OPEN SUBJECT AREAS: MOLECULAR IMAGING MAGNETIC RESONANCE IMAGING Received 27 October 2014 Accepted 19 February 2015 > Published 16 March 2015 Correspondence and requests for materials should be addressed to C.K. (chalermchai. khemtong@ utsouthwestern.edu) # Hyperpolarized ¹⁵N-pyridine Derivatives as pH-Sensitive MRI Agents Weina Jiang¹, Lloyd Lumata¹, Wei Chen¹, Shanrong Zhang¹, Zoltan Kovacs¹, A. Dean Sherry^{1,2} & Chalermchai Khemtong¹ ¹Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA, ²Department of Chemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75083, USA. Highly sensitive MR imaging agents that can accurately and rapidly monitor changes in pH would have diagnostic and prognostic value for many diseases. Here, we report an investigation of hyperpolarized ^{15}N -pyridine derivatives as ultrasensitive pH-sensitive imaging probes. These molecules are easily polarized to high levels using standard dynamic nuclear polarization (DNP) techniques and their ^{15}N chemical shifts were found to be highly sensitive to pH. These probes displayed sharp ^{15}N resonances and large differences in chemical shifts ($\Delta\delta$ >90 ppm) between their free base and protonated forms. These favorable features make these agents highly suitable candidates for the detection of small changes in tissue pH near physiological values. R imaging agents with excellent pH-sensing capability and imaging sensitivity could become very useful tools for monitoring tissue acidosis that presents in many disease states including rapidly growing tumors¹⁻³. Such pH-sensitive agents must have pK_a values near the pH of interest, ideally around ~6.7, display large pH-induced changes in chemical shift, and have a suitable MR sensitivity for imaging pH in vivo. Several pH-sensitive probes reported previously rely on magnetic resonance spectroscopy (MRS) for readout of pH4. These include 1H-5,19F-6, and 31P-based agents7.8. Chelated Gd(III) and Eu(III) complexes have also been developed as MRI agents for pH mapping based on pH-dependent relaxivity and chemical exchange saturation transfer (CEST) imaging^{9,10}, respectively. Despite some success using the Gd(III)-based agents to image pH in vivo, these agents require a separate measure of agent concentration for pH calibration. CEST agents offer the possibility of obtaining a direct readout of pH using ratiometric methods but the image sensitivity of such agents remains problematical. Recently, it has been reported that the sensitivity of NMR insensitive nuclei can be significantly improved, >10,000-fold or more, by use of dynamic nuclear polarization (DNP) methods¹¹. In DNP, the extremely high thermal polarization of free radical electrons is transferred to the nuclear spins of NMR-active nuclei, such as ¹³C and ¹⁵N, by microwave irradiation of a frozen sample. The transfer generates a non-equilibrium "hyperpolarized" (HP) spin state with dramatically improved NMR sensitivity that returns to thermal equilibrium as a function of spin-lattice relaxation time, T_I. DNP has played a key role in following realtime metabolism of HP ¹³C-labeled substrates such as [1-¹³C]pyruvate in tumors, heart, and liver¹²⁻¹⁶. Hyperpolarized chemical probes that can in real-time monitor the pH, H₂O₂ and redox state have also been investigated¹⁷⁻¹⁹. For example, Gallagher et al recently demonstrated that HP ¹³C-enriched bicarbonate (HP H¹³CO₃⁻) can be used to image pH of tumors in mice¹⁵,20. The same principle was later applied to measure intracellular pH (pHi) in isolated perfused hearts, based on intracellular generation of HP H13CO3-/13CO2 by oxidation of HP [1-13C]pyruvate²¹. It is important to point out that the pH estimated using HP bicarbonate likely reflects a combination of