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1  |  INTRODUC TION

Increasingly, computational simulations of complex individual- 
level patterns are used to support ecological understanding and 

forecasting (Dietze et al., 2018). Simultaneously, modern statistical 
techniques, such as machine learning, are rapidly being developed to 
provide predictions using “big” data in real time (Christin et al., 2019; 
Luo et al., 2011; Peters et al., 2014). Computational models alone 
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Abstract
Merging robust statistical methods with complex simulation models is a frontier for 
improving ecological inference and forecasting. However, bringing these tools to-
gether is not always straightforward. Matching data with model output, determining 
starting conditions, and addressing high dimensionality are some of the complexi-
ties that arise when attempting to incorporate ecological field data with mechanistic 
models directly using sophisticated statistical methods. To illustrate these complexi-
ties and pragmatic paths forward, we present an analysis using tree- ring basal area 
reconstructions in Denali National Park (DNPP) to constrain successional trajecto-
ries of two spruce species (Picea mariana and Picea glauca) simulated by a forest gap 
model, University of Virginia Forest Model Enhanced— UVAFME. Through this pro-
cess, we provide preliminary ecological inference about the long- term competitive 
dynamics between slow- growing P. mariana and relatively faster- growing P. glauca. 
Incorporating tree- ring data into UVAFME allowed us to estimate a bias correction 
for stand age with improved parameter estimates. We found that higher parameter 
values for P. mariana minimum growth under stress and P. glauca maximum growth 
rate were key to improving simulations of coexistence, agreeing with recent research 
that faster- growing P. glauca may outcompete P. mariana under climate change sce-
narios. The implementation challenges we highlight are a crucial part of the conversa-
tion for how to bring models together with data to improve ecological inference and 
forecasting.
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can be incomplete ecosystem representations because of possible 
misspecifications or omissions of processes, and machine- learning 
approaches alone may not provide insights about mechanisms. 
Similarly, ecological field data can never fully observe an ecological 
system. Combining these techniques to understand mechanisms and 
improve predictions is a promising path forward (Reichstein et al., 
2019; Wikle & Hooten, 2010). Examples of such ecological applica-
tions (Fer et al., 2018; Oberpriller et al., 2021; Pietzsch et al., 2020; 
Speich et al., 2021; Tao et al., 2020) are critical for moving beyond 
implementation barriers and solving urgent ecological problems by 
bringing these promising tools to larger application- based audiences.

We focus on an urgent ecological problem in interior Alaska 
where changes in the environment, such as permafrost degradation 
(Hinzman et al., 2006; Osterkamp, 2005; Osterkamp et al., 2009; 
Osterkamp & Romanovsky, 1999; Sniderhan & Baltzer, 2016), have 
occurred over large areas and are beginning to alter boreal forest 
distributions (Jorgenson et al., 2001) including within national parks. 
In Denali National Park, Nicklen et al. (2021) found that the climate 
growth responses of two dominant spruce (Picea) species, but espe-
cially Picea glauca, depended on the presence of near- surface per-
mafrost. Warm summer conditions increased P. glauca radial growth 
on well- drained soils, but strongly reduced growth when growing on 
near- surface permafrost. Picea mariana, currently occupying perma-
frost terrain, may suffer range contraction under climate change as 
competitor P. glauca expands into more suitable terrain as perma-
frost thaws (ACIA, 2005; Wirth et al., 2008). Contrary to these pre-
dictions, increased low- severity fire frequency (e.g., fraction surface 
carbon consumed) may allow for continued self- replacement suc-
cessional trajectories (Johnstone & Chapin, 2006; Johnstone et al., 
2010; Kane et al., 2007). A comprehensive assessment of the cur-
rent status of forests in Denali National Park in Roland et al. (2013) 
showed that P. mariana and P. glauca do not typically co- occur. 
However, Roland et al. (2013) also found that sites where P. glauca 
were most common were also the sites where P. mariana achieved 
greatest diameters. This suggests that the current exclusion of P. 
mariana from areas dominated by P. glauca may be related to com-
petition between the two species not necessarily niche limitations. 
Picea mariana is slow to grow early in succession (Gutsell & Johnson, 
2002; Wagner & Robinson, 2006) and may be hidden from current 
assessments that only consider modern data for future predictions 
(Foster et al., 2019). However, these predictions focus on observa-
tions from the modern landscape and do not incorporate long- term 
(i.e., centennial) data, which may be relevant for predicting long- term 
system behavior. To disentangle this ecological problem and provide 
national park managers and visitors with predictions of forest re-
sponse to climate change, we can improve mechanisms portrayed 
within ecosystem models by combining model simulations with long- 
term field data.

Combining observations with computational models statistically 
can be formally conducted through model calibration. In purely 
statistical models, this process is simply referred to as “model fit-
ting” where uncertainty in a selected model parameterization can 
be accounted for in a statistical context where data, process, and 

parameter models may be developed to make posterior parameter 
inference (Berliner, 1996). But, it is often computationally infeasi-
ble to embed a fully computational model within this type of sta-
tistical model directly. For computational models, many different 
model calibration approaches can be taken ranging from informal 
to formal statistical techniques. A more informal approach involves 
“tuning” parameters where the user alters parameters until the out-
put more closely matches the observations. More formal techniques 
for model calibration involve either informing parameters directly 
with data (LeBauer et al., 2013) or iteratively updating parameters 
or parameter distributions as data become available (Fer et al., 2018; 
Oberpriller et al., 2021; Pietzsch et al., 2020; Speich et al., 2021; 
Tao et al., 2020). Similarly, modelers may choose to calibrate all pa-
rameters in a computational model, which we refer to as “full model 
calibration,” or a modeler can choose to focus on the most sensitive 
model parameters using an “a priori” parameter sensitivity analysis.

