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Abstract: Stem cell therapy represents a promising approach in the treatment of several neurodegenerative
disorders, including amyotrophic lateral sclerosis (ALS). The beneficial effect of stem cells is exerted
by paracrine mediators, as exosomes, suggesting a possible potential use of these extracellular
vesicles as non-cell based therapy. We demonstrated that exosomes isolated from adipose stem cells
(ASC) display a neuroprotective role in an in vitro model of ALS. Moreover, the internalization of
ASC-exosomes by the cells was shown and the molecules and the mechanisms by which exosomes
could exert their beneficial effect were addressed. We performed for the first time a comprehensive
proteomic analysis of exosomes derived from murine ASC. We identified a total of 189 proteins and
the shotgun proteomics analysis revealed that the exosomal proteins are mainly involved in cell
adhesion and negative regulation of the apoptotic process. We correlated the protein content to the
anti-apoptotic effect of exosomes observing a downregulation of pro-apoptotic proteins Bax and
cleaved caspase-3 and upregulation of anti-apoptotic protein Bcl-2 α, in an in vitro model of ALS after
cell treatment with exosomes. Overall, this study shows the neuroprotective effect of ASC-exosomes
after their internalization and their global protein profile, that could be useful to understand how
exosomes act, demonstrating that they can be employed as therapy in neurodegenerative diseases.
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1. Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the
selective degeneration of upper and lower motoneurons. ALS is a multifactorial disease since several
pathogenetic mechanisms lead to motoneuron degeneration [1]. Due to this pathogenetic complexity,
to date, no satisfactory treatment is available to cure or improve the quality of life of patients.
The great interest of mesenchymal stem cells (MSC) as a therapeutic strategy in neurodegenerative
diseases is due to their capability to migrate to damaged tissue and differentiate, contributing to
stimulating the reparative processes [2,3]. Among the different sources of MSC, adipose stem cells
(ASC) are easily available from liposuction, representing an interesting candidate in view to autologous
transplantation [4]. Despite several preclinical and clinical applications provide evidence concerning
the therapeutic potential of MSC in ALS, only a small number of transplanted cells reach the target
tissue and differentiate [5,6]. To explain the therapeutic efficacy of MSC although the lack of cell
engraftment, recent studies attribute the effect of stem cells to secretion of paracrine factors and to
the release of extracellular vesicles [4,7]. This hypothesis provides the basis for a non-cell-based
therapy for the treatment of different neurodegenerative diseases, including ALS, that could avoid the
unpredictable consequences of cell therapy.

Exosomes are a group of extracellular vesicles 30 to 150 nm in diameter released by most cell types
and can be taken up by recipient cells, covering an important role in intercellular communication [8].
Concerning the possible therapeutic use of exosomes isolated from MSC in neurodegenerative
diseases, it has been shown that these vesicles stimulate nerve regeneration, remyelination, synaptic
plasticity and neuronal protection [9–11]. Moreover, it has been reported that exosomes can protect
dopaminergic neurons from neurodegeneration through the reduction of reactive oxygen species and
apoptosis [12]. Farinazzo and colleagues demonstrated that, after oxidative stress, exosomes protect
neuroblastoma cells and primary murine hippocampal neurons [13]. We here confirmed our previous
data demonstrating the neuroprotective effect of exosomes isolated from ASC (ASC-exosomes) in
an in vitro model of ALS [14]. In this previous study, we used the motoneuron-like cell line NSC-34
transfected with a vector expressing mutated human SOD1 gene (the first gene identified to be related
with ALS). The mutations studied were G93A, G37R and A4V, and we showed that, in all cases,
exosomes protect the cells from oxidative stress. Since the content of exosomes (in terms of lipids,
proteins, and RNAs) is related to the origin cell, vesicles obtained from a different source could exert
a different effect. The importance of knowing the content of the exosomes could lead to a better
understanding of their mechanism of action on recipient cells in view of a possible their therapeutic use.

The objective of this study was to correlate the anti-apoptotic effect of ASC-exosomes after their
internalization in the in vitro model of ALS with their comprehensive proteomic analysis. We used
the NSC34 cells transfected with a vector expressing human SOD1(G93A) gene, since G93A mutation
is the most commonly used to generate transgenic ALS models. We demonstrate that the biological
effect on NSC-34(G93A) cells was determined by the uptake of ASC-exosomes. To this purpose, we
used a method to label exosomes with ultra-small superparamagnetic iron oxide nanoparticles (USPIO,
4–6 nm), that allow the detection of labelled exosomes (exosomes-USPIO) in the cells [15]. Moreover,
the shotgun proteomics analysis performed to assess the content of the vesicles revealed that the
exosomal proteins are mainly involved in cell adhesion and negative regulation of the apoptotic process.
In relation to this, we observed an upregulation of anti-apoptotic protein Bcl-2 α and downregulation
of pro-apoptotic proteins Bax and cleaved caspase-3 after treating cells with exosomes, correlating
the protein content to the neuroprotective effect on NSC-34 cells. These findings shed light on how
these exosomes mediate their beneficial effects and provide for the first time a rationale for their use in
treating neurodegenerative diseases.
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2. Material and Methods