intracellular (pHi) and extracellular pH (pHe) because CO₂ can freely diffuse through cell membranes²⁰. The short T_I of H¹³CO₃ is also a potential drawback for clinical translation of exogenous HP H¹³CO₃⁻. In another example, Jindal et al reported HP ⁸⁹Y-complexes as potential agents for chemical shift imaging (CSI) of pH by MRI²². Potential drawbacks for these complexes include the low γ of ⁸⁹Y (low imaging sensitivity) and the relatively small pH-dependent chemical shifts ($\Delta\delta\sim10$ ppm from pH 5 to 9) observed for such systems. Herein, we demonstrate the potential utility of using HP ¹⁵N-pyridine derivatives as ultrasensitive pH imaging agents (Fig. 1). We first investigated the ¹⁵N NMR signal enhancement by DNP of the sp²-hybridized nitrogens in pyridine derivatives (i.e. pyridine, 2,6-lutidine, 2-picoline, nicotinamide, and 2,4,6-collidine) and the ¹⁵N chemical shift pH dependence. Previously, it has been shown that the ¹⁵N chemical shifts of certain nitrogen functional groups were highly sensitive to protonation and a sharp chemical shift change near the pKa was observed²³. Figure 1 | 15N NMR spectra of HP-pyridine as the free base (*green*) and fully protonated (*red*) forms. The large chemical shift difference demonstrates that pyridine derivatives may serve as ultra-sensitive pH probes. The two spectra were acquired separately from HP-pyridine samples dissolved in either base or acid. Combining the strong pH-dependent chemical shift with the potentially substantial signal enhancement by DNP, HP 15 N-enriched agents could be ideal candidates for chemical shift imaging of tissue pH. So far, hyperpolarization of 15 N-labeled compounds by DNP has been demonstrated with significant 15 N NMR signal enhancement 11,24 . It has also been shown that some 15 N-labeled functional groups such as 15 N-enriched choline (\sim 4 min) 24 , and 15 N-enriched nitro compounds (\sim 100 s) 25 have much longer T_I than carbonyl 13 C centers. # **Results and Discussion** ¹⁵N-NMR signal enhancement and spin-lattice relaxation time of pH probes. In this study, we aim to develop HP spectroscopic imaging agents that are highly sensitive to pH changes. Pyridine derivatives were chosen for evaluation because it is known that their ¹⁵N resonances have relatively long T_1 's and are highly pH-sensitive²³. The pKa values of pyridine derivatives are optimal for tissue pH measurements and can also be altered considerably by adding substituents. Therefore, it is highly possible that pyridine derivatives having suitable pKa values for any specific pH measurement applications can be designed and synthesized. Despite the excellent sensing capability, the role of ¹⁵N NMR in molecular imaging is very limited mainly due to its poor sensitivity. To overcome such shortcoming, we investigated DNP hyperpolarization as a means to improve the ¹⁵N NMR sensitivity of pH-sensitive pyridine derivatives. Our results showed that these pyridine derivatives can be well polarized by DNP with high 15N signal enhancements. After dissolution into water, the 15 N signal enhancements of 5437 \pm 200, 8702 \pm 700, 7877 ± 400 , 10065 ± 600 , and 3598 ± 700 were observed for ¹⁵Npyridine, ¹⁵N-2,6-lutidine, ¹⁵N-2-picoline, ¹⁵N-2,4,6-collidine and ¹⁵N-nicotinamide, respectively. This level of enhancement is comparable to previously reported values for aromatic ¹⁵N compounds²⁵. The observed higher polarization of methyl-substituted pyridine compounds was likely due to their greater tendency to form frozen glasses when mixed with the DMSO/Sulfolane glassing agent²⁵. ¹⁵N NMR spectra of hyperpolarized and thermal samples of ¹⁵N-pyridine are compared in Fig. 2a. Here, the ¹⁵N NMR spectra of the HP sample was collected from a single 10-degree