 = 5/2 mixed spin chain in zero and external fields. We demonstrate
that the in-field calculations, for which finite-size effects are negligible, fully reproduce the
double-peak structure of the experimentally observed in-field specific heat. This shows that
the optical and acoustic spin excitation mode are reflected by the thermodynamics of this
bimetallic chain system. Quantum Monte Carlo (QMC) simulations of the individual chains
augmented by a self-consistent mean-field treatment of interchain coupling even yields a
remarkably accurate description of the ordering transition in a vanishing magnetic field.

The remainder of this manuscript is organized as follows: Section 2 presents more
details on MnNi(NO2)4(en)2 and, in particular, a measurement of its specific heat. We then
proceed in Section 3 with a detailed theoretical analysis based on exact diagonalization
and QMC simulations combined with a mean-field treatment of interchain coupling; some
complementary details are provided in Appendix B. In Section 4, we briefly comment
on the magnetocaloric properties of MnNi(NO2)4(en)2 before we summarize our findings
in Section 5. Appendix C contains a summary of a complementary single-site mean-
field treatment.

2. Experiment
2.1. MnNi(NO2)4(en)2 (en = Ethylenediamine)

MnNi(NO2)4(en)2 is one of the best characterized mixed spin chain compounds [45–48],
crystallizing in an orthorhombic structure, space group Pccn (lattice parameters a = 14.675 Å,
b = 7.774 Å, c = 12.401 Å). It contains chains of alternately arranged Ni and Mn ions
linked by NO2 ligands, which carry magnetic moments with spin S1 = 1 and S2 = 5/2,
respectively (Figure 1). The magnetic coupling along the chain, J, is ferromagnetic [47],
with J = 2.8 K [28] (we will use units such that kB = 1 throughout.). A finite ionic zero-field
splitting D of 0.36 K is derived from the anisotropy of the susceptibility. Due to an effective
antiferromagnetic interchain coupling of J⊥ = 0.036 K, the system undergoes a transition
into an antiferromagnetically (AFM) ordered state below TN = 2.45 K in zero magnetic
field and at ambient pressure [28,47,48]. The long-range magnetically ordered state is
suppressed by rather small magnetic fields [47].

Figure 1. Two chains in the a-b plane of MnNi(NO2)4(en)2, based on the crystal structure of [45]. The
thick arrows on the Mn and Ni atoms show the zero-field ordered state: ferromagnetic along the
chains and antiferromagnetic between chains.
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2.2. Specific Heat

For our study, we used single crystals of MnNi(NO2)4(en)2 investigated previously [47]
that were grown by slow evaporation, as described in detail in Ref. [46]. Here, we
present the easy-axis data B‖c, for which AFM ordering is suppressed in ∼ 0.3 T. The heat
capacity was measured using commercial calorimeters in magnetic fields B‖c up to 1.6 T
at temperatures T down to 0.4 K. As will be discussed below, these c axis data allow a
comparison to more accurate numerical calculations than the data ‖a.

In Figure 2a, we depict the zero-field specific heat cp of MnNi(NO2)4(en)2 as a function
of T. The AFM anomaly at TN = 2.45 K is clearly discernible. To derive the magnetic
specific heat, we determine the lattice contribution cp,lat. Since a single T3-term does not
reproduce the experimental data above TN , we use two Debye contributions, each calculated
via the full Debye integral, to parametrize cp,lat. MnNi(NO2)4(en)2 is built up by chain
segments -Mn-NO2-Ni-NO2-, with two ethylenediamine molecules and two NO2 groups
attached to the Mn and Ni ions, respectively (Figure 1). Intramolecular oscillations of
ethylenediamine or NO2, because of the light atoms involved, yield Einstein contributions,
which are irrelevant for the temperatures considered here. The chain segment units Mn, Ni,
and NO2 are similar in atomic weight. Therefore, to parametrize the lattice contribution of
these units we choose one Debye temperature ΘD with 3× 4 = 12 modes. Analogously,
the four attached molecules ethylenediamine and NO2 per chain segment are parametrized
by a second Debye temperature contributing with 12 modes. This way, we reproduce
the lattice specific heat of MnNi(NO2)4(en)2 with Debye temperatures ΘD1 = 138 K and
ΘD2 = 249 K (solid line in Figure 2a).

We obtain the magnetic specific heat contribution cp,mag by subtracting cp,lat from the
total cp (Figure 2b). Further, by numerically integrating cp,mag/T, we obtain the magnetic
entropy S included in Figure 2b. Both quantities indicate that above TN there are magnetic
fluctuations present over a wide temperature range. In cp,mag, there is a broad anomaly
ranging up to ∼ 10 TN . The associated entropy reaches only 1.4 R at TN , which is less than
half of the value expected for the sum of the magnetic entropies of Ni (S1 = 1) and Mn
(S2 = 5/2), R ln(3) + R ln(6) ≈ 2.89 R (dotted line in Figure 2b). This value is reached only
at 10 TN . Note that the saturation of S at 2.89 R demonstrates the consistency and adequacy
of our derivation of the lattice specific heat.
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Figure 2. (a) Zero-field specific heat cp of MnNi(NO2)4(en)2 as function of temperature T. (b) Zero-
field magnetic specific heat cp,mag and associated entropy S per mole of MnNi(NO2)4(en)2 as function
of temperature.
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AFM order in MnNi(NO2)4(en)2 is suppressed by small magnetic fields [47]. This en-
ables us to study magnetic fluctuations in MnNi(NO2)4(en)2, as they appear in cp. In Figure 3,
we plot cp,mag as function of field. We observe a rapid suppression of the AFM state, in
agreement with Ref. [47]. Moreover, after suppression of the AFM state, the broad specific
heat anomaly above TN becomes much more pronounced in magnetic fields and is clearly
visible already in the non-phonon corrected data.
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Figure 3. (a) Field dependence of cp,mag of MnNi(NO2)4(en)2 for fields B‖c. (b) The same data plotted
as cp,mag/T. Inset: The magnetic phase diagram of MnNi(NO2)4(en)2 for B‖c: TN from Ref. [47] (?),
Tup from the maximum in cp,mag (⊕), Tlow from the maximum in cp,mag/T (�); lines are guides to
the eye.

The temperature Tup of the maximum in cp,mag represents a measure for an energy
scale characteristic for the magnetic fluctuation spectrum (indicated for the 1.6 T data
in Figure 3). In the inset of Figure 3, we record its field dependence up to 1.6 T, with a
modest increase in Tup of about 1 K/T. Further, after suppression of AFM order in the T
dependence of cp there is additional structure. This is most clearly seen for cp,mag/T, where
one now observes a double-peak-like structure (see Figure 3b). We take as measure for
a second characteristic energy scale Tlow the maximum in cp,mag/T and include its field
dependence in Figure 3. Again, we find a modest increase of Tlow by about 1 K between 0.4
and 1.6 T.

Tup and Tlow are clearly distinct temperatures and increase at a similar rate. Therefore,
they do not stem from ionic states Zeeman split in an external field. Further, extrapolating
Tlow to zero field yields a finite value of about 0.7 K, implying that Tlow does not arise from
Zeeman splitting of ionic degenerate states. Therefore, we associate both characteristic
energy scales Tup and Tlow with collective excitation modes of the magnetic fluctuation
spectrum of MnNi(NO2)4(en)2 as the result of the existence of an acoustic and an optical
magnon mode.

3. Theory

We now proceed to provide a theoretical description of the experimental findings.