In this study, we perform calibration of an agent- based model 
focusing on the most sensitive parameters. Agent- based models 
are computational models used in disease, animal, forest ecology, 
and beyond to simulate the patterns of individuals, then calculate 
how the aggregation of those individual patterns leads to emer-
gent system properties (Banks & Hooten, 2021; Hooten et al., 
2020). For example, human mobility in an agent- based model may 
lead to population- level spread of a disease. Connecting data with 
individual- based models can be difficult because it is unclear how 
the individual data relate to the emergent process of interest, such 
as vector- borne disease spread among a population (Perkins et al., 
2019). In agent- based models of human mobility, data are not typi-
cally used directly to constrain the human movement process itself, 
but instead data can be used to constrain parameters that drive the 
spread of the disease between individual agents (Venkatramanan 
et al., 2018). Similarly, in forest ecology, data collected at the in-
dividual tree level can be used to constrain growth parameters in 
individual- based models, which leads to an improved understanding 
of long- term forest change.

Constraining mechanistic ecological simulation model param-
eters, however, remains challenging. Mechanistic ecological simu-
lators often have detailed process representations that are aimed 
at improving realism at the cost of making models computationally 
expensive. Parallelization of model calculations can greatly reduce 
computational times. Yet, during model development stages, espe-
cially for the non- specialist, this is often not a worthwhile solution 
because it requires a large investment in computing resources and 
development of parallelization or simulation code. In this instance, 
we consider a “non- specialist” a person who could expand model- 
based ecological interpretation and hypothesis testing but does not 
have any experience with simulation modeling (Fer et al., 2021). A 
“non- specialist” may be an expert in another area that is needed to 
improve model simulation capabilities, but a “non- specialist” does 
not specialize in the simulation model code or implementation it-
self (e.g., a formally trained statistician or forest ecologist). Software 
packages exist that remove both computational and statistical bar-
riers for performing ecological model calibration as a non- specialist 
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(Fer et al., 2018). However, this software, while integral to model 
calibration research, is in early stages of development, has yet to be 
applied in a broad ecological context, and is therefore not applica-
ble to all branches of ecology. Software packages exist that remove 
statistical barriers (Hartig et al., 2019; Speich et al., 2021), but these 
packages require the user to perform the model simulations and 
make consequential decisions about the experimental design of the 
model simulations. To solve complex ecological problems, ecologists 
should be involved in the simulation modeling improvement process 
and more examples from branches of ecology using a variety of sta-
tistical methods are needed.

Approximating the computer model using a statistical surrogate 
or emulator has become a popular solution to model calibration 
(Gramacy, 2020). Surrogates are statistical representations of com-
puter models and are developed using the paired input and output 
from a computer model to train a statistical surrogate that is used 
in the calibration process. There are many types of statistical mod-
els that can be used as surrogates such as deep neural networks, 
generalized additive models, and Gaussian process models. Gaussian 
process models (GPs) have become popular because GPs are highly 
accurate at out- of- sample prediction, allow for uncertainty quanti-
fication, and are analytically tractable (Bijak et al., 2013; Heitmann 
et al., 2013; Santner et al., 2018; Verrelst et al., 2016). GPs have 
been used as successful computer model surrogates in many con-
texts including engineering, physics, and Earth system modeling. 
Only recently have they been proposed as a useful framework for 
calibration of agent- based models in ecology (Banks & Hooten, 
2021; Hooten et al., 2020). Furthermore, it has been shown that GPs 
can account for model structural error and model parameter error 
simultaneously (Oberpriller et al., 2021), offering an advantage to 
conventional model calibration techniques (Hartig et al., 2011). As 
GPs become increasingly popular, many statistical software pack-
ages built for the non- specialist are being developed (Erickson et al., 
2018; Fer et al., 2018; Liu et al., 2020). While these packages remove 
implementation barriers, some statistical choices may not be obvi-
ous for a non- specialist because they are based on either open sci-
entific questions or practical rules of the model calibration process.

The non- specialist may have to make several choices about how 
to create the simulations or morph existing simulation output to 
match the data- generating process. These choices affect the param-
eter estimates and are rarely discussed. To highlight these challenges 
in an accessible context, we present an example using tree- ring data 
collected in Denali National Park to calibrate species parameters in a 
state- of- the- art individual- based forest model (University of Virginia 
Forest Model Enhanced, UVAFME; Foster et al., 2019) illustrating a 
method not commonly used in ecology that may connect an eco-
logical computer model with field data using a Gaussian process 
surrogate. This example demonstrates the complexities of three 
statistical modeling choices that are common in many ecological 
settings: (1) matching the field observations with model output, (2) 
determining the correct model start time (i.e., initial conditions) from 
data, and (3) fitting a high- dimensional Gaussian process surrogate 
to calibrate the model parameters. This example based on UVAFME 

involves forest succession, a foundational ecological process, in a 
region where competitive relationships between species may drive 
biome- level changes (Wirth et al., 2008). Successional trajectories 
can be observed in tree- ring data but are seldom used in conjunction 
with models of succession because of the issues listed above. We 
calibrate UVAFME using tree- ring- derived basal area to gain mean-
ingful ecological inference and show how we pragmatically over-
come the three aforementioned issues in the procedure.

2  |  MATERIAL S AND METHODS

2.1  |  Study area and tree- ring data

Denali National Park (DNPP) comprises a variety of habitats be-
cause of wide elevation and topographic gradients (i.e., slopes and 
aspects). Tree species in DNPP have unique life history characteris-
tics and thus occupy largely distinct habitats with a few exceptions. 
The most common tree species in DNPP is Picea glauca, followed by 
Picea mariana. Picea glauca is a relatively faster- growing species that 
typically occupies well- drained sites with warmer, more basic, and 
deeply thawed soils, while P. mariana tends to occupy areas influ-
enced by near- surface permafrost with thin active layers and cold, 
wet, acidic soils (Islam et al., 2003; Roland et al., 2013; Van Cleve 
et al., 1983). Forests in DNPP are under increasing pressure from 
climate change as temperatures, growing season length, and distur-
bance frequency and severity increase (Kelly et al., 2013; Roland 
et al., 2019). These accelerated changes have resulted in predictions 
that the boreal forest, including DNPP, is at the edge of a biome- level 
tipping point (Scheffer et al., 2012) where water- limited spruce- 
dominated forests could be replaced by post- fire early recruiting 
broadleaf- dominated forests. Landscape features, such as organic 
matter depth or wetness rating, are seldom directly considered in 
regional predictions of species distributions and may offer refugia or 
buffer from extreme changes (Raiho et al., In Revision; Scharf et al., 
2021).