pulse while the thermally polarized spectra represent a total signal from 256 scans using 90-degree pulses. It is important to note that both the HP and thermally polarized spectra were acquired from the same sample. The big difference in signal intensity demonstrates the tremendous signal enhancement achieved by DNP hyperpolarization. Fig. 2b shows an array of representative ¹⁵N NMR spectra of HP ¹⁵N-pyridine collected every 5 s using a 5-degree pulse after dissolution with water. By fitting such time-dependent ¹⁵N signal intensity decay curves (Fig. 2c), the T₁ of HP ¹⁵N-pyridine (pH 8.4), ¹⁵N-2,6lutidine (pH 9.5), ¹⁵N-2-picoline (pH 8.5), and ¹⁵N-nicotinamide (pH 5.9) were found to be 41 \pm 3 s, 31 \pm 2 s, 38 \pm 2 s and 22 \pm 0.3 s, respectively (Supplementary Fig. S1 online). Due to poor water solubility, dissolution of 2,4,6-collidine required the use of methanol. Here, the measured T_1 was 36 \pm 4 s. The presence of methyl substituents on the pyridine ring results in a larger number of protons in close proximity to the nitrogen which results in more efficient dipoledipole relaxation of the pyridyl 15 N. Nevertheless, these T_1 values are comparable to many 13C carboxyl groups at this same field currently used for metabolic imaging. The hyperpolarized ¹⁵N signal of pyridinyl derivatives decayed more rapidly near physiological pH (Fig. 3a), likely reflecting an added relaxation pathway by the exchanging protons as these molecules become partially protonated²⁶. As expected, the T₁ of ¹⁵N-pyridine measured in plasma at 37°C was shorter (\sim 11 s, Fig. 3b). While undesirable, this should not prevent the *in* vivo application of ¹⁵N-labeled pyridine derivatives as pH probes because protonation equilibria are established nearly instantaneously. In comparison, the ¹³C bicarbonate/carbon dioxide equilibrium system has been used successfully for imaging tissue pH in vivo even though the T_1 of the ¹³C atoms in these molecules were only $\sim 10 \text{ s}^{20}$. **pH sensitivity of HP** ¹⁵**N-pyridine derivatives.** ¹⁵N NMR has long been known to have a great sensing capability for different chemical environments such as acidity²³ and metal ion concentrations²⁷. Protonation or metal chelation of some nitrogen-containing compounds can lead to a significant change in ¹⁵N chemical shift, making them suitable MR sensors for pH or metal ions. For pyridine derivatives, the electronic properties of the sp^2 -hybridized, aromatic nitrogen center are greatly altered upon protonation leading to a significant change in **Figure 2** \mid (a) ¹⁵N NMR spectra of a HP (*top*) and thermal (*bottom*) sample of ¹⁵N-pyridine. (b) array of ¹⁵N NMR of HP ¹⁵N-pyridine after dissolution in water; (c) Representative T_I decay of HP ¹⁵N-pyridine in water. ¹⁵N chemical shift. ¹⁵N NMR spectra of HP ¹⁵N-pyridine samples adjusted to different pH values are shown in Fig. 4a. All five 15Npyridine derivatives shift upfield upon protonation (Fig. 4b). The ¹⁵N NMR linewidth of each probe was narrow in both the fully protonated or fully deprotonated forms but broaden somewhat at pH values near their respective pKa's. This broadening reflects intermediate rates of exchange of protons between the 15N atom and water26. The pKa values estimated by fitting the pH titration curves were 5.17 \pm 0.07 for pyridine, 6.60 \pm 0.02 for 2,6lutidine, 6.02 \pm 0.05 for 2-picoline, 7.65 \pm 0.05 for 2,4,6-collidine, and 4.14 \pm 0.02 for nicotinamide. These pKa values agreed well with values previously reported28. The 15N chemical shift differences between the free base and fully protonated forms were all in the range, 88-94 ppm (Table 1). The chemical shifts of all five 15N enriched compounds changed linearly with pH at least over ±1 