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Thymic epithelial cells (TECs) provide essential clues for the proliferation, survival,
migration, and differentiation of thymocytes. Recent advances in mouse and human
have revealed that TECs constitute a highly heterogeneous cell population with distinct
functional properties. Importantly, TECs are sensitive to thymic damages engendered by
myeloablative conditioning regimen used for bone marrow transplantation. These
detrimental effects on TECs delay de novo T-cell production, which can increase the
risk of morbidity and mortality in many patients. Alike that TECs guide the development of
thymocytes, reciprocally thymocytes control the differentiation and organization of TECs.
These bidirectional interactions are referred to as thymic crosstalk. The tumor necrosis
factor receptor superfamily (TNFRSF) member, receptor activator of nuclear factor kappa-
B (RANK) and its cognate ligand RANKL have emerged as key players of the crosstalk
between TECs and thymocytes. RANKL, mainly provided by positively selected CD4+

thymocytes and a subset of group 3 innate lymphoid cells, controls mTEC proliferation/
differentiation and TEC regeneration. In this review, I discuss recent advances that have
unraveled the high heterogeneity of TECs and the implication of the RANK-RANKL
signaling axis in TEC differentiation and regeneration. Targeting this cell-signaling
pathway opens novel therapeutic perspectives to recover TEC function and
T-cell production.

Keywords: bone marrow transplantation, central tolerance, receptor activator of nuclear factor kappa-B, thymic
crosstalk, thymic epithelial cells, thymic regeneration
INTRODUCTION

The thymus supports the generation of distinct T-cell subsets such as conventional CD4+ and CD8+ T
cells, Foxp3+ regulatoryTcells, gdTcells, and invariantnatural killerT cells (iNKT).Thedevelopmentof
these different T-cell subsets depends on stromal niches composed of thymic epithelial cells (TECs).
TECs control T-cell development from the entry of T-cell progenitors to the egress of mature T cells.
According to their anatomical localization and functional properties, TECs are subdivided into two
main populations: cortical TECs (cTECs) and medullary TECs (mTECs). cTECs support the initial
stages of T-cell development, including T-cell progenitor homing, T-cell lineage commitment, the
expansionof immature thymocytes, deathbyneglect of thymocytes that donot recognize peptide-MHC
complexesandpositive selectionof thymocytes intoCD4+andCD8+Tcells.Bycontrast,mTECscontrol
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late stages of T-cell development, mainly the induction of self-
tolerance characterized by the clonal deletion of autoreactive
thymocytes and CD4+ thymocyte diversion into the Foxp3+

regulatory T-cell lineage. Conversely, thymocytes control TEC
expansion and differentiation. These bidirectional interactions
between thymocytes and TECs are termed thymic crosstalk (1–3).
TEC HETEROGENEITY IN MOUSE
AND HUMAN

Historically, cTECs and mTECs were identified by histology
using distinct markers such as cytokeratin 8 for cTECs and
cytokeratin-5 and -14 for mTECs (4). TEC identification by flow
cytometry on enzymatically-disaggregated thymus has greatly
aided in studying TEC heterogeneity and functionality. TECs are
non-hematopoietic cells, which express the Epithelial Cell
Adhesion Molecule (EpCAM), and are generally identified as
CD45-EpCAM1+. TECs can be further segregated into cTECs
and mTECs based on the detection of Ly51 and reactivity to the
lectin Ulex Europaeus Agglutinin 1 (UEA-1), respectively. cTECs
and mTECs have distinct phenotypic and functional properties.
Recent advances based on single-cell transcriptomic analyses
have highlighted that TECs constitute a more diverse and
dynamic population than previously thought.
FEATURES OF CORTICAL TECs

cTECsexpress severalmolecules thatgovern the initial stagesofT-cell
development. They express CXCL12 and CCL25 chemokines that
guide the homing of T-cell progenitors into the thymus (5, 6). cTECs
also express the NOTCH ligand Delta-like 4 (DLL4), which induces
the engagement of progenitors into the T-cell lineage (7, 8).
Moreover, they express IL-7 and stem cell factor (SCF) cytokines
that promote the survival and proliferation of immature thymocytes
(9). They are equipped with protein degradation machineries
important for the positive selection of CD4+ thymocytes such as
the lysosomal endopeptidase cathepsin L (encoded by Ctsl) and the
thymus-specific serine protease TSSP (encoded by Prss16) that
contributes to MHC class II-associated self-peptide generation (10).
They also express the thymoproteasome subunit b5t (encoded by
Psmb11), which produces MHC class I-associated self-peptides
required for the positive selection of CD8+ thymocytes (11).