Molecules 2022, 27, 6546 5 of 23

3.1. Model

We start from the basic chain model

H = −J
N/2

∑
x=1

(
~Sx ·~sx +~sx · ~Sx+1

)
− D

N/2

∑
x=1

(Sz
x)

2 − h
N/2

∑
x=1

(Sz
x + sz

x) , (1)

where the ~sx (~Sx) correspond to the spins of the Ni ions (Mn ions) and have S1 = 1
(S2 = 5/2). Following Refs. [28,47], we take a single-ion anisotropy into account only for
the Mn sites. The main role of this anisotropy is to select a preferred axis, it should not
matter too much if this is due to the Mn or the Ni sites, and it is the form Equation (1) for
which parameters were extracted in Ref. [28] by analyzing the high-temperature behavior
of the magnetic susceptibility. Nevertheless, we refer to Appendix A for a discussion of the
one-magnon dispersion for the case where both anisotropies are present. In the following
discussion, we will use the parameters that have been determined in Ref. [28]—namely,
J = 2.8 K and D = 0.36 K—or in units with J = 1: D = 0.36/2.8 ≈ 0.129. In the latter units,
and assuming magnetic g factors g = 2, the magnetic fields of 0.8 T and 1.6 T shown in
Figure 3 are modeled by h = 0.4 and 0.8, respectively.

3.2. Numerical Treatment of Decoupled Chains

Previously, some of the present authors have performed exact (full) diagonalization
and Quantum Monte Carlo (QMC) simulations of chains with S1 = 1/2, S2 = 1 [28,29]. The
previous exact diagonalization (ED) investigations went to N = 14 spins with S1 = 1/2
and S2 = 1. When we replace a spin 1/2 by 5/2, the local Hilbert space dimension increases
from 2 to 6, i.e., by a factor 3. Thus, here, we have to contend ourselves with ED for chains
with N = 10. Adding one unit cell would increase the total Hilbert space dimension by a
factor of 18 for the case S1 = 1, S2 = 5/2 such that the next system size N = 12 remains
out of reach. We use conservation of Sz as well as spatial symmetries. The magnetic
susceptibility χ and specific heat c can then be calculated from the eigenvalues and the
associated quantum numbers.

To access longer chains, we use QMC. The present QMC simulations were carried out
with the ALPS [49,50] directed loop applications [51,52] in the stochastic series expansion
framework [53]. To be precise, these computations were started a while ago. Therefore, we
used version 1.3 of the ALPS applications [50] rather than the more recent release 2.0 [54].
The specific heat in a magnetic field can be sensitive to the pseudorandom number gen-
erator; so, this needs to be carefully chosen. Here, we used the “Mersenne Twister 19937”
pseudorandom number generator [55]. To verify reliability of our results, we performed
QMC simulations for N = 10 (data not shown here) and double-checked them against our
ED computations for the same system size.

Figures 4–7 show ED (N = 10) and QMC (N ≥ 100) results for the specific heat. The
QMC simulations become challenging at the lowest temperatures, in particular for finite D
and h. This leads to visible statistical error bars at low T, in particular, in Figures 6 and 7;
otherwise, statistical errors are negligible. For h = 0, finite-size effects are relevant, as
demonstrated by visible deviations between the N = 10 and 100 data in Figures 4 and 5.
On the other hand, no further change is visible for larger N, i.e., N = 100 can be considered
as representative of the thermodynamic limit for h = 0. Finally, a field of h ≥ 0.4 J lifts
the ground-state degeneracy and opens a sufficiently large gap in the spectrum such that
N = 10 and N = 100 become indistinguishable (see Figures 6 and 7) and N = 10 ED
suffices to describe the thermodynamic limit.
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Figure 4. Specific heat per spin c calculated for D = 0, h = 0, J = 1 by exact diagonalization (ED)
and Quantum Monte Carlo (QMC). The left panel shows the specific heat itself while the right panel
shows the specific heat divided by temperature c/T.
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Figure 5. Specific heat per spin c calculated for D = 0.36/2.8, h = 0, J = 1. As in Figure 4, the
left panel shows the specific heat itself while the right panel shows the specific heat divided by
temperature c/T.
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magnetic field h = 0.4.
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Figure 7. Specific heat per spin divided by temperature c/T calculated for D = 0.36/2.8, J = 1 in a
magnetic field h = 0.8.

For h = 0 and D = 0, the ground state is an SU(2) multiplet with (7 N/2 + 1)
components. This leads to a difference between the zero-temperature entropies per site for
N = 10 and N = 100 of ∆S = 0.299744 . . . Accordingly, the entropy integral

∫ ∞
0 dT c/T, i.e.,

the corresponding area under the N = 100 curve of the right panel of Figure 4, is expected
to be bigger than that of the corresponding N = 10 curve by this amount ∆S. The QMC
data for the specific heat c not only exhibit a maximum at T ≈ 1.8 J but also a shoulder at
T ≈ 0.5 J (see left panel of Figure 4), corresponding to the two expected features [28,29].

Figure 5 shows the result with the single-ion anisotropy D > 0 included, still at h = 0.
The presence of the single-ion anisotropy reduces the ground-state degeneracy to two and
opens a gap in the one-magnon spectrum, see Appendix A for details. For N = 10, the
resulting ground-state entropy ln 2 is still almost 5% of the total entropy. This leads to a
difference between the zero-temperature entropies per site for N = 10 and N = 100 of
∆S = ln 2/10− ln 2/100 = 0.062383 . . . While this is smaller than in the case of D = 0, the
difference is still visible in the ED data compared with those of QMC, shown in the right
panel of Figure 5. From the point of view of physics, the specific heat c in the left panel of
Figure 5 may be more instructive. The shoulder-like feature for D = 0 developed into a
sharp peak around T ≈ 0.5 J for the value D = 0.36/2.8 while, in turn, the previous global
maximum of c became a shoulder around T ≈ 1.7 J. In any case, these two features can be
traced from D = 0 to finite D.

Finally, we add a magnetic field h > 0, corresponding to the experimental case where
we actually observed two features in the specific heat (see Figure 3b). Application of a
finite field h > 0 not only lifts the remaining ground-state degeneracy, but h ≥ 0.4 J opens
a sufficiently large gap in the spectrum such that finite-size effects are negligible already
for N = 10, as mentioned before and shown in Figures 6 and 7. As in the experiment,
we observe the emergence of a double-peak structure where both the feature at T ≈ 0.5 J
and in particular the one at T/J = 1.5 . . . 2 shift to higher temperatures with increasing
magnetic field (compare Figures 6 and 7).

3.3. Mean-Field Treatment of the Interchain Coupling

In zero external magnetic field, an antiferromagnetic phase transition with a Néel
temperature TN = 2.45 K = 0.875 J is observed experimentally, as discussed in Section 2.
This demonstrates that interchain coupling should be included in a quantitative description,
at least for h = 0 and T . J, even if the numerical results of Section 3.2 already qualitatively
reproduce the experiment in a finite magnetic field.

Since the chains are ferromagnetic, we assume that only the total magnetization of
one chain acts via an effective field on the neighboring chains. The assumption of only
average magnetizations of one chain affecting the neighboring ones is motivated by the
exact exchange paths between chains in MnNi(NO2)4(en)2 being unknown (compare the
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crystal structure of Figure 1) and was also made in Ref. [28]. To be precise, one starts from
a coupling between chains i and j of the form

Ji,j

2 N

N/2

∑
x=1

(
~Si,x +~si,x

)
·

N/2

∑
y=1

(
~Sj,y +~sj,y

)
(2)

which one replaces by

Ji,j

2
〈Mi〉

N/2

∑
y=1

(
Sz

j,y + sz
j,y

)
+

Ji,j

2
〈Mj〉

N/2

∑
x=1

(
Sz

i,x + sz
i,x
)
− N

Ji,j

2
〈Mi〉 〈Mj〉 . (3)

We drop the term −N
Ji,j
2 〈Mi〉 〈Mj〉 for the time being, but one should remember

to add this term for total energy computations and in particular if one wants to write
expectation values as derivatives of the free energy, see also Ref. [56]. This leads to a family
of interchain mean-field Hamiltonians

HMF
i = −J

N/2

∑
x=1

(
~Sx ·~sx +~sx · ~Sx+1

)
− D

N/2

∑
x=1

(Sz
x)