pH units of each ligand pKa. The data demonstrate that these 15N probes are quite sensitive to changes in pH (~60 ppm/pH unit) and that structures can be modified to fine-tune the probe to readout any desired pH value from 5 to 8.5. To test the accuracy of these pH probes, a series of samples containing HP 15 N-pyridine or 15 N-2,6-lutidine with variable amounts of HCl added to the dissolution solution were examined by 15 N-NMR (Supplementary Fig. S2 online). The two agents were chosen because of their long T_I values. For each pH probe, the test was carried out over a pH range near the respective pKa values where the 15 N chemical shifts are extremely sensitive to pH. The pH of each sample was **Figure 3** | (a) Representative T_I decays of HP ¹⁵N-pyridine and ¹⁵N-2,6-lutidine at physiological pH; (b) and HP ¹⁵N-pyridine in rat plasma. The inset shows ¹⁵N NMR spectrum of HP ¹⁵N-pyridine in plasma obtained by summing the ¹⁵N signal over 10 scans. estimated from the observed ^{15}N chemical shifts (Fig. 4b) and also measured using a pH electrode 29 . Fig. 4c shows plots of pH as measured by ^{15}N -NMR versus a pH electrode. The results show an excellent correlation between the two measurements for both probes (R² > 0.99 for 2,6-lutidine and R² > 0.95 for pyridine), demonstrating the high accuracy of pH measurements by ^{15}N NMR of HP-pyridine derivatives. Magnetic resonance spectroscopic imaging of HP ¹⁵N-Pyridine. Chemical shift images of phantoms containing HP 15N-enriched pyridine were collected to test the applicability of applying HP ¹⁵Npyridine derivatives to distinguish pH differences. In this experiment, a solution of HP ¹⁵N-pyridine was simultaneously injected into two NMR tubes inserted within a large NMR tube (see Supplementary Fig. S3 online for the phantom setup). One of the small tubes contained a predetermined amount of sulfuric acid while the other contained sodium hydroxide. The imaging plane was positioned axially covering both tubes of HP-pyridine solutions (see H image in Fig. 5). ¹⁵N CSI data demonstrate that the ¹⁵N signals of both basic and acidic HP-pyridine compartments were detectable by MRI. ¹⁵N NMR spectra of selected voxels show ¹⁵N resonances at 297.4 and 207.5 ppm reflecting the free base and protonated pyridine samples, respectively. CSI images of both basic and acidic pyridine displayed good localization of these two signals within the tubes (see CSI and merged image). The results show that magnetic resonance spectroscopic imaging (MRSI) of HP ¹⁵N-enriched pyridine was able to distinguish different pH environments in adjacent spatial locations in a phantom. It is worth noting that the imaging of HP 15N-pyridine was very rapid and a similar image of thermally polarized ¹⁵N-enriched pyridine would have required a much higher 15N spin concentration and a longer imaging time. These results strongly emphasize the sensitivity advantage of HP 15N for molecular imaging applications over thermally polarized imaging practices. To the best of our Figure 4 | ^{15}N chemical shift versus pH for HP ^{15}N -agents; (a) ^{15}N -NMR spectra of hyperpolarized ^{15}N -agents versus pH; (b) ^{15}N -NMR titration curves of hyperpolarized ^{15}N -agents; (c) correlation of pH calculated from the Hendersen-Hasselbalch equation (displayed above) and pH electrode. δ_{obs} is the ^{15}N chemical shift observed from NMR spectra, $\delta_{protonated}$ is the ^{15}N chemical shift of fully protonated pyridine, $\delta_{unprotonated}$ is the ^{15}N chemical shift of basic pyridine, n is the Hill coefficient. knowledge, these results demonstrate for the first time the feasibility of ¹⁵N spectroscopic imaging of pH-sensitive agents, strongly emphasizing the sensitivity advantage of HP ¹⁵N