To predict future distributions of P. mariana and P. glauca, we need 
a mechanistic understanding of the competitive relationship be-
tween the two species informed by long- term data. Because Denali 
National Park occupies a large region (~4.7 million acres), data for 
model calibration are typically collected from satellite observations 
or from field sites along roads. However, these modern snapshot 
data do not hold information about successional trajectories or com-
petitive dynamics between species. Tree- ring data are well suited 
to help us gain insights about forest succession (Fritts & Swetnam, 
1989). The National Park Service collected tree rings for P. glauca and 
P. mariana across a wide spatial domain in Denali at 233 sites. These 
records average 103.2 years long (SD = 49.7) and 2.6 cored trees 
(SD = 1.5) per site. Plot and tree sampling methods are described in 
Nicklen et al. (2016). We measured growth rings to 0.001 mm using 
either CooRecorder (Cybis Elektronik & Data AB), WinDENDRO 
(Regent Instruments Inc.), or a sliding scale. Ring widths were visu-
ally cross- dated using CDendro 8.1 (Cybis Elektronik & Data AB), and 
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cross- dating was validated with COFECHA 12K XP (Holmes, 1983). 
Basal area increment, the estimated area of wood produced by each 
tree in each year of growth, was calculated using ring widths and 
tree radius with the outside- in approach (Biondi, 1999; Johnson & 
Abrams, 2009). We used the sum of the ring widths as the radius 
unless the measured tree radius ((diameter at core/2) − average bark 
width) was greater than ring width sum, in which case we used the 
measured radius. Cores with missing outer rings were not used. We 
use species- level total basal area, which was calculated by summing 
across the basal area increment measurements by year and species 
at each plot. For comparison between the tree- ring and model sim-
ulation datasets, we remove small trees from UVAFME simulations 
and perform the same basal area calculation by summing across basal 
area increment within UVAFME outputs. Across 233 sites, there are 
only 10 sites that contain tree core data from at least one individual 
of each species (Figure A9: Appendix S1). We refer to these sites 
as the “coexistence sites” and focus our model calibration on those 
sites for a multi- species simulation model calibration.

Tree rings are critical for observing long- term forest succession 
at a particular location. However, there are many uncertainties as-
sociated with tree- ring basal area reconstructions (Alexander et al., 
2018). In particular, tree- ring accuracy is reduced for earlier dates 
because only the trees that are alive at present were cored and do 
not represent trees that may have died in the past in the same loca-
tion. This is known as the “fading record” because there is less infor-
mation in the earlier tree rings about the forest stand (Babst et al., 
2014; Nehrbass- Ahles et al., 2014). While this problem is specific to 
tree- ring data, we highlight it in this manuscript to show how this 
type of model- data mismatch can be overcome.

2.2  |  Individual- based forest simulation model

University of Virginia Forest Model Enhanced (UVAFME) is a forest 
gap model that was originally developed as an enhancement for al-
pine and boreal forests on previous forest gap models (Shugart et al., 
2020). The basic principle underlying UVAFME is competition for 
light, water, and nutrients between individual trees. Changing demo-
graphics of individual trees then feeds back to the ecosystem states 
to alter the availability of light, water, and nutrients in the following 
years. Each year, individual trees are limited by the least of these 
factors, resulting in realistic forest stand dynamics over successional 
timescales as limiting factors change over time. UVAFME has been 
applied in the boreal forest (Yan & Shugart, 2005) and has been 
further extended to simulate boreal forest dynamics across regions 
(Foster et al., 2019). Most notably, UVAFME has the ability to simu-
late permafrost change over time, which greatly affects forest stand 
development from individual tree to regional spatial levels in Alaska 
(Shur & Jorgenson, 2007). Permafrost is parameterized in UVAFME 
as a limiting growth factor that affects tree species differently if they 
are parameterized as tolerant or intolerant. The current parameteri-
zation of permafrost includes fixed rates for tolerant or intolerant 
growth response to active layer depth. Because growth response to 

active layer depth is not well known at the individual tree level, we 
incorporated these rates as unknown parameters in our sensitivity 
analysis described in the upcoming section. There are 23 species- 
specific parameters in UVAFME. The default parameterization for 
the boreal region of Alaska is fully described in Foster et al. (2019). 
We used site condition settings from the plot- level data collected 
in Roland et al. (2019). Forest gap models have been developed to 
represent the expected long- term (i.e., centennial to millennial) for-
est community dynamics given climate normal conditions (Bugmann, 
2001). Following common forest gap model implementation, we 
used the default climate subroutines available within UVAFME and 
drew random monthly temperature and precipitation from climate 
normal distributions (Group, 2009, 2020). Site- level settings includ-
ing initial nitrogen pools were assigned based on field data collected 
in Roland et al. (2013) and Nicklen et al. (2019). We also follow con-
ventional forest gap model practice by starting all of our simulations 
at bare ground.