2.1. ASC and NSC-34 Cell Cultures

The ASC were isolated from inguinal adipose tissues of 8/12 week-old C57BL/6J mice (Charles
River, Italy), as previously described [16]. The experiments were performed with the approval of the
Italian Minister of Health, following the NIH guide for the use and the care of laboratory animals, in
accordance with the current European Communities Council Directive (2010/63/EEC) and conformity
to the international guidelines, minimizing the number of animals used and avoiding their sufferance.
The mice were maintained under controlled environmental parameters with food and water ad libitum,
with 12 h of light and dark cycle. Briefly, the tissue was incubated in Hank’s Balanced Salt Solution
(HBSS, Life Technologies, Milan, Italy) with collagenase type I (Life Technologies) and bovine serum
albumin (BSA, AppliChem, Euroclone, Milan, Italy). The stromal vascular fraction (SVF) obtained
after centrifugation was resuspended in NH4Cl, centrifuged and filtered through a 40-µm nylon mesh
to remove cell debris. ASC were cultured in Dulbecco’s Modified Eagle Medium (DMEM) with 10%
heat-inactivated Fetal Bovine Serum (FBS), 100 U/mL penicillin and 100 µg/mL streptomycin (all from
GIBCOLife Technologies, Milan, Italy) and incubated at 37 ◦C in a 5% CO2 atmosphere. Murine ASC
were recognized by immunophenotype using monoclonal antibodies, as previously described [16].
These cells were used to isolate exosomes.

The NSC-34 motoneuron-like cell line was purchased from CELLutions Biosystems Inc.
(Burlington, ON, Canada). NSC-34 cells were transfected with the human SOD1 gene (hSOD1)
carrying G93A point mutation (NSC-34(G93A)), as previously described [14]. NSC-34 cells were
cultured in DMEM with 10% heat-inactivated FBS, 100 U/mL penicillin and 100 µg/mL streptomycin
and incubated at 37 ◦C in a 5% CO2 atmosphere. These cells were used to confirm the neuroprotective
effect of exosomes, to validate effect of exosomal proteins involved in the apoptotic pathway and to
determine the internalization of exosomes.

2.2. Expression Vectors and Generation of Tetracycline-Inducible Cells Overexpressing His-HA-SOD1(G93A)

The plasmid pcDNA3-SOD1(G93A), expressing the hSOD1 gene containing the G93A mutation,
was purchased from Addgene (Cambridge, MA, USA) and used as template to amplify by PCR the
respective cDNA. Briefly, hSOD1(G93A) cDNA was amplified with PfuDNA polymerase (Stratagene)
using the following primers containing Sgf I and Mlu I restriction sites: Fw 5′GAGGCGATCGCCGCGA
CGAAGGCCGTGTGCGTGCTG3′ (Sgf I); Rv 5′ GCGACGCGTTTATTGGGCGATCCCAATTACAC3′

(MluI). The amplified fragment was digested with Sgf I and MluI enzymes and cloned into
the pCMV6-AN-His-HA plasmid (PS100017, OriGene, Rockville, MD, USA) to give the vector
pCMV6-HIS-HA-SOD1(G93A), expressing the mutant hSOD1 gene in fusion with an amino-terminal
polyhistidine (His) tag and a hemagglutinin (HA) epitope.

To generate the lentiviral vectors for the conditional expression of SOD1 mutants, the hSOD1(G93A)
gene was excised from pCMV6-HIS-HA-SOD1(G93A) plasmid by using BamHI and XhoI enzymes
and subcloned in the same sites of the vector pENTR1A (w48-1, Addgene). This vector was then
recombined into pLenti CMV/TO Puro DEST (670-1, Addgene) using LR-Clonase (Life Technologies)
to give a lentiviral vector expressing hSOD1(G93A) gene under the control of a doxycycline-inducible
promoter [14].

To establish an inducible cell line overexpressing the hSOD1(G93A) mutant, NSC34 cells were first
transduced with the pLentiCMV_TetR_Blast vector (716-1, Addgene), that constitutively expresses
high levels of the tetracycline (Tet) repressor under the control of a CMV promoter, and selected for
7 days using 10 µg/mL Blasticidin (Sigma). After drug selection, the stable cells were infected with
the lentiviral vectors expressing hSOD1(G93A) in the presence of 4 µg/mL polybrene. The selection of
transduced cells was then conducted using 5 µg/mL puromycin. The expression of hSOD1 mutants was
induced by adding 2 µg/mL doxycycline (Clontech) to the culture medium for the last 48 h of culture.
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The efficiency of SOD1 mutant induction was quantified with a high content imaging approach, as
previously described [14].