for molecular imaging applications. Potential in vivo imaging applications of these agents include, but not limited to, pH imaging or MR spectroscopic assessment of tissue acidosis that is present in many diseases. However, many considerations must be taken into account before HP pyridine derivatives can be translated for *in vivo* evaluations. First, the HP pyridine agents should preferably be present as a free base or be partially protonated at the physiological pH. The long T_1 of the free base will allow for the HP signal to be retained much longer during the pre-injection quality controls of the agents. Additionally, the pH regions of the targeted tissues should not be very close to the pKa of the agents in order to avoid the rapid signal loss from fast water proton exchanges. Therefore, the ideal HP pyridine derivatives should have a pKa that is slightly below the pH of acidic tissues to be assessed in order to provide a relatively large chemical shift window and relatively long HP signal lifetime. The toxicity of these agents is also an important aspect that needs to be considered. Although the toxicity of pyridine is a concern, there are several naturally occurring pyridine derivatives that can be considered. Some of these compounds are present in the biological systems and play key roles in human physiology. For example, nicotinamide is a building block for nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) while nicotinic acid (vitamin B₃) and pyridoxyl derivatives (vitamin B₆) are essential human nutrients. Another derivative, picolinic acid, is a product of the kynurenine pathway and is a neuroprotective compound³⁰. Chemical modifications of these molecules will be required for potential in vivo pH imaging applications to alter their pKa values toward the desirable range while preserving their biocompatibility. Future work will be focused on biocompatible pyridinyl compounds with favorable pK_a values for pH imaging of tissue acidosis. ### Conclusion We have demonstrated the potential of using HP ¹⁵N-pyridine derivatives as pH-sensitive probes for MRI. These molecules display large changes in ¹⁵N chemical shift with pH and have very sharp chemical shift versus pH titration curves. The combination of hyperpolarization and pH-sensitive ¹⁵N agents offers new opportunities to develop highly sensitive imaging agents with great sensing capability for the characterization of important biomarkers such as tissue acidity. Future work will be focused on *in vivo* pH imaging of acidic tumors. #### **Methods** Acquisition of ¹⁵N-NMR spectra of hyperpolarized ¹⁵N-agents. Unless otherwise noted, all chemicals and solvents were purchased from Sigma-Aldrich (St. Louis, MO, USA) and used as received. A mixture of pyridine (6.2 M), 2,6-lutidine (4.3 M), 2picoline (5.0 M), nicotinamide (2.7 M) or 2,4,6-collidine (3.78 M) and BDPA radical (40 mM) dissolved in 50 μL of DMSO-sulfolane (1:1 v/v) was polarized in a HyperSense polarizer (3.35 T, Oxford Instruments Molecular Biotools, UK) according to the manufacturer's procedures. The polarization was carried out at \sim 1.05 K with 94.055 GHz microwave irradiation for 2 h. The dissolution liquid of HP agents in distilled water (4 mL) from the polarizer was rapidly mixed with a predetermined volume of hydrochloric acid or sodium hydroxide in a 10-mm NMR tube to achieve the desired pH. 15 N-NMR spectra were acquired at room temperature (\sim 23 °C) on a 400-MHz spectrometer using a 5 degree flip angle with a repetition time (TR) of 5 s. All ¹⁵N peaks were externally referenced with ¹⁵N-nitrobenzene (372 ppm). ¹⁵N MRI were acquired on a 9.4 T Agilent vertical bore microimager (Agilent, USA). MR images and spectra were processed using ImageJ (NIH, USA) and ACD/SpecManager (ACD Labs, Canada). The T_1 , signal enhancement and pH titration experiments were investigated with the natural abundant 15N compounds. 