2.3  |  Sensitivity analysis

To fully emulate UVAFME using a Gaussian process surrogate, we 
considered all data inputs and data outputs to create a statistical 
representation of the mathematical model. UVAFME has 23 species 
parameters, 24 meteorological drivers per year run, and 10 site- 
specific conditions that are defined at the onset of the modeling pro-
cess as inputs. Individual growth is incremented annually, and there 
are also between 10 and 100 belowground pools that are updated. 
For a 100- year computer model simulation, there are 2456 inputs 
(= (23 × 2) + (24 × 100) + 10) and between 1000 and 1,000,000 
outputs depending on the number of individuals simulated. It is not 
pragmatic to vary each input individually to adequately represent 
all dimensions of the model. We must reduce the dimensions of the 
problem to gain meaningful ecological inference. For our purposes, 
we are interested in learning about parameters driving competition 
between spruce species, so we omit meteorological drivers and 
model input settings hereafter. We performed a sensitivity analysis 
over the species- level parameters to determine the parameters that 
were most important to constrain. Sensitivity analysis is a common 
method for reducing model dimensions by choosing parameters that 
are most likely to affect the output of interest (LeBauer et al., 2013).

We performed a sensitivity analysis on parameter sets for P. mar-
iana and P. glauca in UVAFME. To do this, we ran eight simulations for 
each of the 23 parameters for each of the two species, varying one 
parameter at a time across an informative uniform prior centered on 
default values with width set based on expert knowledge of the range 
of realistic values from Foster et al. (2019). This resulted in 85,744 for-
est simulations (= 2 × 23 × 8 × 233) across 233 sites in Denali National 
Park. Starting at bare ground, we ran each simulation for 500 years to 
span the longest tree- ring record (346 years). Across each species set 
of simulations (n = 42,872), we calculated the first principal component 
score for each basal area time series using the “princomp” function in 
the R computing environment (R Core Team, 2019; Venables & Ripley, 



    |  18275RAIHO et Al.

2013). See Appendix A8.2 for pseudocode. We then determined the 
parameter sets that were most sensitive across sites by calculating 
which parameter had the largest variance across first principal com-
ponent scores by parameter at each site. We chose the first principal 
component score as our sensitivity diagnostic because it is a simplified 
representation of the shape of the trajectory of basal area over time. 
The parameter that most changed the first principal component score 
variance and therefore the simulation trajectories was identified as the 
most sensitive for a given site– species combination.

2.4  |  Model calibration with a Gaussian 
process surrogate

We estimated species- specific parameters for the most sensitive pa-
rameters at each coexistence site using tree- ring data to calibrate 
UVAFME and accurately simulate competitive dynamics between 
P. glauca and P. mariana over a centennial time frame. We did this 
with three steps listed here and described below: (1) Input grid— we 
simulated forest trajectories across a grid of the most important pa-
rameters determined by the sensitivity analysis using UVAFME at 
each site; (2) optimal coring year— we determined the best set of tra-
jectories by calculating historical basal area trajectories for an alive 
tree subset each year of the simulation and using model selection to 
determine the optimal coring year in the simulations; (3) parameter 
estimation— we fit a surrogate model to the alive tree subset at the 
optimal coring year and estimated the best parameter combination 
given the tree- ring observations.

2.4.1  |  Input grid

We determined the species parameter input grid for the simulations 
at each site using the most important site parameters from the sensi-
tivity analysis. We varied parameters similar to the sensitivity analy-
sis across a uniform prior centered on the species parameterizations 
with prior spread determined from expert knowledge from Foster 
et al. (2019). We selected 36 parameter combinations per site using a 
Latin- hypercube sampling design implemented with the “lhs” R pack-
age (Carnell & Carnell, 2016; Lin & Tang, 2015). This resulted in 36 
forest basal area simulations per coexistence site. We chose 36 pa-
rameter combinations after initial attempts with fewer simulations 
(e.g., 5 × 5 = 25) where our parameter estimation process resulted 
in poor basal area predictions. More simulations could be added in 
the future, but we did not add more simulations because we met 
our objectives with 36 simulations at each coexistence site for this 
example of model calibration.

2.4.2  |  Optimal coring year procedure

As discussed previously (Section 2.1), tree- ring observation uncer-
tainty includes uncertainty from the fading record where earlier tree 

rings are an inaccurate representation of forest stand basal area. Tree 
rings also provide the best data available for understanding long- term 
competitive interactions between individuals. Dendroecologists have 
developed sophisticated statistical models for estimating the un-
certainty associated with basal area reconstructions from tree- ring 
records (Alexander et al., 2018; Dye et al., 2016) with the aim of in-
corporating these records into forest simulation models. While these 
methods are statistically robust and necessary for some data assimi-
lation methodologies (Raiho et al., 2020), we used an alternative ap-
proach where we sampled the data and the model using the same 
methodology. As discussed in Section 2.1, we summed across the basal 
area increment measurement assuming that all trees were measured 
within a plot. In accordance with this assumption, we also thinned the 
model output to match the data- generating process where, at each 
time step, we calculated the basal area trajectory only for trees that 
would have been alive and large (>10 cm) when cored (i.e., the “alive 
tree subset”; Figure 1a). This subset varied with coring time because 
we assumed that the observation year, while known in calendar date, 
was unknown in successional time. This is similar to system proxy mod-
els used in paleoclimatology (Evans et al., 2013) and remote sensing 
(Jacquemoud et al., 2000) that are created to simulate an observable 
proxy from mathematical model output. We highlight that UVAFME 
has a mechanistic basis for constructing tree- ring observations from 
the model output where the base mechanism is annual individual di-
ameter increment given limiting growth factors determined from the 
environment (see Section 2.2).