cTECs are heterogeneous based on the expression level of
MHCII, CD40, DLL4, and IL-7. Intriguingly, a cTEC subset
specific of the perinatal thymus termed perinatal cTECs has been
identified by single-cell transcriptomics (12). These cells,
representing one-third of all TECs at 1 week of age, are highly
proliferative and express synaptogyrin 1 (Syngr1) and G protein-
coupled estrogen receptor 1 (Gper1) in addition to classical cTEC
markers. Furthermore, by enveloping many viable double-positive
(DP) thymocytes, a fraction of cTECs can form multi-cellular
complexes called thymic nurse cells (TNCs) (13). TNCs likely
provide a microenvironment favorable to secondary TCRa
rearrangements in long-lived DP thymocytes, thereby optimizing
TCR repertoire selection (14). Although TNCs remain poorly
Frontiers in Immunology | www.frontiersin.org 2
characterized, they exhibit a distinct gene expression profile
characterized by high expression of CXCL12 and TSSP. TNCs
thus constitute a cTEC subpopulation with distinct morphological
and functional properties. Given that cTECs ensure multiple
functions such as i) lymphoid progenitor homing, ii) T-cell lineage
commitment, iii) immature thymocyte expansion, and iv) positive
selection of thymocytes, it is likely that cTECs contain discrete
functional subsets. Further investigations are required to clarify
cTEC heterogeneity. Their development is regulated by signals
provided by developing thymocytes. Human CD3ϵ transgenic
mice (tgϵ26 mice), in which T-cell development is blocked at the
early DN1 stage, have a disorganized cortex with cTECs arrested
at the CD40-MHCIIlo stage (15, 16). However, the transplantation
of tgϵ26 recipients with bone marrow cells from Rag2-/- mice,
exhibiting a subsequent block at the DN3 stage, restores the
cortical organization (4, 17). Furthermore, cTECs with a
CD40+MHCIIhi phenotype develop in the thymus of Rag1-/- mice
(16). Thus, cTEC development requires signals from thymocytes
beyond the DN1 stage. Nevertheless, the cell-signaling pathways
responsible for their development remain to be determined.
FEATURES OF MEDULLARY TECs

Compared to cTECs, mTECs are better characterized, likely
because they are more abundant. mTECs have the unique
ability to express up to 85%–90% of the genome and virtually
all protein-coding genes (18). This promiscuous gene expression
program is induced by the autoimmune regulator (Aire) and the
transcription factor Fez family zinc finger 2 (Fezf2) (18, 19).
mTECs contain two main subsets identified on MHCII and
CD80 cell surface expression levels: MHCIIloCD80lo (mTEClo)
and MHCIIhiCD80hi (mTEChi) (20). These two subsets are
heterogeneous based on distinct markers and functional
properties. mTEClo contain mTEChi precursors expressing
alpha-6 integrin (Itga6) and Sca1 (Ly6a) (21–23). They also
comprise CCL21+ mTECs implicated in the migration of
positively-selected thymocytes into the medulla (24). Cell fate
mapping studies have identified that mTEClo contain post-Aire
cells characterized by the loss of Aire protein and low surface
levels of MHCII and CD80 molecules (25–27). Another subset of
terminally differentiated mTECs closely resembling the gut
chemosensory epithelial tuft cells are also present in mTEClo

(28, 29). These cells express the doublecortin-like kinase 1
(Dclk1) marker and the transcription factor Pou2f3. Thus, the
mTEClo compartment is particularly heterogeneous, containing
not only mTEChi precursors but also CCL21+, post-Aire and
tuft-like mTECs. The mTEChi compartment is also diverse,
containing Aire-Fezf2+ and Aire+Fezf2+ subsets.