15N-labeled pyridine was used in T_1 measurement in plasma and CSI experiments. T_I relaxation times and signal enhancements of HP pyridine derivatives. In a typical protocol, a dissolution liquid (4 mL) of HP-pyridine derivative was rapidly transferred into a 10-mm NMR tube. ¹⁵N NMR acquisition was initiated once the transfer was complete. An array of ¹⁵N spectra with one spectra recorded every 5 s was obtained (TR=5 s, flip angle = 5 degree). ¹⁵N signal intensity of the HP nuclei was normalized to the signal intensity of the first time point (t=0 s). By fitting the NMR signal intensity as a function of time, T_I values were calculated using Equation (1)³¹, where M_0 is the original magnetization, TR is the repetition time, and θ is the flip angle. Liquid-state ¹⁵N signal enhancements of HP pyridine derivatives were measured by comparing ¹⁵N NMR signal of HP versus thermally polarized samples. A single 5-degree pulse was acquired for the HP signal. For thermally polarized signal, a Table 1 | T_1 relaxation time, signal enhancement, pKa, and chemical shift changes of HP ¹⁵N-pyridine, ¹⁵N-2,6-lutidine, ¹⁵N-2-picoline ¹⁵N-2,4,6-collidine, and ¹⁵N-nicotinamide. T_1 , enhancement, and pKa are reported as mean values \pm SD | Compound | <i>T</i> ₁ (s) ^[a] | Enhancement ^[b] | pKa ^[c] | 15 N $\Delta\delta$ (ppm) | |-----------------|------------------------------------------|----------------------------|--------------------|--------------------------------| | pyridine | 41 ± 3 | 5437 ± 200 | 5.17 ± 0.07 | 94 | | 2,6-lutidine | 31 ± 2 | 8702 ± 700 | 6.60 ± 0.02 | 90 | | 2-picoline | $38 \pm 2^{[d]}$ | 7877 ± 400 | 6.02 ± 0.05 | 94 | | 2,4,6-collidine | $36 \pm 2^{[d]}$ | 10065 ± 600 | 7.65 ± 0.05 | 88 | | nicotinamide | 22 ± 0.3 | 3598 ± 700 | 4.14 ± 0.02 | 94 | $[[]a]T_1$ was calculated using Equation 1; 20-mM solution of a pyridine compound was used. 256 scans of 15 N NMR spectra were acquired using 90-degree pulses with a 500second delay (>5 times T_I). Enhancement levels were calculated as ratios of the 15 N signal from the two polarized states, taking into account for the different 15 N concentrations and number of scans (1 vs 256). PBS buffer solution (pH = 7.4) was used as a dissolution solvent for T_I measurements at the physiological pH. The final concentration of HP 15 N-pyridine or 2,6-lutidine was 2 mM. The plasma used in T_I of HP 15 N-pyridine was obtained by centrifugation of whole rat blood to remove red blood cells. In this experiment, the dissolution liquid of HP 15 N-pyridine (2 mL) was well mixed with rat plasma (2 mL) Figure 5 | ¹⁵N MR images of HP-pyridine in basic (*top left*) and protonated (*top right*) forms. Localization of the ¹⁵N images to the ¹H reference image is shown in the merged image. ¹H MRI of a phantom showing CSI grids is shown in the middle right panel and the ¹⁵N NMR spectra of highlighted voxels are shown in the bottom panel. in a 10-mm NMR tube. The final concentration of HP ^{15}N -pyridine was 13 mM. ^{15}N -NMR spectrum was acquired at $\sim\!37^{\circ}C$. $$M_Z(t) = M_0(\sin\theta)(\cos\theta)^{\frac{t}{TR}}e^{\frac{-t}{T_1}}$$ (1) pH titration curves. Titration curves were created by plotting ¹⁵N chemical shift versus pH as measured from a pH meter. For the determination of pH by HP ¹⁵N-NMR, HP-pyridine or HP-2,6-lutidine was mixed with an unknown amount of HCl or NaOH in an NMR tube before acquiring ¹⁵N-NMR spectra. pH of the solution was calculated from the apparent ¹⁵N chemical shift using the Henderson–Hasselbalch equation and the pKa value estimated by HP-NMR titration. The pH values