We focused on calibrating the forest simulation model using 
tree- ring data. To do this, we determined the optimal coring time 
within all model simulations according to the alive tree subsets. We 
consider optimal coring time as the simulation year at which the 
alive tree subset historical BA trajectories best match the tree- ring 
BA reconstructions. We fit generalized additive models (GAMs; 
Hastie, 2017) to the tree- ring- derived basal area data by species 
using UVAFME species basal area model output as a predictor and 
additional temporal smoothing to account for residual dependence 
in the data. Our predictor variable was comprised of the alive tree 
subset for each species resulting from the UVAFME simulation out-
put based on the simulated coring year across the 500 simulation 
years. We scored these models based on predictive ability (using 
AIC; Akaike, 1973) to identify the optimal simulated coring year for 
each site. We relied on these years when making statistical inference 
at the next stages of our modeling procedure. This process allowed 
us to find the historical trajectories that most closely matched our 
data so that we could focus statistical power on parameter infer-
ence using the surrogate model. In a fully Bayesian setting (Berliner, 
1996), the initial conditions would be determined based on model- 
data feedback during the model- fitting process. As discussed earlier, 
this is not an option in our example because of complexity in the sim-
ulation models. Another option would be to include optimal coring 
time in the model calibration process, but because we modularized 
our process as described in the next section, we illustrate a prag-
matic method for determining initial conditions and leave estimating 
initial condition start time as a future direction.
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2.4.3  |  Parameter estimation

Our aim is to provide an ecological example of a commonly used sur-
rogate modeling (Bayarri et al., 2009; Higdon et al., 2008; Tuo & Jeff 
Wu, 2016; Tuo & Wu, 2015) known as the “Kennedy and O'Hagan” 
framework (Kennedy & O'Hagan, 2001; Liu et al., 2009), building on 
the surrogate modeling strategy Gramacy (2020). The basic prem-
ise uses a Gaussian process model (also known as “kriging”), which 
focuses the majority of statistical learning on the covariance matrix 
such that

where the mean of the response variable (Y) is assumed to be 0, and 
the covariance is a function of the distances between the inputs with 
range (θ) controlling smoothness and nugget (�) controlling the size of 
the discontinuity. While our modeling experiments are deterministic, 
see Lee et al. (2011) for nugget recommendations in surrogate model-
ing experiments. We use a Gaussian process in two different parts of 
the model calibration process described below.

At each of the 10 coexistence sites, we estimated two UVAFME 
model parameters, one for each species. This algorithm assumes the 
forest model simulations (yM( ⋅ , ⋅ )) are deterministic and underlie the 
observations in the field data (YF) with an estimated bias (b( ⋅ )) and 
process variance (�) such that,

where � ∼ N
(
0, �2

�

)
, and u∗ is an input parameter value. We repeated 

the following steps over a full grid (i.e., 20 × 20) of possible param-
eter values at each coexistence site. We chose a 20 × 20 grid to in-
crease the simulation parameter grid resolution (N = 36 to N = 400) 
and demonstrated the ability of this approach to estimate param-
eters with only a small subset of simulations (i.e., 9% of full grid). 
First, we built the surrogate of the forest simulation model (ŷM) by 
fitting a Gaussian process to the input (XnM , u) and output (YnM) of 
the model experiments (nM = 1,…,N, N = 36). Specifically, we fit a 
Gaussian process model with heteroskedastic noise to represent 
the increasing variability over time in the forest model simulations 
using the Matern covariance structure (Binois et al., 2018). Second, 
we made a prediction (ŶM|u

nF
) from the surrogate given a set of param-

eters (u∗). Third, we calculated the residuals between these predic-
tions and the tree- ring data (i.e., ŶM|u

nF
− YF ). Fourth, we fit another 

Gaussian process model to these residuals to estimate bias (b̂) to 
calculate the negative log likelihood of the parameters (u∗) given the 
bias. In this step, we were simply optimizing to minimize bias. Finally, 
across the 20 × 20 parameter grid, we determined which parameter 
set has the lowest negative log likelihood. From this procedure, we 
obtained a 400 pixel parameter likelihood surface, the most likely 
parameter combination (û) according to the data, and the data- 
estimated model bias correction (b̂). With the estimated bias correc-
tion, we also obtained a bias square error estimate from the residual 
prediction and were able to show a bias- corrected basal area predic-
tion by adding the prediction from the original surrogate to the bias. 
We repeated the steps across all coexistence sites to obtain optimal 
parameter sets for the most important species parameters deter-
mined from the sensitivity analysis. We specifically chose to use a 
maximum- likelihood approach instead of a Bayesian approach to 
provide an ecological example of a thrifty model calibration using a 
surrogate model. In using maximum likelihood, we reduced our com-
putational time 10- fold, because these calculations take only a few 
minutes or seconds on a personal computer. We implemented the 
statistical surrogate model using the “laGP” package version 1.5.5 
and the “hetGP” package version 1.1.3 in the R computing environ-
ment version 3.6.2 (Binois & Gramacy, 2019; Gramacy, 2016; R Core 
Team, 2019b). We also provide pseudocode in Appendix A8.2.

(1)Y ∼ MVN(0,Σ)

(2)Σ = exp

{
−

p∑

k=1

(xk−x�
k
)2

�

}
+ �Ix=x�

(3)YF = yM ( ⋅ , u∗) + b( ⋅ ) + �,

F I G U R E  1  (a) Cartoon of one simulation of a forest stand at 
three time decadal steps t = 1, 2, or 3. In this example, Picea glauca 
is dominant at t = 1 , both species are present at t = 2, and Picea 
mariana is dominant at t = 3. Observed basal area trajectories 
of the alive tree subset for each species (black for P. mariana 
and green for P. glauca) are shown on the side of each cube and 
illustrate how the basal area trajectory observations may change 
depending on when the trees were cored during successional time. 
(b) Consistently labeled with cartoon (a). Each cube shows the alive 
tree subset basal area reconstructions for a given simulated forest 
stand. Forest stands vary with parameter sets used in the computer 
experiment
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3  |  RESULTS