2 −
(

h−∑
j 6=i

Ji,j 〈Mj〉
)

N/2

∑
x=1

(Sz
x + sz

x) , (4)

where the magnetization of the ith chain should satisfy the self-consistency condition

N 〈Mi〉 =
Tr
(

N/2
∑

x=1
(Sz

x + sz
x) e−β HMF

i

)
Tr
(

e−β HMF
i

) =

Tr

N/2
∑

x=1
(Sz

x + sz
x) e
−β

(
HMF

i −N ∑
j 6=i

Ji,j
2 〈Mi〉 〈Mj〉

)
Tr

e
−β

(
HMF

i −N ∑
j 6=i

Ji,j
2 〈Mi〉 〈Mj〉

)
(5)

with β = 1/T (recall that we chose units such that kB = 1).
We now consider two cases. Firstly, for h = 0, we expect antiferromagnetic order that

should be described by two types of chains i = 1, 2. Furthermore, by symmetry, one expects
that 〈M1〉 = −〈M2〉 = 〈M〉. This sign difference can be absorbed by a spin inversion
on every other chain, which also flips the sign of the interchain coupling. Therefore, we
introduce an effective interchain coupling J⊥ = −∑j 6=i Ji,j, where the minus sign will allow
us to treat all chains as having the same magnetization 〈M〉 ≥ 0. Secondly, for h ≥ 0.4,
one stays in a paramagnetic phase where we expect all chain magnetizations to be equal
〈Mi〉 = 〈M〉. Now, we straightforwardly set the effective interchain coupling J⊥ = ∑j 6=i Ji,j.

Under either of these assumptions, the family of mean-field Hamiltonians (4) reduces
to a single interchain mean-field Hamiltonian

HMF = H1D − (h− J⊥ 〈M〉) N M , (6)

with

H1D = −J
N/2

∑
x=1

(
~Sx ·~sx +~sx · ~Sx+1

)
− D

N/2

∑
x=1

(Sz
x)

2 , N M =
N/2

∑
x=1

(Sz
x + sz

x) . (7)

The magnetization should now satisfy the modified self-consistency condition

〈M〉 =
Tr
(

M e−β HMF
)

Tr
(

e−β HMF
) =

Tr
(

M e−β
(

HMF−N J⊥
2 〈M〉

2
))

Tr
(

e−β
(

HMF−N J⊥
2 〈M〉2

)) . (8)
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Recall that in order to cast both the antiferromagnetic case at h = 0 and the paramag-
netic case at h > 0 in the same single-chain form, it was necessary to introduce different
signs for the effective interchain coupling J⊥ in the two cases. Still, the absolute value of J⊥
is the same in both cases.

Since the magnetization 〈M〉 is easily evaluated even within QMC, it is possible to
run a self-consistency loop using a numerical evaluation of the chain magnetization 〈M〉,
i.e., one starts with an initial guess such as 〈M〉 = 7/4, recomputes 〈M〉 from Equation (8),
and iterates until a desired level of accuracy is reached (compare Appendix B for further
details). Some ED and QMC results for the self-consistent 〈M〉 for h = 0 are shown in
Figure 8. The vertical line in Figure 8 shows an estimate of the Néel temperature that will
be discussed in the following Section 3.3.1. One observes in Figure 8 that the estimated
Néel temperature TN varies by almost a factor two as one goes from N = 6 to 100 spins
in a chain. Even with N = 10, one still deviates by about 25% from the estimate obtained
with N = 100. On the other hand, analysis of the data shown in Figures 5 and 9 below
indicates that N = 100 should indeed be sufficient to represent the thermodynamic limit
along the chains.
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0.5

1

1.5
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>

ED, N=6

ED, N=8

ED, N=10
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Figure 8. Self-consistent mean-field results for the magnetization 〈M〉 with J⊥ = −0.072/2.8,
D = 0.36/2.8, h = 0, J = 1. The vertical line indicates the estimate TN = 0.77 for the Néel
temperature obtained from chains with N = 100 sites (for details, see text).

3.3.1. Magnetic Susceptibility and Ordering Temperature

The numerical treatment of a single chain yields direct access to

χ1D = β N
(
〈M2〉 − 〈M〉2

)
, (9)

where 〈M〉 may be included in the self-consistent effective field but is considered to be
fixed, i.e., contributions from the self-consistent field are not included in Equation (9).

The magnetic susceptibility should be defined by

χMF =
∂

∂h
〈M〉 (10)

within the interchain mean-field approximation. Insertion of the definition Equation (8) for
the magnetization and some straightforward algebra leads to

χMF = (1− J⊥ χMF) χ1D . (11)
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The result (11) can be solved for χMF and one finds (As a consequence of the spin
inversion that we have applied to half of the chains at h = 0, the following is actually not
the uniform, but a staggered susceptibility in the case of a vanishing external field.)

χMF =
χ1D

1 + J⊥ χ1D
. (12)

This approximation is widely used in the literature (see for example [57–59]) and also
known under the name “random phase approximation”. Since there are some similarities
with the Stoner model of ferromagnetism (see, e.g., chapter 7.4 of [60]), one can also call
1 + J⊥ χ1D a “Stoner factor”. Note that the above derivation is essentially the same as the
computation on page 66 of [61], but the linearizing assumption 〈M〉 ≈ h χMF has been
dropped. Accordingly, we see that Equation (12) also applies for a finite magnetization
〈M〉 6= 0 of a single chain.

A zero of the denominator in Equation (12) signals a second-order phase transition.
This yields the standard condition for the Néel temperature

− J⊥ =
1

χ1D(TN)
. (13)

Let us use this condition to take a look at the ordering transition in zero external field
where 〈M〉 = 0 for T > TN such that Equation (13) can be evaluated without running a self-
consistency cycle. Our QMC results for 1/χ1D at h = 0 are shown in Figure 9 for N = 100,
200, and 400. The fact that these three system sizes are essentially indistinguishable on
the scale of the figure shows that N = 100 suffices to represent the thermodynamic limit
N = ∞.

0 0.2 0.4 0.6 0.8 1

T

0

0.01

0.02

0.03

0.04

0.05

0.06

1
/χ

1
D

QMC, N=100

QMC, N=200

QMC, N=400

-J
⊥
=0.072/2.8

T
N
=2.45/2.8

Figure 9. Inverse magnetic susceptibility calculated by QMC for a single chain with D = 0.36/2.8,
h = 0, J = 1. Furthermore, also shown are the estimated value of the interchain coupling
−J⊥ = 0.072 K [28] as well as the experimental Néel temperature TN = 2.45 K [28,47] divided by
J = 2.8 K.

If one assumes the value −J⊥ = 0.072 K (horizontal line in Figure 9) that has been
deduced in [28] by fitting the magnetic susceptibility for T ≥ 10 K, one reads off an ordering
temperature TN ≈ 0.77 J ≈ 2.16 K. This deviates by about 12% from the experimental
value TN = 2.45 K, which is remarkably good for a mean-field theory. Conversely, if
one insists on the experimental value TN = 0.875 J, one infers an interchain coupling
−J⊥ ≈ 0.04 J ≡ 0.11 K, which is about 50% larger than the estimate of [28]. In fact, 1/χ1D
varies quite strongly in this temperature range. Therefore, TN is not very sensitive to the
interchain coupling J⊥.

In any case, an interchain coupling of a few percent suffices to yield an antiferromag-
netic ordering temperature at h = 0 that is of the same order as the coupling in an individual
chain, reflecting strong ferromagnetic ordering tendencies of the decoupled chains.
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3.3.2. Specific Heat

Let us now take a closer look at the specific heat in interchain mean-field theory. As in
the case of the magnetic susceptibility, the numerical treatment of the individual chains
provides convenient access to

c1D =
β2

N

(
〈
(

HMF
)2
〉 − 〈HMF〉2

)
, (14)

where 〈M〉may again be included in the self-consistent effective field but is considered to
be fixed.