2.3. ASC-Exosomes and Exosomes-USPIO Isolation

Exosomes were isolated from the culture medium of 1 × 107 ASC. Murine ASC were cultured
to confluence. To isolate exosomes from ASC cell culture conditioned medium and to avoid any
contamination of shed membrane fragments and vesicles from serum, FBS deprivation for 48h was
made. Cell culture supernatants were then collected and PureExo® Exosome isolation kit (101Bio,
Mountain View, CA, USA) was used for exosomes isolation, following the manufacturer’s protocol.
The determination of the protein content of exosomes was determined by Bicinchoninic Protein
Assay (BCA) method, using the manufacturer’s protocol (Thermo Scientific™ Pierce™ BCA™ Protein
Assay). Moreover, the concentration of ASC-exosomes was assessed by NanoSight instrument
(Izon Nanoparticle Tracking Analysis). The ASC-exosomes were used for their characterization by
transmission electron microscopy (TEM) and western blot, for the proteomic analysis and for the
evaluation of the neuroprotective effect in NSC-34 cells.

To obtain labelled ASC-exosomes, ASC (107 cells) were incubated with 200 µg Fe/mL of ultra-small
superparamagnetic iron oxide nanoparticles (USPIO, 5–7 nm) for 24 h, washed and deprived of FBS
for 48 h to avoid any contamination of vesicles from serum. After deprivation, ASC supernatants
were collected and exosomes-USPIO were isolated using PureExo® Exosome isolation kit (101Bio,
Mountain View, CA, USA). The determination of the protein content of exosomes was determined
by the BCA method (Thermo Scientific™ Pierce™ BCA™ Protein Assay). The exosomes-USPIO can
be detected by TEM, as previously reported [15]. The exosomes-USPIO were used to detect their
internalization by the NSC-34(G93A) cells by TEM.

2.4. Electron Microscopy of ASC-Exosomes

Exosomes pellet was fixed in 2% glutaraldehyde in Sorensen buffer (pH 7.4) for 2 h, post-fixed
in 1% osmium tetroxide (OsO4) in aqueous solution for 2 h, dehydrated in graded concentrations of
acetone and embedded in Epon–Araldite mixture (Electron Microscopy Sciences, Fort Washington,
PA, USA). The semithin sections (1 µm in thickness) were examined by light microscopy (Olympus
BX51, Olympus Optical, Hamburg, Germany) and stained with toluidine blue. The ultrathin sections
were cut at a 70 nm thickness, placed on Cu/Rh grids with Ultracut E (Reichert, Wien, Austria), and
observed with TEM using a Morgagni 268D electron microscope (Philips).

2.5. Biochemical Characterization of ASC-Exosomes by Western Blot

Analysis of exosomes by immunoblotting was performed using standard protocols: Proteins were
denatured, separated on 4–12% polyacrylamide gels, transferred onto a nitrocellulose membrane and
probed with antibodies against heat shock protein 70 (HSP70, 1:100 Santa Cruz Biotechnology, sc-1060),
and tetraspanins CD9 (1:100 MM2/57, Millipore CBL-162) and CD81 (1:100 Santa Cruz Biotechnology,
sc-9158) followed by appropriate horseradish peroxidase (HRP) conjugated secondary antibodies
against the primary antibody (all secondary antibodies were from Dako Agilent). ASC lysates were
used as the positive control. The blots were then incubated with a chemiluminescent HRP substrate
and detected with G:BOX F3 GeneSys (Syngene, UK).

2.6. Sample Preparation for Shotgun Proteomics

ASC-exosomes were collected and lysed in 1X PBS added with protease inhibitors cocktail 1X
(Roche) and 1% sodium dodecyl sulphate (SDS) (Bio-Rad, Hercules, CA, USA). Protein extraction
was performed by 5–6 cycles of sonication; then a four-fold volume of ice-cold acetone was added to
samples and protein precipitation was conducted overnight at −20 ◦C. Samples were then centrifuged
at 14,000× g for 10 min at 4 ◦C, and the pellet was resuspended in 100 mM NH4HCO3. Protein
concentration was measured with BCA Protein Assay (Thermo Fisher Scientific) using bovine serum
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albumin as a standard. Before the shotgun proteomic analysis, proteins were digested as already
described [17]. Briefly, 40 µg of proteins were reduced by using dithiothreitol and alkylated with
iodoacetamide. Then, after dilution with 100 mM NH4HCO3 solution, 5 µg of trypsin (Promega,
Sequence Grade) was added and digestion was performed overnight at 37 ◦C. Trypsin activity was
stopped by adding 2 µl of neat formic acid and digests were dried by Speed Vacuum.

2.7. Mass Spectrometry Analysis

The digested samples were analyzed on a micro-LC (Eksigent Technologies, Dublin, CA, USA)
interfaced to a 5600+ TripleTOF mass spectrometer system (AB Sciex, Concord, ON, Canada) equipped
with a DuoSpray Ion Source and a CDS (calibrant delivery system). The LC column was a Halo Fused
C18 with a pre-column ProteCol C18G. The mobile phase was a mixture of 0.1% (v/v) formic acid in
water (A) and 0.1% (v/v) formic acid in acetonitrile (B), eluting at a flow-rate of 15 µL min−1 at an
increasing concentration of solvent B from 2% to 86% in 17 min. The injection volume was 4 µL and
the oven temperature was set at 40 ◦C. For identification purposes, the mass spectrometer analysis
was performed using a mass range of 100–1500 Da (TOF scan with an accumulation time of 0.25 s),
followed by a MS/MS product ion scan from 200 to 1250 Da (accumulation time of 5 ms) with the
abundance threshold set at 30 cps (35 candidate ions can be monitored during every cycle). The ion
source parameters in the electrospray positive mode were set as follows: Curtain gas (N2) at 25 psig,
nebulizer gas GAS1 at 25 psig, and GAS2 at 20 psig, ion spray floating voltage (ISFV) at 5000 V, source
temperature at 450 ◦C and declustering potential at 25 V.