Single-cell transcriptomic analyses have identified dozens of
TEC subsets, including perinatal cTECs, mature cTECs, mTEC
progenitors, Aire+, post-Aire and tuft-like mTECs (12, 28, 30).
Among them, two other minor subsets termed neuronal and
structural TECs have been identified based on their expression
signatures associated with neurotransmitters and extracellular
matrix such as collagens and proteoglycans (12). Further
investigations are required to define their anatomical localization
January 2021 | Volume 11 | Article 623265
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and function. Interestingly, a subset of proliferating mTECs
expresses substantial levels of Aire, suggesting that it corresponds
to a maturational stage just before Aire+ mature mTECs (12, 30).

Inhumans, cTECs andmTECsare defined as EpCAMintCDR2hi

and EpCAMhiCDR2-, respectively (31). AIRE and FEZF2 are also
expressed inhumanmTECs, indicating a conservedmechanism for
the regulation of tissue-restricted self-antigens (19, 32, 33). Recent
single-cell transcriptomic analyses across the lifespan showed a
largely conserved TEC heterogeneity in humans (34). cTECs are
more abundant during early fetal development, then a population
with cTEC and mTEC properties appears in the late fetal and
pediatric human thymus and lastly mTECs are dominants.
Interestingly, two rare TEC subsets expressing MYOD1 and
NEUROD1 genes that resemble myoid and neuroendocrine cells,
respectively, were also identified. Although these subsets are
preferentially located in the medulla, their respective function
remains to be studied.
RANK-RANKL AXIS IN MTEC EXPANSION
AND DIFFERENTIATION

The tumor necrosis factor receptor superfamily (TNFRSF)
member, receptor activator of nuclear factor kappa-B (RANK;
encoded by Tnfrsf11a) and its cognate ligand RANKL (encoded by
Tnfsf11) play a privileged role in mTEC expansion and
differentiation. During embryonic development, RANK
gradually increases and is expressed by Aire+ mTEC precursors
(35). In the adult, RANK is expressed by subsets that reside within
mTEClo and mTEChi, including CCL21+ and Aire+ cells (36).
Importantly, the RANK-RANKL axis activates the classical and
non-classical NF-kB signaling pathways that control the
development of Aire+ mTECs (37). In the embryonic thymus of
RANK- or RANKL-deficient mice, Aire+ mTECs are absent,
indicating that this axis governs the emergence of Aire+ mTECs
(37, 38). At this stage, RANKL is provided by CD4+CD3-

lymphoid tissue inducer (LTi) cells and invariant Vg5+ dendritic
epidermal T cells (DETC) (39). Nevertheless, other hematopoietic
cells might be implicated since few Aire+ mTECs are still detected
in the embryonic thymus of mice lacking both LTi cells and
DETC. In the postnatal thymus, the absence of RANK or RANKL
leads to a partial reduction in Aire+ mTECs, showing that other
signal(s) are involved in mTEC differentiation after birth (37, 40).
Although Cd40-/- and Cd40lg-/- mice show subtle defects in Aire+

mTECs, these cells are further decreased in Tnfrsf11a-/- × Cd40-/-

double-deficient mice compared to Tnfrsf11a-/- mice, showing that
RANK and CD40 cooperate to induce mTEC differentiation after
birth (37). In the postnatal thymus, whereas CD40L is exclusively
provided by CD4+ thymocytes, RANKL is higher in CD4+ than in
CD8+ thymocytes and detected in iNKT cells (40–42) (Figure 1A).
The contribution of LTi, DETC and iNKT cells in the adult might
be limited due to their paucity compared to the large numbers of
CD4+ thymocytes. This assumption is corroborated by the fact
that mice deficient in CD4+ thymocytes have a dramatic reduction
in Aire+ mTECs and an underdeveloped medulla (41, 43).