The self-consistent magnetization 〈M〉 is also temperature-dependent such that the
specific heat should be written as a first derivative of the internal energy

cMF =
1
N

∂ U
∂T

=
1
N

∂

∂T

(
〈HMF〉 − N

J⊥
2
〈M〉2

)
. (15)

The temperature derivative can in principle be calculated numerically. For reasons of
numerical stability, particularly in a Monte-Carlo setting, it is nevertheless preferable to
carry the derivatives out analytically. Since we are not aware of such an analysis having
been presented before, we present it here in some detail. With the help of [M, HMF] = 0,
we find from Equation (15) that

cMF = − β2

N
∂

∂β

(
〈HMF〉 − N

J⊥
2
〈M〉2

)
= c1D + β3 J⊥

∂ 〈M〉
∂β

(
〈HMF M〉 − 〈HMF〉〈M〉

)
. (16)

This expression contains another derivative ∂ 〈M〉
∂β for which we can find an expression

that is very similar to Equation (12) (including a “Stoner factor” 1 + J⊥ χ1D):

∂ 〈M〉
∂β

= −〈H
MF M〉 − 〈HMF〉〈M〉

1 + J⊥ χ1D
. (17)

Noting the relation

∂ 〈M〉
∂T

∣∣∣∣
h,1D

= β2
(
〈HMF M〉 − 〈HMF〉〈M〉

)
, (18)

the combination of Equations (16) and (17) can also be written in the following form:

cMF = c1D −
J⊥
β

1
1 + J⊥ χ1D

(
∂ 〈M〉

∂T

∣∣∣∣
h,1D

)2

(19)

In this form, the sign of the second term is evident. This form is also useful for the pur-
pose of evaluation since Equation (19) contains only quantities that can be related to static ex-
pectation values for a single chain with a fixed value of 〈M〉 via Equations (9), (14), and (18).
The only object that is non-standard is the crosscorrelator in Equation (18); however, it
represents exactly the same observable as was used in Ref. [62] to compute the adiabatic
cooling rate by QMC.

3.3.3. Comparison with Experimental Specific Heat

We are now in a position to perform a comparison with the experimental results for
the specific heat of Figure 3. Figures 10–12 show the results for h = 0, 0.4 J, and 0.8 J
(corresponding to the experimental magnetic fields B = 0, 0.8 T, and 1.6 T, respectively).
For h = 0, we used QMC with N = 100, while for h = 0.4 J and 0.8 J, we used ED
with N = 10. These systems sizes should be sufficiently large to render finite-size effects
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negligible according to the discussions in Section 3.2. From a technical point of view, we
note that at h = 0 and in the paramagnetic phase, 〈M〉 = 0 such that ∂ 〈M〉

∂T = 0 and the
correction term in Equation (19) vanishes, i.e., cMF = c1D, and the blue circles are identical
to the green diamonds in Figure 10 for T > TN .

Figures 11 and 12 show that the interchain coupling leads only to small corrections
for a magnetic field h ≥ 0.4 J; the trend is towards the experimental data, but the shift by
interchain coupling does not change the situation significantly. Nevertheless, the two theory
curves and the experimental one in Figures 11 and 12 exhibit double-peak structures where
the two peaks are located at very similar temperatures between theory and experiment.

Figure 10 demonstrates that in zero field (h = 0), interchain coupling is not only
essential for reproducing the ordering transition to good accuracy, as we have seen before,
but that thanks to the “Stoner factor”, the correction term in (19) dominates the specific heat
just below the ordering transition and thus gives rise to the characteristic ordering peak. We
note, however, that the singularity in the denominator of Equation (19) is deceptive since
the numerator (18) also vanishes such that c has a finite limit for T ↗ TN . Consequently,
our interchain mean-field theory remains in the universality class of Landau theory [63]
with a specific heat exponent α = 0.
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Figure 10. Magnetic specific heat per spin c for J = 2.8 K, D = 0.36 K in zero magnetic field h = 0
in comparison with the experimental results for B = 0. Theoretical results are obtained by QMC
with N = 100 both for decoupled chains (J⊥ = 0) and with a self-consistent mean-field treatment for
J⊥ = −0.072 K.
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Figure 11. Magnetic specific heat per spin divided by temperature c/T for J = 2.8 K, D = 0.36 K
in a magnetic field h = 0.4 J in comparison with the experimental results for B = 0.8 T. Theoretical
results are obtained by ED with N = 10 both for decoupled chains (J⊥ = 0) and with a self-consistent
mean-field treatment for J⊥ = 0.072 K.
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Figure 12. Magnetic specific heat per spin divided by temperature c/T for J = 2.8 K, D = 0.36 K in a
magnetic field h = 0.8 J in comparison with the experimental results for B = 1.6 T. As in Figure 11,
theoretical results are obtained by ED with N = 10 both for decoupled chains (J⊥ = 0) and with a
self-consistent mean-field treatment for J⊥ = 0.072 K.

4. Magnetocaloric Properties

The strong dependence of the specific heat of MnNi(NO2)4(en)2 on an applied magnetic
field promises a strong magnetocaloric effect and potential relevance to low-temperature
magnetic refrigeration by adiabatic demagnetization, e.g., see Refs. [64,65]. Therefore, let
us have a closer look at its magnetocaloric properties.

Figure 13 shows the experimental magnetic entropy that is obtained by integrating the
experimental results for the specific heat cp,mag/T of Figure 3b with respect to temperature
T. The B = 0 curve corresponds to the one shown already in Figure 2b. Figure 13 shows
that the magnetic entropy is significantly reduced by applying a magnetic field of B = 1.6 T,
or even 0.8 T, corresponding to polarization of the spin system by the applied magnetic field.
Consequently, we expect cooling of the spin system during adiabatic demagnetization. Let
us consider, for example, an ideal adiabatic process that starts with T = 1.5 K for B = 1.6 T.
We read off from Figure 13 that the same entropy is found at B = 0 for T ≈ 0.5 K, i.e.,
adiabatic demagnetization from B = 1.6 T to B = 0 would cool from an initial temperature
T = 1.5 K to a final temperature of T ≈ 0.5 K. Likewise, an ideal adiabatic process starting
with T = 2.5 K at B = 1.6 T would cool to T ≈ 1.1 K during a single ideal adiabatic
demagnetization process. These are relatively large effects in the liquid Helium range,
which is also remarkable since one is cooling through a phase transition into a magnetically
ordered state. The main caveat is that the processes of the two examples exploit only 8% or
19% of the total magnetic entropy S ≈ 2.89 R in the first and second case, respectively.

Next, let us comment on a numerical description. The entropy is not directly accessible
in QMC simulations such that we resort to ED even if this leads to stronger finite-size effects.
Furthermore, for the full h and T dependence of the magnetic entropy S, we would have to
model the ordered state in an external magnetic field (gray shaded region in the inset of
Figure 3b). However, this is expected to correspond to a canted spin configuration and is
thus beyond the present investigation. Therefore, we also neglect interchain coupling, i.e.,
we focus on a situation corresponding to the one discussed in Section 3.2 (see, however,
Appendix C for a discussion of simple single-site mean-field theory). Figure 14 shows
the corresponding result for the entropy (now normalized per spin) of an N = 10 chain.
This density plot of S(B, T) permits to immediately read off the magnetocaloric effect. In
particular, the isentropes, corresponding to the white lines in Figure 14, directly show
the behavior under an adiabatic process. Finite-size effects are expected to be small for
B ≥ 0.8 T (corresponding to h/J ≥ 0.4, compare Figures 6 and 7), but they are known
to be relevant throughout the temperature range of Figure 14 for B = 0 (h = 0, compare
Figure 5).
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Figure 13. Magnetic entropy per mole of MnNi(NO2)4(en)2 in magnetic fields of B = 0, 0.8, and 1.6 T,
respectively.
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Figure 14. Entropy S per spin calculated by ED for an isolated chain with N = 10 spins and J = 2.8 K,
D = 0.36 K.