The DDA (Data Dependent Analysis) files were searched using Protein Pilot software v. 4.2 (AB
SCIEX, Concord, ON, Canada) and Mascot v. 2.4 (Matrix Science Inc., Boston, MA, USA). Trypsin as a
digestion enzyme was specified for both software. For Mascot, we used two missed cleavages, the
instrument was set to ESI-QUAD-TOF and the following modifications were specified for the search:
Carbamidomethyl cysteine as a fixed modification and oxidized methionine as variable modification.
A search tolerance of 0.08 Da was specified for the peptide mass tolerance, and 10 ppm for the MS/MS
tolerance. The charges of the peptides to search for were set to 2+, 3+ and 4+, and the search was set
on monoisotopic mass. The UniProt Swiss-Prot reviewed database containing mouse proteins (version
2015.20.07, containing 23,304 sequence entries, UniProt Consortium) was used and a target-decoy
database search was performed. The false discovery rate (FDR) was fixed at 1% [18,19].

2.8. Bioinformatics Analysis

The identified exosomal proteins were subjected to bioinformatics analyses in order to: Investigate
the presence of surface proteins, classify them on the basis of gene ontology, identify the molecular
pathways in which they are involved, and highlight any protein–protein interaction networks.
In particular, the detection of identified exosomal proteins located on the plasma membrane (which
potentially can be shed and released to the extracellular space) was performed by TransMembrane
prediction using hidden Markov models (TMHMM 2.0 server) (http://www.cbs.dtu.dk/services/
TMHMM/) which predicts transmembrane helices [20]. Functional annotation of identified proteins
was employed using the Database for Annotation, Visualization and Integrated Discovery (DAVID)
(v6.8) (http://david.abcc.ncifcrf.gov/) [21] to identify gene ontology (GO) biological processes (GOBPs),
molecular function (GOMFs) and cellular component (GOCCs). The GOBPs, GOMFs, and GOCCs
enriched by the list of proteins were identified as the ones with p-value < 0.01 calculated by DAVID.

The Cytoscape (v3.5.0) ClueGO (v.2.5.0) plugin [22] was used to visualized enriched pathways
associated with the Kyoto Encyclopaedia of Genes and Genome (KEGG) database. In brief, KEGG
pathways were explored with medium specificity and a kappa score of 0.4. An enrichment/depletion
method with a two-sided hypergeometric test was applied, correct with the Bonferroni step down for
each p-value calculation. Enriched pathways with a p-value < 0.05 were considered significant.

Finally, in order to predict protein-protein interaction, the identified proteins of ASC-exosomes
were analyzed using STRING software (http://string-db.org) [23]. STRING analysis was performed by

http://www.cbs.dtu.dk/services/TMHMM/
http://www.cbs.dtu.dk/services/TMHMM/
http://david.abcc.ncifcrf.gov/
http://string-db.org
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setting the species under investigation (Mus musculus) with a medium confidence level (score 0.4); we
retrieved interactions based on experimental and database knowledge, excluding all other prediction
methods implemented in STRING (such as co-expression and text-mining). Additional white nodes
and network depth were kept to the minimum value (1), to exclude as many false positive interactions
as possible.

2.9. Immunoblotting of Akt and SOD1

Exosomes and ASC were subjected to immunoblotting analysis using the following protocol:
Proteins were extracted in RIPA buffer (Sigma-Aldrich) containing protease inhibitor cocktail tablets
1X (Roche), sonicated 10 min and then lysates were clarified by centrifugation at 8000× g for
10 min at 4 ◦C. Supernatants were harvested and protein content was determined by BCA assay
(Sigma-Aldrich). Samples were denatured, separated on 10–20% polyacrylamide gels, transferred
onto a PVDF (polyvinylidene difluoride) membrane and probed with antibodies against phospho-Akt
(Ser473) (1:1000, Cell Signalling Technologies; #9271), and SOD1 (1:1000, NBP1-31204), followed
by an appropriate HRP-conjugated secondary antibody against the primary antibody (Santa Cruz
Biotechnology, sc-2005). ASC lysate was used as a positive control. The blots were then incubated with
a chemiluminescent HRP substrate and detected with ChemiDoc MP imaging system (Bio-Rad).