3.1  |  Sensitive parameters

Parameters governing life expectancy (average maximum age 
(years), Max. Age) and species climate suitability (minimum growing 
degree- days for growth; DD Min) dominated the sensitivity analy-
sis of P. glauca. Max. Age is used in many of the allometric equa-
tions and is used to calculate an annual background mortality rate. 
If the growing degree- days for a year (cumulative sum of degrees 
C above 5°C) are below DD Min for a species, the species DBH in-
crement growth is 0 for the year. The parameter determining the 
minimum diameter increment before a tree is considered “stressed” 
and marked for potential stress- induced mortality (DBH Min) domi-
nated the sensitivity analysis for P. mariana (Figure 2). Trees have 
a chance (21%– 33%) of dying if they have below- minimum growth 
for at least 2 years. Across the 233 sites, the most sensitive param-
eters for P. glauca and P. mariana were life expectancy (Max. Age, 
23% of sites) and minimum annual increment for diameter at breast 
height (DBH Min, 77% of sites). The second most sensitive parame-
ters for P. glauca and P. mariana were growing degree- days minimum 
required for growth (DD Min, 17% of sites) and leaf mass per unit 
area (LC, 10% of sites). Both sensitivity analyses showed spatial pat-
terns from lowland (northwest) to higher elevation sites (southeast) 
where both species were sensitive to minimum growing degree- days 
at higher elevations. The coexistence sites (Figure 2, open circles) 
showed somewhat different patterns for P. glauca with six sites hav-
ing the maximum growth parameter (g) as the most sensitive param-
eter. The maximum growth parameter (g) determines the speed of 
initial DBH increment growth. Thus, faster- growing species are typi-
cally parameterized to have a higher g. Over all 233 sites, g was the 
most sensitive parameter for only 14% of sites for P. glauca. Sensitive 
parameters for the coexistence sites for P. mariana showed similar 
patterns to the overall dataset with seven of the 10 sites having mini-
mum annual increment for diameter at breast height (DBH Min) as 
the most sensitive parameter. Of the 6 coexistence sites where g is 
the most sensitive for P. glauca, 4 of them also had DBH Min as the 
most sensitive parameter for P. mariana.

3.2  |  Optimal coring times

The majority of forest simulation site– year combinations at the co-
existence sites showed P. mariana dominance over P. glauca (95.4%). 
This was caused by a combination of poor recruitment by P. glauca, 
nitrogen limitation (Figures A10 and A11: Appendix S1), and maxi-
mum age restrictions. However, P. glauca persisted in most model 
simulations between 0 and 300 years (Figure A12: Appendix S1). 
This pattern in the model output led to similar estimates of optimal 
coring years across sites (Figure 3 vertical lines, mean = 161.85 sim-
ulation year, SD = 96.3 simulation year) because, earlier in the sim-
ulations, both P. mariana and P. glauca were present in the model 
output. For example in Figure 4 left, at site E. CHITS16, P. mariana 

(blue) was dominant from year 0 to year ~120; then, P. glauca (yellow) 
became dominant from ~120 to ~280 on average across the 36 simu-
lations for this site. During the optimal coring year analysis for E. 
CHITS16, we found that year 113 was the optimal coring year for 
model calibration. Figure 4 right top shows the alive tree subset for 
the optimal coring year contrasted with Figure 4 right bottom, which 
shows a suboptimal alive tree subset. Similar graphics for determin-
ing the optimal alive tree subset across sites is shown in Figure A12: 
Appendix S1.

Using this process, we were able to estimate stand age. We found 
that stand age was related to chronology age, but as chronology age 
increased, the estimated stand age diverged from the chronology 
age (Figure 5, dashed line). This suggests that our approach may be 
able to account for bias in large tree sampling to improve estimates 
of stand age by reducing temporal bias (Gutsell & Johnson, 2002; 
Speer, 2010). However, this is a preliminary finding and more sites 
may be necessary to quantify the shape and magnitude of this bias.

3.3  |  Parameter estimates

We estimated parameter likelihood surfaces (11× the resolution of 
the original simulations) at 10 sites for the two species most sensi-
tive parameters using a GP surrogate for UVAFME (Figure 6). For 
the most sensitive parameters at the coexistence sites, neither re-
sulted in parameter estimates near the default parameterization. 
We found that P. glauca growth parameter (g) was estimated to be 
high at the majority of the coexistence sites (Figure 7 upper left). 
We assessed the effect of g for P. glauca on the final basal model 
output area across the coexistence site simulations and found that 
increasing g values lead to increased P. glauca basal area in the simu-
lations (Figure 7 bottom left). Higher estimates of g correspond to 
observations of tree- ring data (Figure A9: Appendix S1, gray) that 
typically show greater P. glauca basal area than represented in the 
model simulations. Across the six coexistence sites where DBH 
Min was the most important parameter for P. mariana, none were 
estimated near the default value. Similar to g in P. glauca, DBH Min 
for P. mariana was typically estimated to be larger (Figure 7 upper 
right). However, the relationship between DBH Min and simulated 
P. mariana basal area is weaker than the relationship between g and 
P. glauca basal area (Figure 7 bottom right versus bottom left). The 
likelihood surfaces in parameter space (Figure 6) were multi- modal 
and demonstrate that, while it is important to reduce dimensionality 
in the model- fitting process, it may also be important to include ad-
ditional parameters for these sites in the future.

After determining the most likely model parameterization ac-
cording to the data, we were able to adjust model predictions from 
the GP surrogate given information from the tree- ring data (Figure 8). 
In some cases (Figure 8, top two rows), the optimal parameterization 
led to GP predictions that closely matched the data with low model 
prediction uncertainty, while in other cases (Figure 8, third and 
fifth rows), the predictions suggest that further model calibration 
may be necessary because there were both poor prediction using 
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the optimal parameters and wide uncertainty estimates. In general, 
we found that model predictions were less similar to the data for P. 
glauca than for P. mariana (Figure 8, white versus gray) aligning with 
our results from the optimal coring years where coexistence of P. 
glauca and P. mariana was somewhat uncommon in our simulations 
because P. glauca was suppressed by poor recruitment and nutrient 
limitations.