We also read off cooling by adiabatic magnetization from Figure 14 with a size of the
effect corresponding to the experimental data of Figure 13. Note that the entropy is normal-
ized to mole in Figure 13 and per spin in Figure 14, amounting to a factor two difference in
addition to the factor R. Since we have ferromagnetic chains, the strongest cooling occurs in
Figure 14 upon approaching a zero external field. If one adds antiferromagnetic interchain
coupling, we expect to recover the magnetically ordered phase that is observed experimen-
tally for B < 0.4 T (compare inset of Figure 3b) and then cooling might actually occur when
entering this phase (compare Figure A4 and the related discussion in Appendix C for the
behavior in single-site mean-field theory). Indeed, Figure 10 demonstrates that interchain
coupling reshuffles entropy from low temperatures to the ordering transition such that the
most significant cooling probably occurs around it.

5. Conclusions and Perspectives

We carried out specific heat measurement in zero and applied fields on the bimetallic
chain compound MnNi(NO2)4(en)2. By determining the lattice contribution of the specific
heat, we have extracted the magnetic specific heat cp,mag. For the first time, in its tempera-
ture dependence, we verify a long-predicted double-peak-like structure. Comparison with
numerical calculations for the bimetallic S1 = 1, S2 = 5/2 ferromagnetic spin chain yields
a very close resemblance on a semi-quantitative level.

Alternating spins are not the only mechanism that may give rise to a double-peak
structure in the specific heat. For example, also a ferromagnetic S = 1 chain alone can give
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rise to such structures when subjected to a strong single-ion anisotropy D [66]. However, the
numerical data of Section 3.2 (and further results that we do not show here) demonstrate
that these two features are already present at D = 0 in the S1 = 1, S2 = 5/2 chain
and can be traced to finite D even if the presence of a single-ion anisotropy does affect
the behavior of the specific heat at a quantitative level. Hence, we conclude that our
experimental observation of a double-peak-like structure in the specific heat directly reflects
the alternating spins S1 = 1 and S2 = 5/2 along the chains. The application of an external
magnetic field to MnNi(NO2)4(en)2 is essential to suppress magnetic order and, thus, reveal
this double-peak feature experimentally.

The ordered phase that is observed in MnNi(NO2)4(en)2 for low temperatures and small
applied magnetic fields is due to an antiferromagnetic interchain coupling. Although its
absolute value is much smaller than the ferromagnetic coupling along the chains, it has
a strong effect at low temperatures and in the absence of a magnetic field. In order to
describe this ordered phase, we developed a mean-field treatment of interchain coupling.
The combination of QMC simulations for isolated chains and such an interchain mean-field
theory not only yields a remarkably accurate value for the ordering transition temperature
TN using previously determined parameters [28] but also yields excellent agreement for the
full temperature dependence of the magnetic specific heat. For fields h ≥ 0.4 J, the mean-field
corrections are small, reflecting the smallness of the interchain coupling constant J⊥.

Beyond the very close resemblance on a qualitative level, there are some quantitative
differences between experiment and theory. For instance, while in the calculations the
maximum of cp,mag/T is found close to Tup, in the experiments it is observed at Tlow. These
small differences may be due to the single-ion anisotropy being located on both the Ni and
Mn sites, and not just the Mn ones, or effects of interchain coupling beyond mean-field
theory. However, a further refinement of the model would require additional information
about the excitation spectrum such as inelastic neutron scattering.

Another theoretical challenge concerns the theoretical description of the ordered state
in a magnetic field. For h = 0 and strong fields along the anisotropy axis (h ≥ 0.4), one may
restrict the discussion to magnetization along the z-axis only. However, for a magnetic field
applied at an angle to the anisotropy axis, and also for ordered phases where the ordered
moment cants away from the field/anisotropy axis, it will in general be necessary to replace
the last term in (4) by vectors, i.e., by

(
~h−∑j 6=i Ji,j 〈 ~Mj〉

)
·∑N/2

x=1

(
~Sx +~sx

)
. This generaliza-

tion can be implemented in single-site mean-field theory; however, such a strong approxi-
mation fails to be quantitatively accurate for the present situation (compare Appendix C).
By contrast, such generic field directions in the interchain mean-field theory of Section 3.3
break conservation of total Sz, render the computations even more challenging, and thus
go beyond the present investigation.

Finally, we have shown that the strong sensitivity of MnNi(NO2)4(en)2 to even small
applied magnetic fields gives rise to a strong magnetocaloric effect, i.e., large cooling
by adiabatic demagnetization from initial fields B on the order of 1 T. Even if the mag-
netic entropy of MnNi(NO2)4(en)2 may be a bit small for practical applications in the
temperature range of interest, this observation suggests materials with competing strong
ferromagnetic and weaker antiferromagnetic interactions as promising candidates for
efficient low-temperature refrigeration.
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Appendix A. One-Magnon Dispersion

Let us generalize the computation of the one-magnon dispersion of Ref. [28] to the
presence of single-ion anisotropies. To this end, we generalize the chain model (1) to include
anisotropy terms on both Mn and Ni sites but drop the magnetic field term:

H = −J
N/2

∑
x=1

(
~Sx ·~sx +~sx · ~Sx+1

)
− D

N/2

∑
x=1

(Sz
x)

2 − d
N/2

∑
x=1

(sz
x)

2 . (A1)

Since the coupling along the chain is ferromagnetic, the ground state is also ferromag-
netic. A D, d > 0 selects the two maximally polarized components of the ground state. The
one-magnon sector is then obtained by flipping a single spin relative to this polarized state.
This is a single-particle problem that is straightforward to solve by Fourier transformation
and diagonalization of the 2× 2 matrix resulting from the two-site unit cell. This yields
two branches of one-magnon excitation energies

ω±(k) = J (S2 + S1) + A(S2) + B(S1) (A2)

±
√

J2
(
S2

2 + S2
1 + 2 S2 S1 cos(k)

)
+ 2 J ∆(S1, S2) (S1 − S2) + ∆(S1, S2)2

with

A(S2) =
2 S2 − 1

2
D , B(S1) =

2 S1 − 1
2

d , ∆(S1, S2) = A(S2)− B(S1) . (A3)

Figure A1 shows the two branches of the one-magnon dispersion ω±(k) for the
model (1) and the parameters that we have used in the main text. The most important qual-
itative difference to the previous analysis in Ref. [28] is the opening of a gap ω−(0) ≈ 1 K
due to the single-ion anisotropy D = 0.36 K. Further inspection of (A2), (A3) shows
that a reshuffling of the Mn anisotropy to the Ni one has a significant effect on the gap
ω−(0). For example, the parameters J = 2.8 K, D = 0, and d = 1.44 K would conserve
A(S2) + B(S1) and yield an overall picture that is very similar to Figure A1 but a reduced
gap ω−(0) ≈ 0.4 K. Such a reduction of the gap may indeed be consistent with the experi-
mental data in Figures 11 and 12, but one would need an accurate experimental estimate
of the gap for a more precise statement.
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Figure A1. The one-magnon dispersion (A2) and (A3) for J = 2.8 K, D = 0.36 K, and d = 0.
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Appendix B. Details of Self-Consistency Procedure in QMC

Figure A2 shows the number of iterations performed in order to reach self-consistency
for the N = 100 QMC data presented in Figure 8. The precise number of iterations depends
on details such as the desired level of accuracy (we aimed at reducing the error on 〈M〉 to
below 10−3) and the exact way the iterations are run. One can nevertheless draw some
qualitative conclusions: sufficiently far away from the Néel temperature, self-consistency
is obtained after a few iterations but the number of required iterations explodes upon
approaching the phase transition, a phenomenon that may be interpreted as a form of
“critical slowing down”. Bearing in mind that it may take a few days to obtain sufficiently
small statistical error bars within a single iteration and that several hundred to more than
1000 iterations have been performed, it is also evident that the computations have been
running over an extended period of time. The procedure could be sped up by a more
sophisticated root-finding algorithm than simple iteration, but we stayed with the latter for
the present investigation.
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Figure A2. Number of iterations performed for the N = 100 QMC data in Figure 8 (recall that J = 1).
Actual data are indicated by filled circles; lines are guides to the eye.