2.10. SOD1 Zymogram Assay

ASC-exosomes and adipose serum-deprived stem cells were lysed in 1XPBS containing protease
inhibitor cocktail tablets 1X (Roche) for four times at 25 Hz for 10 s. Samples (60µg per lane) were loaded
in a native buffer and separated on a 15% (v/v) non-denaturing polyacrylamide gel for 3 h at 40 mA
at 4 ◦C. The gel was stained for 45 min in 50 mM potassium phosphate (KH2PO4) pH 7.4 containing
275 µg/mL nitro blue tetrazolium (NBT) (ThermoFisher), 65 µg/mL riboflavin (Sigma-Aldrich) and
3.2 µL/mL tetra methyl ethylene diamine (TEMED) (Sigma-Aldrich) at room temperature in the dark.
Gel was then illuminated for 15 min until sufficient contrast between achromatic zones (dismutase
activity) and blue background was achieved and then scanned for documentation. ASC cells extract
was used as positive control. An identical gel was stained with Coomassie brilliant blue to verify the
equal amount of protein extract loaded among the different samples.

2.11. NSC-34 Cell Treatment and Viability

The NSC-34(G93A) cells were seeded at a density of 2 × 104 and exposed to H2O2 (100 µM) for 6 h
with or without the presence of ASC-exosomes (0.2 µg/mL, corresponding to 6–8 × 105 particles/mL)
in the culture medium. The number of cells seeded, the quantity of exosomes able to protect the
cells, the concentration of H2O2 used as pathological insult to induce apoptosis, and the time of H2O2

incubation with or without exosomes were identified in our previously study [14]. Cells (2 × 104)
without treatments were used as a basal condition. Cell viability and apoptotic cells were evaluated
by cell counting after acridine orange/propidium iodide (AO/PI, both from Sigma-Aldrich) double
staining. A total of 10 µL of AO/PI was added and spread by placing a coverslip over it. The apoptotic
and live cells were visualized using an upright fluorescent microscope (DM6000B, Leica Microsystem)
by their red or green fluorescence and their nuclear morphology. Each experiment was performed
at least three times, and for each condition three replicates were performed. The number of stained
cells were counted in 20 random field using the 20× objective. To evaluate the neuroprotective
effect of ASC-exosomes on NSC-34(G93A) cells, the univariate analysis of variance (ANOVA) and
Bonferroni post-hoc tests were performed to evaluate differences between the experimental conditions.
Significance was accepted at p < 0.05.
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2.12. Evaluation of Apoptotic Markers by Western Blot

The NSC-34(G93A) cells were exposed to H2O2 for 6 h with or without the presence of
ASC-exosomes in the culture medium, as previously described [14]. A total of 2 × 104 NSC-34(G93A)
cells were used to perform western blot analysis. The western blot was performed by using
pooled biological samples. Immunoblot was performed as previously described [24]. Briefly, after
separation on 10–20% SDS-PAGE, proteins were electroblotted on a PVDF membrane and subjected
to immunorevelation. Cleaved caspase 3 was detected by using anti-(cleaved) caspase 3 (1:300,
Cell Signalling Technologies; #9661) and anti-rabbit secondary antibody-HRP conjugate (Santa Cruz
Biotechnology, sc-2004); Bcl-2 α was investigated by using anti-Bcl-2 α (1:200, Biosource) primary
antibodies and anti-rabbit secondary antibody-HRP conjugate (Santa Cruz Biotechnology, sc-2005)
and Bax was detected by using anti-Bax (N20) (1:200; Santa Cruz Biotechnology sc-493) primary
antibodies and anti-rabbit secondary antibody-HRP conjugate (Santa Cruz Biotechnology, sc-2005).
The immunocomplexes were visualized by chemiluminescence using the ChemiDoc MP imaging
system (Bio-Rad) and the intensity of the chemiluminescence response was measured by processing
the image with Image Lab software (Bio-Rad).

2.13. Internalization of Exosomes-USPIO by NSC-34(G93A) Cells

To detect the internalization of ASC-exosomes by the cells, exosomes labelled with USPIO
nanoparticles, that allowed the visualization by TEM, were used. The NSC-34(G93A) cells were
seeded at a density of 2 × 104 with the presence of exosomes-USPIO (0.2 µg/mL, corresponding
to 6–8 × 105 particles/mL) in the culture medium for 6 h. After the incubation time, the cells were
washed with PBS, trypsinized and centrifuged. For ultrastructural morphology of cells, the pellet was
fixed in 2% glutaraldehyde in Sorensen buffer (pH 7.4) for 2 h. The samples were post-fixed in 1%
osmium tetroxide (OsO4) for 2 h, cut, dehydrated in graded concentrations of acetone and embedded
in Epon-Araldite mixture (Electron Microscopy sciences, Fort Washington, PA, USA). The semithin
sections (1 µm in thickness) were examined by light microscopy (Olympus BX51, Olympus Optical,
Hamburg, Germany) and stained with toluidine blue. The ultrathin sections were cut at a 70 nm
thickness, placed on Cu/Rh grids with Ultracut E (Reichert, Wien, Austria). TEM images were acquired
with a Philips Morgagni TEM operating at 80kV and equipped with a Megaview II camera for digital
image acquisition.