RANKL is primarily synthesized as a membrane-bound trimeric
complex that can be cleaved into its soluble form by proteases (44).
Frontiers in Immunology | www.frontiersin.org 3
A recent study showed that mice lacking soluble RANKL have
normal numbers of Aire+ mTECs, indicating that membrane-
bound rather than soluble RANKL induces their differentiation
(45). Accordingly, RANKL and CD40L signals are delivered by
CD4+ thymocytes in the context of antigen-specific TCR/MHCII-
mediated interactions with mTECs (41, 43, 46). This is well
illustrated in Rip-mOVAxOTII-Rag2-/- mice, in which the Rip-
mOVA transgene drives the expression of membrane-bound OVA
in mTECs allowing high affinity interactions with OVA-specific
OTII CD4+ thymocytes. Aire+ mTECs develop in these mice in
contrast to OTII-Rag2-/- mice. RANKL in CD4+ thymocytes is likely
regulated by TGFbRII signaling (47). Mice lacking TGFbRII in ab
thymocytes at the early DP stage (Cd4-cre x Tgfbr2fl/fl mice) have
reduced RANKL levels in Helios+ autoreactive CD4+ thymocytes.
Conversely, the stimulation of purified autoreactive CD4+

thymocytes with TGF-b increases RANKL expression. This
upregulation is prevented by MAPK pathway inhibitors,
indicating that TGFbRII signaling induces RANKL by its
SMAD4/TRIM33-independent pathway. Similarly, TGF-b
stimulation was shown to increase RANKL in TCR-activated T-
cell hybridoma (48).

RANK signaling is regulated by the soluble decoy receptor for
RANKL, osteoprotegerin (OPG; encoded by Tnfrsf11b), which
inhibits RANKL interaction with its receptor RANK. OPG
deficiency leads to an increased mTEC cellularity resulting in
enlarged medulla with an enrichment in Aire+ mTECs (49). Mice
harboring a Tnfrsf11b deletion in mTECs have increased numbers
of total and Aire+ mTECs, similarly to Tnfrsf11b-/- mice (50). Thus,
OPG produced locally by mTECs rather than serum OPG regulates
mTEC cellularity and differentiation. RANK activates Aire
expression by the NF-kB signaling because Aire contains in its
upstream coding region a highly conserved noncoding sequence 1
(CNS1) with two NF-kB binding sites (51, 52). CNS1-deficient mice
consequently lack Aire expression in mTECs and show many
characteristics of Aire-/- mice including reduced Aire-dependent
tissue-restricted self-antigens. Noteworthy, the RANK-RANKL axis
does not only induce Aire by itself but also controls mTEC
cellularity and differentiation. In addition to Aire+ mTECs,
Tnfsf11-/- mice show reduced numbers of mTEClo and mTEChi

(37). Conversely, Tnfrsf11b-/- mice have increased numbers of
CCL21- and CCL21+ mTEClo and Aire- and Aire+ mTEChi (36,
49). Accordingly, the stimulation of 2-deoxyguanosine-treated
thymic lobes with RANKL show increased mTEC cellularity
including Aire+ mTEChi, which is further augmented by the
addition of CD40L protein (43, 53). Furthermore, in vivo anti-
RANKL blockade results in a severe depletion of around 80% of
mTECs with a substantial loss of mTEClo and Aire+ mTEChi (49).
In addition to control Aire+ mTECs, RANK signaling therefore
regulates the overall mTEC cellularity.

In humans, scRNA-seq data indicate that RANK is expressed
by Aire+ mTECs (34). Interestingly, the stimulation of primary
human mTECs with RANKL leads to the upregulation of AIRE
mRNA, suggesting a conserved role for RANK signaling (54).
Given the implication of RANK-RANKL axis in bone resorption, a
monoclonal antibody specific of human soluble and membrane-
bound RANKL, Denosumab, has been developed to inhibit
osteoclast development and activity. Denosumab is now used in
January 2021 | Volume 11 | Article 623265
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therapy to treat osteoporosis, primary bone tumors and bone
metastases (55, 56). Nevertheless, considering the importance of
RANK-RANKL axis in Aire+ mTEC differentiation, it remains to
be defined whether this treatment could affect central tolerance
and increase the risk of autoimmunity.
SENSIBILITY OF TECs TO
MYELOABLATIVE CONDITIONING
REGIMEN