Appendix C. Single-Site Mean-Field Approximation

In order to theoretically explore the ordered phase in small external magnetic fields
where the spins are expected to be canted, we summarize here a complete single-site mean-
field decoupling of the Hamiltonian (1) supplemented by the interchain coupling (2); for
further details, we refer to chapter 5 of Ref. [67].

Since the days of Pierre Weiss [68], the mean-field approximation has become a
textbook method in the theory of magnetism (see, e.g., Refs. [69,70] and references therein)
such that we will comment only briefly on it. The essential step is to replace the terms in
Equation (1) as follows:

~Sx ·~sy → ~Sx · 〈~sy〉+ 〈~Sx〉 ·~sy − 〈~Sx〉 · 〈~sy〉 . (A4)

In combination with the mean-field decoupling of the interchain coupling (4), this
leads to a set of single-spin problems with individual coupling to the external magnetic field,
possibly single-ion anisotropy, and coupling to their neighbors taken into account effectively
via an additional mean field. However, the expectation values 〈~Sx〉 and 〈~sy〉 need to be
determined self-consistently for this set of coupled problems. We solve this self-consistency
condition by iteration, i.e., we assume a configuration of the 〈~Sx〉 and 〈~sy〉, solve the single-
ion problems numerically, recompute the expectation values, and iterate until convergence.
In principle, the procedure can be implemented for a lattice of coupled mean-field problems
(see, e.g., Refs. [56,71]). However, we make some further plausible assumption in order to
reduce the numerical effort. Firstly, in view of the ferromagnetic coupling along the chain,
we assume the pattern to be translationally invariant, although we do need two mean
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fields due to the alternating spins. Secondly, in view of the antiferromagnetic interchain
coupling, we allow for two inequivalent chains. This leads to a set of four mean-field
coupled single-ion problems. Finally, we assume the spin configuration to lie in a plane
that includes the external magnetic field (and thus, also the single-ion anisotropy that we
assume to be parallel to the magnetic field).

It turns out that there is no finite-field phase in the parameter regime studied in the
main text. This may be attributed to the antiferromagnetic interchain coupling J⊥ just
partially canceling the ferromagnetic chain coupling J when all couplings are treated at the
mean-field level, thus leading to an effectively ferromagnetic system with just a reduced
effective coupling constant. Therefore, we use modified parameters J = 1, J⊥ = 0.5,
D = 0.1 in this appendix and focus on the qualitative behavior.

Appendix C.1. Phase Diagram

Figure A3 shows the mean-field phase diagram with and without the single-ion
anisotropy. The phase diagrams were obtained from an analysis of the spin configura-
tions [67]. In the case of D = 0 (Figure A3a), we find an ordered antiferromagnetic phase.
At zero field h = 0, the direction of the ordering vector is arbitrary. Application of a small
field orients the spins orthogonal to the field direction. Upon increasing the magnetic field,
spins are increasingly tilted towards the field direction. The overall behavior is very similar
to the well-known Heisenberg antiferromagnet on a bipartite lattice (see, e.g., Ref. [72]
for the case of the square lattice), the main difference being that all Mn and Ni spins in
one chain adopt the role of those of one sublattice. Note that in the case of D = 0, the
Mermin–Wagner theorem [73] would forbid a finite-temperate transition in the case of one
or even two dimensions. The phase diagram of Figure A3a should thus be thought of to
represent the case of chains coupled in three dimensions.
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Figure A3. Single-site mean-field phase diagrams for J = 1, J⊥ = 0.5, and D = 0 (a) and for D = 0.1
(b). The schematics indicate the spin configurations relative to the applied magnetic field in the
ordered phases. A pair of parallel arrows indicates Mn (magenta) and Ni (green) spins in one chain;
the second pair indicates the neighboring chain. The phase at high temperatures or large magnetic
fields is paramagnetic.

Figure A3b presents the phase diagram for a single-ion anisotropy D > 0. The main
difference with the D = 0 case is the appearance of an additional phase at small magnetic
fields. Indeed, the single-ion anisotropy pins the spins along the anisotropy axis. For a small
magnetic field (that we choose here to be parallel to the anisotropy axis), the spins remain
pinned along this axis and a finite critical field is needed to enter the “spin-flop” phase
where the spins cant towards the magnetic field and that we already observed for the case
D = 0 (Figure A3a). The structure of the phase diagram in Figure A3b is again reminiscent of
the well-known phase diagram of an anisotropic antiferromagnet on a bipartite lattice (see,
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e.g., Refs. [69,74–77]). The main difference is again that the Ni (S1 = 1) and Mn (S2 = 5/2)
spins of one chain pair up to correspond to one sublattice. Actually, when the spins tilt
with respect to the magnetic field, Ni and Mn ones are not expected to be exactly parallel
to each other, particularly if the Mn one is subject to a single-ion anisotropy while the
Ni one is not. However, it turns out that the angle between a pair does not exceed a
few degrees [67]. Accordingly, the sketches of the spin configurations in Figure A3 are
schematic in the sense that spin pairs are almost but not necessarily exactly parallel. For
D > 0, the Mermin–Wagner theorem [73] allows finite-temperature ordering starting in
two dimensions. Nevertheless, for small values of D and weakly coupled ferromagnetic
chains, i.e., the situation relevant to MnNi(NO2)4(en)2, one is still close to a situation
where ordering would be forbidden such that the present mean-field theory is likely to
overestimate the transition temperature. Indeed, at h = 0, the estimate inferred from
Figure 9 is TN < J rather than TN ≈ 4 J, as observed in Figure A3.

Let us briefly comment on a comparison to the experimental phase diagram. The inset
of Figure 3 just shows the transition into an ordered phase. However, the experimental data
for the magnetization and Bragg intensity of elastic neutron scattering show two features
at T = 1.8 K as a function of applied field B [47]. We believe that these two experimental
features correspond to the two transitions in the mean-field phase diagram Figure A3b.

Appendix C.2. Entropy and Magnetocaloric Effect

Now, we turn to the magnetocaloric properties. Mean-field theory has been used
before for this purpose (see, e.g., Refs. [78–81]). Indeed, once the self-consistent mean-field
solution is known, both the free energy F and the internal energy U are straightforward to
compute; from these, one obtains the entropy via

S =
U − F

T
. (A5)

Figure A4 presents results of the entropy for our mixed-spin system with D = 0
(a) and D = 0.1 (b). The representation is analogous to Figure 14 with entropy being
normalized per spin and white lines denoting isentropes. Furthermore, we superimpose
the phase transitions from Figure A3 as red lines in Figure A4. One observes that the phase
boundaries correspond to kinks in the isentropes. In fact, the isentropes of Figure A4b are
discontinuous across the transition separating the collinear antiferromagnetic phase at low
magnetic fields and the spin-flop phase at higher fields, reflecting the first-order nature of
this transition.
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Figure A4. Single-site mean-field results for the entropy per spin at J = 1, J⊥ = 0.5, and D = 0 (a)
and at D = 0.1 (b). Red lines are the phase boundaries from Figure A3.