3. Results

3.1. Isolation and Characterization of ASC-Exosomes

Exosomes were obtained with an exosomes isolation kit and their protein concentration was
quantified. The yield for each isolation was about 100–150 µg of protein. The concentration of
nanovesicles obtained by NanoSight were 6–8 × 108 particles/mL. Ultrastructure analysis of the
exosomes by TEM revealed round vesicles with lipid bilayers with a diameter of 50 to 150 nm
(Figure 1A). Western blot analysis revealed specific exosomal markers including HSP70 (70 kDa), CD9
(25 kDa) and CD81 (26 kDa) (Figure 1B). These results confirm that size, morphology and the presence
of specific protein markers are consistent with a previous report [25].
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Figure 1. TEM and western blot analysis of adipose stem cells (ASC)-exosomes. Electron microscopy
shows vesicles with characteristic morphology and size of exosomes. Scale bar, 100 nm (A). The blots
show western blot detection of the expression of HSP70 (70 kDa), CD9 (25 kDa) and CD81 (26 kDa) in
exosomes (EXO); ASC lysates (ASC) was used as positive control (B).

3.2. Proteomic Analysis of ASC-Exosomes and Annotations of Identified Proteins

The shotgun proteomic analysis of exosomes was performed to obtain the complete characterization
of the proteome. We identified a total of 189 proteins with a peptide confidence cut-off of 99%
(FDR < 1%). The identities of these proteins are presented in Supplementary Material Table S1.

After MS the identified exosomal proteins were analyzed using bioinformatics analysis. For each
identified ASC-exosomes protein, the number of transmembrane regions was predicted using TMHMM.
In particular, a total of 16 proteins were predicted to have transmembrane domains (TMDs), of which
one has ten TMDs, i.e., ATPase class II type 9B, and all the others with one TMD; the remaining proteins
were localized as outside (169) or inside the membrane [22] (Supplementary Material Table S2).

Functional annotation of ASC-exosomes proteome was examined using DAVID software by
performing enrichment analysis of GOBPs, GOMFs, and GOCCs (Figure 2, and Supplementary
Material Table S3). The 189 identified proteins have been associated with a total of 31 statistically
significant (p-value < 0.01) GO terms for biological process. Interestingly, the most important
significantly enriched GOBPs categories included cell adhesion (9.5%), negative regulation of apoptotic
process (6.9%) and angiogenesis (6.3%) (Figure 2A). The most enriched GO terms for molecular
functions were protein binding (40.7%), metal ion binding (24.9%), and poly(A) RNA binding (21.7%)
(Figure 2B). Moreover, the enrichment analysis of GOCCs revealed that exosomal proteins were
localized mainly into the extracellular exosome (i.e., vesicles released into the extracellular region)
(52.9%), as well as the cytoplasm (47.6%) and extracellular region (41.8%) (Figure 2C).

To further explore the enriched pathways associated with ASC-exosomes proteins, we have
imported the list of identified proteins in the ClueGO app for Cytoscape platform to create a network
of the overrepresented GO terms. Only significant pathways or terms were presented by setting the
statistical threshold (p-value < 0.05) and using the KEGG database as a reference (Supplementary
Material Table S4). Multiple functions related to focal adhesion (such as Extracellular matrix receptor
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interaction, PI3K-Akt signaling pathway, protein digestion and adsorption), as well as to apoptosis,
antigen processing and presentation, platelet activation, and proteoglycan in cancer were enriched for
ASC-exosomes proteins (Figure 3).
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Figure 2. Gene ontology (GO) enrichment of the ASC-exosomes identified proteins according to
Database for Annotation, Visualization and Integrated Discovery (DAVID) functional annotation.
The top 10 enriched biological process (A) molecular function (B) and cellular component (C) are reported.
The percentage represents the portion of the genes encoding the proteins with the corresponding gene
ontology biological processes (GOBPs), gene ontology molecular functions (GOMFs) or gene ontology
cellular components (GOCCs) in the ASC-exosomes proteins.

Finally, to investigate the interaction pattern of annotated proteins and to elucidate the physical
interaction between them, we created a protein–protein interaction network of the ASC-exosomes
proteome using STRING software. STRING analysis emphasized that ASC-exosomes proteins interact
within the actin-myosin and collagen complexes, and showed functional relationship (i.e., contribute
jointly to a specific biological function) regarding the mechanism of response to stress, PI3K-Akt
signaling and interactions at extracellular matrix level (Figure 4). Concerning these pathways, several
molecules could have a role to counteract neurodegenerative mechanisms. Through the proteomic
analysis, we found some interesting proteins to counteract pathogenic mechanisms, as SOD1, that
can destroy free superoxide radicals, the neuroprotective ribonuclease RNase 4, the insulin-like
growth factors Igf1 and Akt, that play a role in inhibiting apoptosis (Supplementary Material Table S1,
Figure 4). Since only the active form of proteins allows the correct function of the molecules, the



Cells 2019, 8, 1087 10 of 20

validation of the enzymatically active form of the interested molecules was required. Among the
interest proteins, RNase4 and Igf1 are already enzymatically active, while SOD1 and Akt required
some post-traductional modification to be activated. To this purpose, the presence of the active form in
ASC-exosomes was validated.Cells 2019, 8, x FOR PEER REVIEW 10 of 22 
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3.3. Expression Profile of Phospho-Akt and SOD1 Proteins in ASC-Exosomes

It is known that, in ALS, the major mechanisms involved in motoneurons death are linked to
oxidative stress and apoptosis. Since the proteomic analysis revealed the presence of proteins involved
in these pathways, we focus attention on validating the presence of the active form of selected proteins
(phospho-Akt for PI3K-Akt signaling pathway and SOD1 for response to oxidative stress mechanism).