4  |  DISCUSSION

DNPP faces climate changes that have been predicted to dramati-
cally alter species composition and distribution (Chapin et al., 2004). 
Picea glauca is currently the most abundant tree species and may 

expand into P. mariana sites in the near future (Nicklen et al., 2021). 
Wirth et al. (2008) hypothesized that this expansion may cause a 
range contraction for P. mariana because P. glauca grows more 
quickly and may outcompete slower- growing P. mariana during early 
post- fire succession. However, P. mariana is also more tolerant of wet 
edaphic conditions and may itself expand into new sites (Roland et al., 
2013). Currently, it is difficult to observe the competitive dynamics 
between P. mariana and P. glauca because they do not typically co- 
occur (Nicklen et al., 2021). We used long- term data to constrain the 
growth between the two species at sites where they do currently co- 
occur within DNPP to better understand how they may affect each 
other in the future. Our model calibration results show that P. glauca 
may grow faster and P. mariana may become growth- stressed sooner 
than current UVAFME default parameterizations (Figure 7) agreeing 

F I G U R E  2  Elevation map of northern 
Denali National Park. Colored points show 
the most sensitive species parameter 
from the forest simulation model for 
each site cluster for Picea glauca (top) and 
Picea mariana. Tree- ring observations 
are indicated behind the colored points 
in transparent yellow where increasing 
saturation indicates more observations of 
a particular species. Circles indicate the 
10 coexistence site locations where both 
spruce species were observed when tree 
rings were collected. The most sensitive 
species parameters are as follows: life 
expectancy (Max. Age), growth parameter 
(g), scalar parameter for leaf area to 
diameter relationship (DL), leaf mass 
per unit area (LC), growing degree- days 
minimum (DD Min), growing degree- days 
optimum (DD opt.), drought tolerance 
(drought), diameter at breast height 
minimum growth increment (DBH Min), 
and probability of seed dispersal into the 
plot from outside the plot (Invade Prob.)
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with assessments that P. glauca may have a competitive advantage 
over P. mariana. Many sites were estimated to be older than tree 
rings alone would predict (Figure 5). Similarly, across all 233 sites, 
the maximum age parameter (i.e., life expectancy) of P. glauca was 
the most sensitive model parameter. Emphasis on maximum age 
contradicts the assumption that early succession is the most vulner-
able time for P. mariana in competition with P. glauca and suggests 
that understanding which environmental factors lead to long- lived 

P. mariana may help predict future P. mariana distribution. Many ex-
periments have been conducted that could inform these growth and 
longevity parameters under a variety of growing condition scenarios 
across sites (e.g., Johnstone et al., 2010).

Improving parameter representations may lead to better predic-
tions from forest gap models and may also help ecologists pinpoint 
under- studied mechanisms such as long- term growth rate trade- offs 
between species. For instance, g has not been significantly altered 

F I G U R E  3  Optimal coring time results at the coexistence sites. White points represent the lowest AIC values for each simulation at a 
given site. Vertical white lines represent the median of the white points also called the optimal coring time. Plots are colored by AIC values 
with lighter colors representing lower AIC values. AIC color palette is relative to each site
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in UVAFME since its implementation in Botkin et al. (1972) and 
may have too strong of an influence over individual tree growth. 
Simulating coexistence between tree species is not specific to this 
model but is a difficult problem in global vegetation modeling in 
general because trade- offs between species or plant functional 
types over time often result in one vegetation type dominating the 

simulation (Arora & Boer, 2006; Gravel et al., 2011; Turnbull et al., 
2013). However, over the process of forest succession, species have 
opportunities to take advantage of different available resources 
(Falster et al., 2017). These successional trade- offs are mechanistic 
and have been proposed as a path forward for improving global veg-
etation representation and predictions (Fisher & Koven, 2020), but 
the first step may be to understand which parameters are driving 
long- term coexistence between species. While our example is not 
comprehensive, our approach provides a pragmatic path forward 
for improving multi- species representations in vegetation simulation 
models using long- term data.

Altering the model output allowed us to efficiently estimate 
model parameters while confronting uncertainties associated with 
the data- generating process, in particular, the fading record (Babst 
et al., 2014; Nehrbass- Ahles et al., 2014). In ecology, field observa-
tions are often proxies for the true quantity of interest. To accurately 
represent the true quantity of interest, ecologists have two options: 
alter the observation model to account for measurement error or 
alter the model output to match the observation. Both of these op-
tions involve modeling a translation between the field observation 
and the quantity of interest, which can be referred to generally as 
the “data model.” In our tree- ring example, much effort has been 
put into constructing data models that translate tree- ring widths 
into basal area or biomass “data products” to match forest simula-
tion output (Alexander et al., 2018; Dye et al., 2016). Simultaneously, 
system proxy models in paleoclimatology or inverse transfer models 
in remote sensing have been developed to translate model output 
into observational proxies (Evans et al., 2013; Jacquemoud et al., 
2000). We adopt this latter strategy and translate the individual- 
level model output into species- level basal area data to match the 
tree- ring observations (Figures 1 and 4). This approach leverages 
the ecological mechanisms in UVAFME where each individual tree 

F I G U R E  4  Left: Biomass trajectories over a 500- year simulation for Picea glauca (yellow) and Picea mariana (blue). Line represents 
median across biomass trajectories, and shading represents 95% quantiles. Vertical lines represent optimal coring year chosen by the model 
selection procedure and example of suboptimal coring year. Right: Alive tree subsets (gray) overlaid with field- collected tree- ring data 
(black). The top plot represents the optimal alive tree subset collected from model output in year 113 of the model simulation, while the 
bottom plot represents a suboptimal example of the alive tree subsets collected from the model output in year 213

F I G U R E  5  Chronology age determined by the number of tree 
rings collected at a site by estimated stand age determined by 
the optimal coring year selection process. Box plots represent 
uncertainty in estimated stand age between 36 simulations 
performed at each site. Solid black line indicates an assumption 
that chronology age and estimated stand age are synonymous, 
and dashed line represents the possible increasing bias in that 
assumption as chronology age increases
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F I G U R E  6  Negative log- likelihood surfaces between the two most sensitive parameters for each site. Red points indicate lowest negative 
log- likelihood value on each surface. Each figure is centered on the default parameter values
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grows annual tree- ring increments and allowed us to more easily de-
termine which simulations to use for model calibration.