The main qualitative finding is that we observe cooling by adiabatic demagnetization,
as expected. However, the effect is mainly restricted to the paramagnetic phase. Upon
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entering the ordered (spin-flop) phase, the isentropes become very flat, i.e., temperature T
varies very little when h is varied in this ordered phase. There is even a small heating effect
when h is lowered through the transition between the spin-flop and collinear ordered phase
that appears for D = 0.1 (Figure A4b). A quantitative comparison with MnNi(NO2)4(en)2
is unfortunately precluded, e.g., by mean-field theory overestimating ordering tendencies,
as discussed before in the context of Figure A3. Let us note a final peculiarity of mean-field
theory, namely, that the total entropy of the system is essentially recovered for T > TN at
h = 0 and thus visible in Figure A4: Indeed, symmetry arguments imply that the mean-
field correction to the specific heat c vanishes at h = 0 for T > TN , as already stated in
Section 3.3.3. As a consequence, the total entropy is recovered exactly for D = 0. For D 6= 0,
the single-ion splitting leads to some fluctuations surviving for T > TN . However, for
D = 0.1 J, the effect is so small that less than 1 per mille of the total entropy is missing at
the highest temperature (shown in Figure A4b) while it would be recovered only in the
limit T → ∞ for the case of the ED result of Figure 14. Furthermore, we recall that the
experiment recovers barely half of the total entropy at TN for B = 0 (compare Figure 2b
and the related discussion in Section 2.2).

Let us conclude this discussion by mentioning that the magnetic susceptibility χ
and specific heat c can, in principle, also be investigated within the single-site mean-field
approximation. However, if one wants to avoid numerical derivatives, the presence of two
inequivalent sites in each chain requires matrix generalizations of Equations (12) and (19).
We refer to Ref. [67] for further details on these aspects.
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43. Gîrţu, M.A.; Wynn, C.M.; Zhang, J.; Miller, J.S.; Epstein, A.J. Magnetic properties and critical behavior of Fe(tetracyanoethylene)2 ·

x(CH2Cl2): A high-Tc molecule-based magnet. Phys. Rev. B 2000, 61, 492–500. [CrossRef]
44. Lascialfari, A.; Ullu, R.; Affronte, M.; Cinti, F.; Caneschi, A.; Gatteschi, D.; Rovai, D.; Pini, M.G.; Rettori, A. Specific heat and µ+SR

measurements in Gd(hfac)3NITiPr molecular magnetic chains: Indications for a chiral phase without long-range helical order.
Phys. Rev. B 2003, 67, 224408. [CrossRef]

45. Gillon, B.; Mathonière, C.; Ruiz, E.; Alvarez, S.; Cousson, A.; Rajendiran, T.M.; Kahn, O. Spin Densities in a Ferromagnetic
Bimetallic Chain Compound: Polarized Neutron Diffraction and DFT Calculations. J. Am. Chem. Soc. 2002, 124, 14433–14441.
[CrossRef] [PubMed]

http://dx.doi.org/10.1103/PhysRevB.65.214418
http://dx.doi.org/10.1103/PhysRevB.72.054423
http://dx.doi.org/10.1021/ic00314a013
http://dx.doi.org/10.1103/PhysRevB.49.4364
http://dx.doi.org/10.1021/jp992980j
http://dx.doi.org/10.1021/ic201982d
http://www.ncbi.nlm.nih.gov/pubmed/22303859
http://dx.doi.org/10.1016/j.ccr.2018.02.002
http://dx.doi.org/10.1021/acs.chemrev.9b00666
http://www.ncbi.nlm.nih.gov/pubmed/32045215
http://dx.doi.org/10.7566/JPSJ.90.064707
http://dx.doi.org/10.1103/PhysRevB.106.L100404
http://dx.doi.org/10.1103/PhysRevB.69.174430
http://dx.doi.org/10.1016/j.physb.2005.01.443
http://dx.doi.org/10.1103/PhysRevB.73.014411
http://dx.doi.org/10.1103/PhysRevB.76.224410
http://dx.doi.org/10.1088/0253-6102/54/4/30
http://dx.doi.org/10.1016/j.jmmm.2014.09.010
http://dx.doi.org/10.1063/1.4927854
http://dx.doi.org/10.1103/PhysRevB.103.054432
http://dx.doi.org/10.1017/CBO9780511524332
http://dx.doi.org/10.1002/pssb.2220670246
http://dx.doi.org/10.1143/JPSJ.67.2209
http://dx.doi.org/10.1143/JPSJ.68.2214
http://dx.doi.org/10.1016/S0038-1098(99)00515-3
http://dx.doi.org/10.1103/PhysRevB.56.315
http://dx.doi.org/10.1103/PhysRevB.59.6282
http://dx.doi.org/10.1103/PhysRevB.61.492
http://dx.doi.org/10.1103/PhysRevB.67.224408
http://dx.doi.org/10.1021/ja020188h
http://www.ncbi.nlm.nih.gov/pubmed/12452719


Molecules 2022, 27, 6546 22 of 23

46. Kahn, O.; Bakalbassis, E.; Mathonière, C.; Hagiwara, M.; Katsumata, K.; Ouahab, L. Metamagnetic Behavior of the Novel
Bimetallic Ferromagnetic Chain Compound MnNi(NO2)4(en)2 (en = Ethylenediamine). Inorg. Chem. 1997, 36, 1530–1531.
[CrossRef] [PubMed]

47. Feyerherm, R.; Mathonière, C.; Kahn, O. Magnetic anisotropy and metamagnetic behaviour of the bimetallic chain
MnNi(NO2)4(en)2 (en = ethylenediamine). J. Phys. Condens. Matter 2001, 13, 2639–2650. [CrossRef]

48. Kreitlow, J.; Mathonière, C.; Feyerherm, R.; Süllow, S. Pressure response of the bimetallic chain compound MnNi(NO2)4(en)2;
en=ethylenediamine. Polyhedron 2005, 24, 2413–2416. [CrossRef]

49. Troyer, M.; Ammon, B.; Heeb, E. Parallel Object Oriented Monte Carlo Simulations. Lect. Notes Comput. Sci. 1998, 1505, 191–198.
[CrossRef]

50. Albuquerque, A.F.; Alet, F.; Corboz, P.; Dayal, P.; Feiguin, A.; Fuchs, S.; Gamper, L.; Gull, E.; Gürtler, S.; Honecker, A.; et al. The
ALPS project release 1.3: Open-source software for strongly correlated systems. J. Magn. Magn. Mater. 2007, 310, 1187–1193.
[CrossRef]

51. Alet, F.; Wessel, S.; Troyer, M. Generalized directed loop method for quantum Monte Carlo simulations. Phys. Rev. E 2005,
71, 036706. [CrossRef]

52. Todo, S.; Kato, K. Cluster Algorithms for General-S Quantum Spin Systems. Phys. Rev. Lett. 2001, 87, 047203. [CrossRef]
53. Syljuåsen, O.F.; Sandvik, A.W. Quantum Monte Carlo with directed loops. Phys. Rev. E 2002, 66, 046701. [CrossRef]
54. Bauer, B.; Carr, L.D.; Evertz, H.G.; Feiguin, A.; Freire, J.; Fuchs, S.; Gamper, L.; Gukelberger, J.; Gull, E.; Guertler, S.; et al. The

ALPS project release 2.0: Open source software for strongly correlated systems. J. Stat. Mech. Theor. Exp. 2011, 2011, P05001.
[CrossRef]

55. Matsumoto, M.; Nishimura, T. Mersenne Twister: A 623-dimensionally Equidistributed Uniform Pseudo-random Number
Generator. ACM Trans. Model. Comput. Simul. 1998, 8, 3–30. [CrossRef]

56. Gvozdikova, M.V.; Ziman, T.; Zhitomirsky, M.E. Helicity, anisotropies, and their competition in a multiferroic magnet: Insight
from the phase diagram. Phys. Rev. B 2016, 94, R020406. [CrossRef]