To investigate if an Akt protein is enzymatically active in ASC-exosomes, the immunoblot analysis
of phospho-Akt (Ser473) was performed. As shows in Figure 5A, Akt was found active both in ASC
and exosomes, thus confirming the presence of active proteins in ASC-exosomes. Notably, the multiple
bands detected of phospho-Akt may represent the phosphorylated forms of the different Akt isoforms
(i.e., Akt1, Akt2, and Akt3) which are all detected by the antibody.
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Figure 5. Western blot analysis of phospho-Akt and SOD1 expression in ASC-exosomes and ASC.
The blots show western blot detection of the expression of phospho-Akt (60 kDa) (A) and SOD1 (16 kDa)
(B) in exosomes (EXO); ASC lysates were used as positive control. Amido Black staining was used as
total loading control (C).

Moreover, the presence of SOD1 protein, previously detected by proteomic profiling of
ASC-exosomes, was validated by western blot (Figure 5B). In addition, SOD1 is observed as multiple
bands in exosomes, these may represent spliced variants, truncated protein or post-translational
modifications, which may be detected by the antibody used.
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In order to assess if the SOD1 proteins contained in ASC-exosomes are enzymatically functional,
we performed a zymogram assay. The native gel was stained using a solution of nitro blue tetrazolium
and riboflavin. Riboflavin is a source of superoxide anions which interact with nitro blue tetrazolium
and reduce the yellow tetrazolium within the gel to a blue precipitate. Since SOD inhibits this reaction,
a colorless band indicates SOD activity [26].

As showed in Figure 6, SOD1 was found active both in ASC and exosomes, thus confirming the
presence of active SOD1 in ASC-derived exosomes.
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Figure 6. Zymogram assay of SOD1 protein. The assay shows that exosomes (EXO) contain the active
form of SOD1 protein. The ASC and deprived ASC (ASC-) were used as the positive control (A).
Comassie blue staining was used as total loading control (B).

3.4. NSC-34(G93A) Cells Viability after ASC-Exosomes Treatment

The beneficial effect of ASC-exosomes was evaluated on NSC-34(G93A) cells, confirming our
previous data [14]. Cells were exposed to H2O2 to induce apoptosis [27] with or without the presence
of ASC-exosomes. The exosomes neuroprotective effect was evaluated in terms of cell morphology,
cell viability and apoptosis by cell counting after AO/PI double staining. The administration of
ASC-exosomes in the culture medium determined a protective effect with an increase in cell viability,
as detected after AO/PI double staining, where live cells showed green fluorescence and apoptotic
cells showed orange/red fluorescence (Figure 7A). The H2O2 treatment determined a high cell death
compared to the basal condition (with a mean of 13.94% of cell viability; p < 0.001), while the treatment
with ASC-exosomes rescued the cells from apoptosis, with a significant increase in cell viability
compared to the cells treated with H2O2 (mean of 64.98% of cell viability; p < 0.001) and restored cell
viability with no significant difference compared to the control (basal condition, mean of 78.82% of cell
viability) (Figure 7B).



Cells 2019, 8, 1087 13 of 20

Cells 2019, 8, x FOR PEER REVIEW 14 of 21 

 

 
Figure 7. Acridine orange/propidium iodide (AO/PI) double staining on NSC-34(G93A) cells. 
Apoptotic and live cells were visualized after AO/PI double staining. The green fluorescence staining 
by AO indicate live cells, while orange/red fluorescence indicate the PI staining that bound to DNA 
after damaged membranes. The image shows cells in a basal condition (no cell death was detected 
and nucleus is uniformly distributed), cells after H2O2 treatment (the nucleus is located in bias and 
apoptosis-associated changes of cell membranes can be detected, indicating a process of 
disintegration) and cells after treatment with H2O2 and exosomes (H2O2 + EXO) in which a rescue of 
cells from death is detected, with an increase in cell viability compared to cells after H2O2 treatment 
Magnification 20× (A). The graph shows the percentage of cell viability of NSC-34(G93A) cells in basal 
condition and after H2O2 and ASC-exosomes treatment (H2O2 + EXO). Cell viability significant 
increased after ASC-exosomes treatment. One-way ANOVA and Bonferroni post-hoc analysis were 
performed between all the experimental conditions (*** p < 0.001) (B). 

3.5. Internalization of Exosomes-USPIO by NSC-34(G93A) Cells 

To demonstrate that the effect on cell viability and the modulation of apoptotic pathway were 
induced by a biological activities of ASC-exosomes, the internalization of the vesicles by the cells was 
detected. To this purpose, the cells were incubated with exosomes-USPIO for 6 h, the time in which 
the neuroprotective effect was observed. Images of cells without exosomes incubation were used as 
the negative control (data not shown). 