Myeloablative treatments such as radiation and chemotherapy
deplete hematopoietic cells and in particular DP thymocytes that
are extremely sensitive. These treatments also impair the
recruitment of circulating T-cell progenitors and induce
damages on TECs (Figure 2). Consequently, the generation of
newly produced naïve T cells is reduced. Since TECs dictate the
size of stromal niches, TEC injury contributes in a delayed T-cell
reconstitution upon bone marrow (BMT) or hematopoietic stem
transplantation (HSCT). In humans, allogeneic HSCT survivors
are immunodeficient in T cells for at least 1 year, a period of high
susceptibility to opportunistic infections, autoimmunity or tumor
relapse, increasing the risk of morbidity and mortality (57, 58).
Although innate cells and antibodies may limit viral infections,
cytotoxic CD8+ T cells and helper CD4+ T cells are essential in
viral clearance and the prevention of recurrent infections. T-cell
recovery thus protects from lethality after BMT or HSCT.
Importantly, T-cell immunity relies on the regeneration of the
Frontiers in Immunology | www.frontiersin.org 4
thymus and its capacity to produce naïve T cells. Total body
irradiation (TBI) leads rapidly in a profound reduction of the
cortex due to the loss of DP thymocytes and a substantial decrease
of the medulla (59). Both cTECs and mTECs are radiosensitive
(60, 61). Among mTECs, Aire+ mature mTECs are lost upon TBI
and treatment with the chemotherapy agent cyclophosphamide or
the immunosuppressant cyclosporine A, used to prevent allograft
rejection (61, 62). However, the effects of such treatments on the
recently identified dozens of TEC subsets remain to be
investigated. Remarkably, the injured thymic tissue retains
potent regenerative capacity. Targeting the pathways implicated
in endogenous TEC regeneration is expected to improve thymic-
dependent T-cell recovery. Potential strategies based on
keratinocyte growth factor (KGF), IL-22 or Bone Morphogenic
Protein 4 (BMP4) have been reviewed in (58, 63, 64). Strategies
based on FOXN1 protein or cDNA administration also improve
TEC regeneration both in the context of HSCT and aging (65, 66).
A novel role for the RANK-RANKL axis in TEC regeneration and
T-cell recovery is highlighted below.
RANK-RANKL AXIS IN TEC REGENERATION

RANKL is upregulated in radio-resistant LTi cells and CD4+

thymocytes during the early phase of thymic regeneration after
total body irradiation (TBI) (61, 67, 68). Although LTi cells are
rare in the thymus, they express a higher level of RANKL than
CD4+ thymocytes after TBI (61). Interestingly, the administration
of a neutralizing anti-RANKL antibody impairs TEC regeneration,
A B

FIGURE 1 | Key cellular actors implicated in RANK-RANKL signaling axis and in mTEC development and thymic regeneration. (A) TGFbRII signaling upregulates the
expression of RANKL in autoreactive CD4+ thymocytes. RANKL, expressed by autoreactive CD4+ thymocytes and iNKT cells, controls mTEC cellularity and Aire+

mTEC differentiation. By binding to RANKL as a decoy receptor, OPG produced by mTECs inhibits RANK signaling and thereby regulates mTEC development.
(B) Upon total body irradiation, radio-resistant LTi cells and CD4+ thymocytes upregulate RANKL expression. LTi cells also upregulate RANK receptor. RANKL
upregulation or exogenous RANKL administration induces the heterocomplex LTa1b2 at the cell surface of LTi. RANKL could also stimulate RANK signaling in TECs
(dashed arrow). TECs also upregulate the corresponding LTbR receptor after total body irradiation. In turn, LTa1b2-LTbR axis activation induces TEC regeneration
by promoting their proliferation and survival. Furthermore, by inducing the expression of chemokines and adhesion molecules, this axis also favors the thymus
homing of circulating T-cell progenitors.
January 2021 | Volume 11 | Article 623265
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emphasizing an important role for RANKL in endogenous TEC
recovery. Conversely, RANKL protein administration increases
TEC numbers at a level close to unirradiated mice. RANKL
enhances cTEC and mTEC numbers, including Aire+ mTEChi