57. Schulz, H.J. Dynamics of Coupled Quantum Spin Chains. Phys. Rev. Lett. 1996, 77, 2790–2793. [CrossRef]
58. Cavadini, N.; Rüegg, C.; Henggeler, W.; Furrer, A.; Güdel, H.-U.; Krämer, K.; Mutka, H. Temperature renormalization of the

magnetic excitations in S=1/2 KCuCl3. Eur. Phys. J. B 2000, 18, 565–571. [CrossRef]
59. Todo, S.; Shibasaki, A. Improved chain mean-field theory for quasi-one-dimensional quantum magnets. Phys. Rev. B 2008,

78, 224411. [CrossRef]
60. Fazekas, P. Lecture Notes on Electron Correlation and Magnetism; World Scientific: Singapore, 1999. [CrossRef]
61. Grossjohann, S.-N. Stochastic Series Expansion an niedrigdimensionalen Quanten-Spin-Systemen. Diploma Thesis, TU Braun-

schweig, Braunschweig, Germany, 2004.
62. Trippe, C.; Honecker, A.; Klümper, A.; Ohanyan, V. Exact calculation of the magnetocaloric effect in the spin- 1

2 XXZ chain. Phys.
Rev. B 2010, 81, 054402. [CrossRef]

63. Landau, L.D. On the theory of phase transitions I. Zh. Eksp. Teor. Fiz. 1937, 7, 19–32. [CrossRef]
64. Wolf, B.; Honecker, A.; Hofstetter, W.; Tutsch, U.; Lang, M. Cooling through quantum criticality and many-body effects in

condensed matter and cold gases. Int. J. Mod. Phys. B 2014, 28, 1430017. [CrossRef]
65. Konieczny, P.; Sas, W.; Czernia, D.; Pacanowska, A.; Fitta, M.; Pełka, R. Magnetic cooling: a molecular perspective. Dalton Trans.

2022, 51, 12762–12780. [CrossRef]
66. Junger, I.J.; Ihle, D.; Richter, J. Thermodynamics of S ≥ 1 ferromagnetic Heisenberg chains with uniaxial single-ion anisotropy.

Phys. Rev. B 2005, 72, 064454. [CrossRef]
67. Tiwari, M. Mean-field theory for quantum spin systems and the magnetocaloric effect. Ph.D. Thesis, CY Cergy Paris Université,

Cergy-Pontoise, France, 2022.
68. Weiss, P. L’hypothèse du champ moléculaire et la propriété ferromagnétique. J. Phys. Theor. Appl. 1907, 6, 661–690. [CrossRef]
69. Blundell, S. Magnetism in Condensed Matter; Oxford University Press: Oxford, UK, 2001.
70. Pires, A.S.T. The Heisenberg model. In Theoretical Tools for Spin Models in Magnetic Systems; IOP Publishing: Bristol, UK, 2021;

pp. 1-1–1-16. [CrossRef]
71. Melchy, P.-É.; Zhitomirsky, M.E. Interplay of anisotropy and frustration: Triple transitions in a triangular-lattice antiferromagnet.

Phys. Rev. B 2009, 80, 064411. [CrossRef]
72. Zhitomirsky, M.E.; Nikuni, T. Magnetization curve of a square-lattice Heisenberg antiferromagnet. Phys. Rev. B 1998, 57, 5013–5016.

[CrossRef]
73. Mermin, N.D.; Wagner, H. Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg

Models. Phys. Rev. Lett. 1966, 17, 1133–1136. [CrossRef]
74. Fisher, M.E. Theory of multicritical transitions and the spin-flop bicritical point. AIP Conf. Proc. 1975, 24, 273–280. [CrossRef]
75. Landau, D.P.; Binder, K. Phase diagrams and multicritical behavior of a three-dimensional anisotropic Heisenberg antiferromagnet.

Phys. Rev. B 1978, 17, 2328–2342. [CrossRef]
76. Hassani, Y. Magnetic Phase Diagram of the Two-Dimensional Heisenberg Spin One-Half Canted Antiferromagnet Ethyl-

Ammonium Tetrabromocuprate(II). Master’s Thesis, Montana State University, Bozeman, MT, USA, 1988.
77. Selke, W.; Bannasch, G.; Holtschneider, M.; McCulloch, I.P.; Peters, D.; Wessel, S. Classical and quantum anisotropic Heisenberg

antiferromagnets. Condens. Matter Phys. 2009, 12, 547–558. [CrossRef]

http://dx.doi.org/10.1021/ic9611453
http://www.ncbi.nlm.nih.gov/pubmed/11669737
http://dx.doi.org/10.1088/0953-8984/13/11/319
http://dx.doi.org/10.1016/j.poly.2005.03.122
http://dx.doi.org/10.1007/3-540-49372-7_20
http://dx.doi.org/10.1016/j.jmmm.2006.10.304
http://dx.doi.org/10.1103/PhysRevE.71.036706
http://dx.doi.org/10.1103/PhysRevLett.87.047203
http://dx.doi.org/10.1103/PhysRevE.66.046701
http://dx.doi.org/10.1088/1742-5468/2011/05/P05001
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1103/PhysRevB.94.020406
http://dx.doi.org/10.1103/PhysRevLett.77.2790
http://dx.doi.org/10.1007/s100510070003
http://dx.doi.org/10.1103/PhysRevB.78.224411
http://dx.doi.org/10.1142/2945
http://dx.doi.org/10.1103/PhysRevB.81.054402
http://dx.doi.org/10.1038/138840a0
http://dx.doi.org/10.1142/S0217979214300175
http://dx.doi.org/10.1039/D2DT01565J
http://dx.doi.org/10.1103/PhysRevB.72.064454
http://dx.doi.org/10.1051/jphystap:019070060066100
http://dx.doi.org/10.1088/978-0-7503-3879-0ch1
http://dx.doi.org/10.1103/PhysRevB.80.064411
http://dx.doi.org/10.1103/PhysRevB.57.5013
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1063/1.30084
http://dx.doi.org/10.1103/PhysRevB.17.2328
http://dx.doi.org/10.5488/CMP.12.4.547


Molecules 2022, 27, 6546 23 of 23

78. Tishin, A.M.; Spichkin, Y.I. The Magnetocaloric Effect and Its Applications; CRC Press: Boca Raton, FL, USA, 2003. [CrossRef]
79. Heydarinasab, F.; Abouie, J. Mixed-spin system with supersolid phases: Magnetocaloric effect and thermal properties. J. Phys.

Condens. Matter 2020, 32, 165804. [CrossRef]
80. Palacios, E.; Sáez-Puche, R.; Romero, J.; Doi, Y.; Hinatsu, Y.; Evangelisti, M. Large magnetocaloric effect in EuGd2O4 and EuDy2O4.

J. Alloys Compd. 2022, 890, 161847. [CrossRef]
81. Liu, W.; Bykov, E.; Taskaev, S.; Bogush, M.; Khovaylo, V.; Fortunato, N.; Aubert, A.; Zhang, H.; Gottschall, T.; Wosnitza, J.; et al. A

study on rare-earth Laves phases for magnetocaloric liquefaction of hydrogen. Appl. Mat. Today 2022, 29, 101624. [CrossRef]

http://dx.doi.org/10.1201/9781420033373
http://dx.doi.org/10.1088/1361-648X/ab61ca
http://dx.doi.org/10.1016/j.jallcom.2021.161847
http://dx.doi.org/10.1016/j.apmt.2022.101624

	Introduction
	Experiment
	MnNi(NO2)4(en)2 (en = Ethylenediamine)
	Specific Heat

	Theory
	Model
	Numerical Treatment of Decoupled Chains
	Mean-Field Treatment of the Interchain Coupling
	Magnetic Susceptibility and Ordering Temperature
	Specific Heat
	Comparison with Experimental Specific Heat


	Magnetocaloric Properties
	Conclusions and Perspectives
	Appendix A
	Appendix B
	Appendix C
	Phase Diagram
	Entropy and Magnetocaloric Effect

	References