obtained from HP ¹⁵N-NMR were plotted against the values measured by a pH electrode. Chemical shift imaging (CSI) of HP ^{15}N -pyridine. The phantom for this experiment was a 25-mm NMR tube encasing two 10-mm NMR tubes, with one pre-added sulfuric acid (200 μL , 7 M) and another had sodium hydroxide (200 μL , 5 M). The phantom was inserted into a 25-mm NMR tube containing DI water (\sim 10 mL). The imaging plane was positioned axially across the phantom (Supplementary Fig. S3a online). ^{15}N CSI was acquired after the transfer was completed with a 10-s delay to allow for complete mixing. pH values of the HP-pyridine solutions measured by pH electrode in the small tubes were 2 and 11. ^{15}N CSI parameters: CSI2d sequence (Agilent VnmrJ 4 Imaging, Agilent, USA), field of view (FOV) = 40 \times 40 mm²; TR = 200 ms; TE = 1.30 ms; flip angle = 20°; number of average (NA) = 1. Al H reference image was acquired at the same slice position using a GEMS sequence. ^{1}H imaging parameters: FOV = 40 \times 40 mm²; TR = 200 ms; TE = 4 ms; flip angle = 20°; NA = 1. Matrix = 8 \times 8; voxel size = 5 \times 5 \times 15 mm³. The CSI data were processed to 128 \times 128 matrix. - Wikehooley, J. L., Haveman, J. & Reinhold, H. S. The Relevance of Tumor pH to the Treatment of Malignant Disease. *Radiother Oncol* 2, 343–366 (1984). - Potapenko, D. I. et al. Real-time monitoring of drug-induced changes in the stomach acidity of living rats using improved pH-sensitive nitroxides and lowfield EPR techniques. J Magn Reson 182, 1–11 (2006). - Gillies, R. J., Raghunand, N., Garcia-Martin, M. L. & Gatenby, R. A. pH imaging. IEEE Eng Med Biol 23, 57–64 (2004). - Zhang, X. M., Lin, Y. X. & Gillies, R. J. Tumor pH and Its Measurement. J Nucl Med 51, 1167–1170 (2010). - Soler-Padros, J. et al. Novel generation of pH indicators for proton magnetic resonance spectroscopic imaging. J Med Chem 50, 4539–4542 (2007). - Lee, C. P. et al. A phase I study of the nitroimidazole hypoxia marker SR4554 using ¹⁹F magnetic resonance spectroscopy. Br J Cancer 101, 1860–1868 (2009). - Gillies, R. J., Liu, Z. & Bhujwalla, Z. 31P-MRS measurements of extracellular pH of tumors using 3-aminopropylphosphonate. Am J Physiol 267, C195–203 (1994). - 8. Lutz, N. W., Le Fur, Y., Chiche, J., Pouyssegur, J. & Cozzone, P. J. Quantitative In Vivo Characterization of Intracellular and Extracellular pH Profiles in Heterogeneous Tumors: A Novel Method Enabling Multiparametric pH Analysis. *Cancer Res* 73, 5845–5845 (2013). - Aime, S. et al. Paramagnetic lanthanide(III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications. Magn Reson Med 47, 639–648 (2002). - Wu, Y. K., Soesbe, T. C., Kiefer, G. E., Zhao, P. Y. & Sherry, A. D. A Responsive Europium(III) Chelate That Provides a Direct Readout of pH by MRI. J Am Chem Soc 132, 14002–14003 (2010). - 11. Ardenkjaer-Larsen, J. H. *et al.* Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. *Proc Natl Acad Sci U S A* **100**, 10158–10163 (2003). - Chen, A. P., Chu, W., Gu, Y. P. & Cunnhingham, C. H. Probing Early Tumor Response to Radiation Therapy Using Hyperpolarized [1-¹³C]pyruvate in MDA-MB-231 Xenografts. *PLoS ONE* 8, e56551 (2013). - Day, S. E. et al. Detecting tumor response to treatment using hyperpolarized ¹³C magnetic resonance imaging and spectroscopy. Nat Med 13, 1521–1521 (2007). [[]b]enhancements were measured after dissolution; [[]c]pKa was estimated by fitting pH titration curves. [[]d] T₁ of 2,4,6-collidine was estimated in methanol. - 14. Comment, A. & Merritt, M. E. Hyperpolarized Magnetic Resonance as a Sensitive Detector of Metabolic Function. Biochemistry 53, 7333-7357 (2014). - 15. Gallagher, F. A. et al. Magnetic resonance imaging of pH in vivo using hyperpolarized ¹³C-labelled