and TEPC-enriched cells, likely by stimulating their proliferation
and survival. These observations are in agreement with a previous
study indicating that RANKL increases in vitro the proliferation of
cortical and medullary TEC cell lines (69). Of clinical relevance,
RANKL administration upon BMT boosts not only the
regeneration of several TEC subsets but also increases T-cell
progenitor homing (Figure 1B) (61). This latter effect could be
explained by an enhanced cellularity of endothelial cells upon
RANKL administration although further investigations are
required. Consequently, this treatment ameliorates de novo
thymopoiesis and peripheral T-cell reconstitution. Noteworthy, a
single course of RANKL after BMT boosts thymic regeneration at
least during 2 months, indicative of a lasting effect. This
therapeutic strategy is also efficient in aged individuals in whom
T-cell recovery upon BMT is less efficient and delayed (70). Age-
related thymic involution results in a disrupted thymic
architecture with a reduced TEC cellularity, which alters T-cell
production (71). RANKL treatment could be thus of special
interest to the elderly, although further studies are required.

Mechanistically, RANKL upregulates another TNF family
ligand, lymphotoxin a (LTa; encoded by Lta), expressed as a
membrane anchored LTa1b2 heterocomplex, in LTi of recipient
origin (Figure 1B) (61). Conversely, the RANK-Fc antagonist fully
blocks LTa1b2 upregulation. Noteworthy RANKL also induces
LTa1b2 expression in LTi cells during lymph node formation (72).
Frontiers in Immunology | www.frontiersin.org 5
Likewise RANKL, LTa is upregulated during the early phase of
thymic regeneration. Since CD4+ thymocytes upregulate RANKL
and since LTi cells express both RANK and its ligand, RANK
signaling may be triggered in LTi in an autocrine and paracrine
manner. Given that LTi cells upregulate RANKL, LTa1b2, IL-22,
IL-23R, and RORgt after thymic injury (61, 68), these cells are
likely in a quiescent stage at steady state and activated after
irradiation to repair the injured thymic tissue. Accordingly, the
depletion of ILC3, comprising LTi cells, in an experimental model
of graft-versus-host disease (GVHD) results in impaired thymic
regeneration (73). Interestingly, LTbR is also upregulated in
cTECs, mTECs, and TEPC-enriched cells after TBI, suggesting
that the LTa1b2-LTbR axis is implicated in TEC regeneration
(61). At steady state, Lta-/- mice show normal numbers of TEC
subsets. In contrast, cTECs, mTECs including Aire+ mTEChi and
TEPC-enriched cells are substantially reduced in these mice upon
BMT. These observations indicate that the mechanisms implicated
in TEC regeneration are distinct from those used at steady state.
Furthermore, these mice show reduced numbers of early T-cell
progenitors (ETPs) because LTa controls the homing capacity of
circulating T-cell progenitors by regulating the expression of
CCL19 and CCL21 in TECs and ICAM-1, VCAM-1, and P-
selectin in endothelial cells, all implicated in T-cell progenitor
homing (61, 74). Similarly, Ltbr-/- mice have an altered recruitment
of T-cell progenitors after sublethal TBI (75). In agreement with
defective TEC regeneration and T-cell progenitor homing, BM-
transplanted Lta-/- mice have impaired thymic and peripheral T-
cell reconstitution. These beneficial effects induced by RANKL
depend on LTa since they are essentially lost when RANKL is
FIGURE 2 | Pre-transplantation conditioning regimen alters thymic-dependent T-cell production. In contrast to the physiological condition, the homing ability of
circulating T-cell progenitors is reduced after pre-HSCT or BMT conditioning regimen. Furthermore, T-cell production is also reduced, notably due to TEC damages
induced by myeloablative regimens. Consequently, the output of newly generated naïve T cells is diminished.
January 2021 | Volume 11 | Article 623265
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administered in Lta-/- recipients. RANKL administration thus
constitutes a novel therapeutic strategy to improve T-cell
function recovery after thymic injury. Interestingly, RANK and
LTbR expression is conserved in the human thymus, opening
potential therapeutic perspectives (34). Besides applications linked
to myeloablative conditioning regimen, these in vivo findings open
new avenues to treat patients whose thymus has been severely
damaged by aging, viral infections, or malnutrition.
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de la Santé et de la Recherche Médicale, Centre National de la
Recherche Scientifique and Aix-Marseille Université.
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