Our approach relies on simulations from a computer experiment 
spanning a range of output covering what was observed in the data. 
While our approach for estimating optimal coring time was prag-
matic, sometimes (e.g., Figure 4 top right, P. mariana), the optimal 
alive tree subset did not fully overlap the historical trajectories from 
the data. The GP approach allowed us to interpolate these missing 
components of the simulations in most cases, but at some of the 
coexistence sites (e.g., UP. MOOSE 20), we may need to include 
more parameters when building the GP to fully calibrate UVAFME to 

simulate the dynamics between P. glauca and P. mariana. Iterative ap-
proaches have been suggested for vegetation model calibration (Fer 
et al., 2018; Hartig et al., 2011). A related procedure for performing 
optimal design of the computer experiment to identify the next set 
of simulations could be incorporated to improve the GP surrogate 
for a particular site (Williams et al., 2018). This approach has been 
useful in engineering (Ju et al., 2018) but remains to be tested in an 
ecological setting where model output and field data observations 
may be mismatched.

Like field data, most mechanistic model output does not rep-
resent the true process of interest. However, unlike field data, 

F I G U R E  7  Top: Histograms of parameter estimates across coexistence sites from modularized Kennedy and O'Hagan algorithm (Liu et al., 
2009). Default parameterization from Foster et al. (2019) shown as a vertical dashed line. Bottom: Relationship between chosen species 
parameter values and final basal area across simulations at coexistence sites where each point represents a single simulation. Diagonal lines 
represent fitted linear relationship with coefficient estimates shown in the top- left boxes. Bottom left: The maximum growth parameter (g) 
affects the speed of initial DBH increment growth where higher values of g suggest faster- growing trees. Bottom right: DBH Min determines 
the minimum diameter increment before a tree is considered “stressed” and flagged for potential stress- induced mortality where higher 
values of DBH Min indicate lower stress tolerance
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F I G U R E  8  Adjusted model predictions (blue) via model GP surrogate with optimal parameters overlaid with data (black). Solid blue line is 
the median prediction, and dashed lines are 95% confidence intervals. Gray shading indicates Picea mariana, while no shading indicates Picea 
glauca
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simulation models have the ability to represent many dimensions 
of the observable process, including missing data or emergent 
phenomena. This can make it difficult to determine which model 
subspace the data represent. In our example, the subspace of the 
modeled process that was difficult to determine was the coring 
sample date, which relies on knowing when the data were collected 
during the forest stand development process. Important influence of 
initialization and/or boundary conditions on prediction is a common 
property in ecological systems (Hastings, 2001). The general strat-
egy in statistical models is to estimate the start or end time based 
on the data. Yet, embedding a mathematical model into a statistical 
model is not always pragmatic. A common method that simulation 
modelers use to confront this problem is to assume that the start 
time (t = 1) is known or that the start time begins after an equilib-
rium state (Carvalhais et al., 2008; Elzein et al., 2020). For forest 
stand development, this assumption is met by initializing the model 
at bare ground and running the model for many years before ana-
lyzing the model output. Our approach shows that this assumption 
may be negatively biasing the stand ages in our example (Figure 5) 
and that the stand initialization time can be optimized using the data. 
A future direction of our approach is to include the optimal coring 
data within the model calibration procedure itself, but this approach 
would sacrifice computational time in the estimation process and 
may not yield different results. Many studies have found that forests 
are sensitive to initial conditions (Raiho et al., 2020; Temperli et al., 
2013). Our approach provides a way to estimate stand initiation with 
tree- ring data and forest simulation models together to leverage the 
long- term observations while accounting for missing processes with 
a mechanistic model for forest stand development.

All simulations for this study were performed on a portable com-
puter. This is atypical of an individual- based model where computa-
tional times typically force the modeler to use distributed computing 
resources (Hooten et al., 2020). For the non- specialist, this require-
ment may be prohibitive or discouraging, but it is possible to use 
our approach without performing the model simulations oneself. A 
surrogate GP may be fit to any inputs and outputs of a computer 
experiment and used to create an emulator for the computer model. 
Ecosystem model developers invest large amounts of time learning 
new coding languages, researching the history of simulation model 
development, and investing in understanding model intricacies. 
While model developers are extremely important to the contin-
ued improvement of the mechanisms within the simulation models, 
many research teams have pointed to the need for more multi- model 
comparisons (Renwick et al., 2018; Thomson et al., 2006) and more 
sophisticated assimilation of field data (Fer et al., 2021). This type 
of work can be completed by a statistician or quantitative ecologist 
who may not have an interest in the development of a particular 
model code base. Beginning ecologists who have a specific interest 
in constraining many different types of simulation models with field 
data may find that exploring GP modeling with preexisting inputs 
and outputs available on public archiving sites is a more efficient 
entry point. This strategy may help create a larger workforce for fit-
ting ecological models to field data by more efficiently introducing 

students to data assimilation without requiring them to perform the 
model simulations themselves.

Bringing computer simulation models together with field data 
has great potential for improving ecological inference and forecast-
ing for a variety of applications (Christin et al., 2019; Dietze et al., 
2018; Luo et al., 2011; Peters et al., 2014). In interior Alaska, rapidly 
improving understanding and quantitative predictions of forest dis-
tributions is necessary for ecological management under changing 
climate. Ecologists can increase the pace of model improvements 
by continuing to build on a growing suite of existing model calibra-
tion tools (Fer et al., 2018; Oberpriller et al., 2021; Pietzsch et al., 
2020; Speich et al., 2021; Tao et al., 2020) and team members by 
trying new methods in different contexts. We provided the first ex-
ample of a forest model calibration using tree- ring data allowing us 
to demonstrate three pragmatic approaches to proceed with model 
calibration: connecting model outputs to data- generating processes, 
determining data- driven starting conditions from a suite of model 
simulations, and reducing a high- dimensional model calibration 
problem a priori to model fitting for computational efficiency. These 
approaches are a subset of a growing toolbox for building robust 
connections between computer models and field data in ecology.
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