bicarbonate. Nature 453, 940-943 (2008). - 16. Spielman, D. M. et al. In Vivo Measurement of Ethanol Metabolism in the Rat Liver Using Magnetic Resonance Spectroscopy of Hyperpolarized [1-13C]Pyruvate. Magn Reson Med 62, 307-313 (2009). - 17. Lippert, A. R., Keshari, K. R., Kurhanewicz, J. & Chang, C. J. A Hydrogen Peroxide-Responsive Hyperpolarized ¹³C MRI Contrast Agent. J Am Chem Soc 133, 3776-3779 (2011). - 18. Keshari, K. R. et al. Hyperpolarized ¹³C dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging. Proc Natl Acad Sci USA 108, 18606-18611 (2011) - 19. Nonaka, H. et al. A platform for designing hyperpolarized magnetic resonance chemical probes. Nat Commun 4, 2411 (2013) - 20. Gallagher, F. A., Kettunen, M. I. & Brindle, K. M. Imaging pH with hyperpolarized ¹³C. NMR Biomed **24**, 1006-1015 (2011). - 21. Schroeder, M. A. et al. Measuring intracellular pH in the heart using hyperpolarized carbon dioxide and bicarbonate: a 13C and 31P magnetic resonance spectroscopy study. *Cardiovasc Res* **86**, 82–91 (2010). 22. Jindal, A. K. *et al.* Hyperpolarized ⁸⁹Y complexes as pH sensitive NMR probes. - J Am Chem Soc 132, 1784-1785 (2010). - 23. Alei, M., Morgan, L. O., Wageman, W. E. & Whaley, T. W. pH-Dependence of 15N NMR Shifts and Coupling-Constants in Aqueous Imidazole and 1-Methylimidazole - Comments on Estimation of Tautomeric Equilibrium-Constants for Aqueous Histidine. J Am Chem Soc 102, 2881-2887 (1980). - 24. Gabellieri, C. et al. Therapeutic target metabolism observed using hyperpolarized ¹⁵N choline. J Am Chem Soc 130, 4598-4599 (2008). - 25. Lumata, L. et al. BDPA: An Efficient Polarizing Agent for Fast Dissolution Dynamic Nuclear Polarization NMR Spectroscopy. Chem-Eur J 17, 10825-10827 - 26. Barb, A. W., Hekmatyar, S. K., Glushka, J. N. & Prestegard, J. H. Exchange facilitated indirect detection of hyperpolarized 15ND2-amido-glutamine. J Magn Reson 212, 304-310 (2011). - 27. Okamoto, A., Kanatani, K., Taiji, T. & Saito, I. 15N NMR study on site-selective binding of metal ions to guanine runs in DNA: A good correlation with HOMO distribution. J Am Chem Soc 125, 1172-1173 (2003). - 28. Andon, R. J. L., Cox, J. D. & Herington, E. F. G. The Ultra-Violet Absorption Spectra and Dissociation Constants of Certain Pyridine Bases in Aqueous Solution. T Faraday Soc 50, 918-927 (1954). - 29. Henderson, L. J. Concerning the relationship between the strength of acids and their capacity to preserve neutrality. Am J Physiol 21, 173-179 (1908) - 30. Grant, R. S., Coggan, S. E. & Smythe, G. A. The physiological action of picolinic Acid in the human brain. Int J Tryptophan Res 2, 71-79 (2009). - 31. Lumata, L. et al. DNP by thermal mixing under optimized conditions yields >60,000-fold enhancement of 89Y NMR signal. J Am Chem Soc 133, 8673–8680 # **Acknowledgments** This research was supported in part by the Department of Defense Prostate Cancer Research Program (W81XWH-12-1-0289 and W81XWH-12-1-0134), the National Institutes of Health (P41EB015908 and R37 HL34557), and the Robert A. Welch Foundation (AT-584). #### Author contributions C.K. initiated and directed the project, analyzed data, and wrote the manuscript, W.I. performed the experiments, analyzed data, and wrote the manuscript. L.L., W.C., S.Z., Z.K. and A.D.S. contributed to data analyses and manuscript preparation. # Additional information Supplementary information accompanies this paper at http://www.nature.com/ scientificreports Competing financial interests: The authors declare no competing financial interests. How to cite this article: Jiang, W. et al. Hyperpolarized 15N-pyridine Derivatives as pH-Sensitive MRI Agents. Sci. Rep. 5, 9104; DOI:10.1038/srep09104 (2015). This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/