The cells visualized by TEM showed a morphology without alterations or damage after ASC-
exosomes treatment (Figure 8A). Cells were characterized by a heterochromatic nucleus, cytoplasm 
with polyribosome, a high number of mitochondria and an expanded endoplasmic reticulum. In the 
cytoplasm were present phospholipidic membrane structures contained high electron-density 
particles, whose dimensions could be attributable to USPIO nanoparticles used to label ASC-
exosomes (Figure 8B,C). The presence of these nanoparticles inside the cells suggested the 
intracellular internalization of exosomes content by the cells. Moreover, high electron-density 
particles were not found in the cytosol, in the nucleus or associated to the cell membrane. 

Figure 7. Acridine orange/propidium iodide (AO/PI) double staining on NSC-34(G93A) cells. Apoptotic
and live cells were visualized after AO/PI double staining. The green fluorescence staining by AO
indicate live cells, while orange/red fluorescence indicate the PI staining that bound to DNA after
damaged membranes. The image shows cells in a basal condition (no cell death was detected and
nucleus is uniformly distributed), cells after H2O2 treatment (the nucleus is located in bias and
apoptosis-associated changes of cell membranes can be detected, indicating a process of disintegration)
and cells after treatment with H2O2 and exosomes (H2O2 + EXO) in which a rescue of cells from death
is detected, with an increase in cell viability compared to cells after H2O2 treatment Magnification
20× (A). The graph shows the percentage of cell viability of NSC-34(G93A) cells in basal condition
and after H2O2 and ASC-exosomes treatment (H2O2 + EXO). Cell viability significant increased after
ASC-exosomes treatment. One-way ANOVA and Bonferroni post-hoc analysis were performed between
all the experimental conditions (*** p < 0.001) (B).

3.5. Internalization of Exosomes-USPIO by NSC-34(G93A) Cells

To demonstrate that the effect on cell viability and the modulation of apoptotic pathway were
induced by a biological activities of ASC-exosomes, the internalization of the vesicles by the cells was
detected. To this purpose, the cells were incubated with exosomes-USPIO for 6 h, the time in which the
neuroprotective effect was observed. Images of cells without exosomes incubation were used as the
negative control (data not shown).

The cells visualized by TEM showed a morphology without alterations or damage after
ASC-exosomes treatment (Figure 8A). Cells were characterized by a heterochromatic nucleus, cytoplasm
with polyribosome, a high number of mitochondria and an expanded endoplasmic reticulum. In the
cytoplasm were present phospholipidic membrane structures contained high electron-density particles,
whose dimensions could be attributable to USPIO nanoparticles used to label ASC-exosomes (Figure 8B,C).
The presence of these nanoparticles inside the cells suggested the intracellular internalization of exosomes
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content by the cells. Moreover, high electron-density particles were not found in the cytosol, in the
nucleus or associated to the cell membrane.Cells 2019, 8, x FOR PEER REVIEW 15 of 21 
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Figure 8. TEM images of cells treated with exosomes-ultra-small superparamagnetic iron oxide
nanoparticles (USPIO). TEM images showed no damaged cell after ASC-exosomes treatment;
magnification 4400×, scale bar 1 µm (A). In (B) note a representative image of phospholipidic
membrane structure contained high electron-density particles, whose dimension are attributable to
USPIO nanoparticles used to label ASC-exosomes; magnification 46,000×, scale bar 100 nm. In (C),
a higher magnification of the section squared in (B) is shown; magnification 140,000×, scale bar 50 nm.

3.6. Expression Profile of Apoptotic Markers in Exosome-Treated NSC-34(G93A) Cells

To investigate the neuroprotective potential of ASC-exosomes which was suggested by the
identified proteins, the immunoblot analysis of some apoptotic markers was performed. In particular,
we compared the expression level of the pro-apoptotic proteins cleaved-caspase 3 and Bax and of the
anti-apoptotic protein Bcl-2 α in NSC-34(G93A) cells after 6h of exposure to H2O2 in the presence
or absence of ASC-exosomes. As shown in Figure 9A, the expression level of Cleaved caspase 3
(~17/19 kDa) was increased after H2O2 cell treatment, compared to untreated cells. The two molecular
weights indicate the fragments detected by the antibody (Cell Signaling: 9661), i.e., the large fragments
(17/19 kDa) of activated caspase-3 resulting from cleavage adjacent to Asp175. Indeed, Caspase-3
activation occurs in two stages: First, caspase-3 pro-forms are cleaved by upstream caspases (such
as active caspase-8) at Asp175 to generate intermediate heterotetramer complexes consisting of two
p19 and two p12 peptides (p19/p12 complexes); then, the second stage involves removal of the short
pro-domain from the p19 peptides by autocatalytic processing, and cleavage at residue Asp28, to
generate the fully mature p17/p12 form of the enzyme [28].

On the other hand, the activated form of caspase-3 was reduced in cells treated with ASC-exosomes,
compared to the cells treated with H2O2 and appeared similar to one of the untreated cells. In addition,
we found Bax (~21 kDa) reduction in cells treated with exosome compared to H2O2 treated cells
(Figure 9B). These data point out a protective role of exosomes in counteracting the expression of
pro-apoptotic proteins. Concerning the anti-apoptotic protein Bcl-2 α (~26 kDa), the immunoblot
results showed that it was increased in cells exposed to H2O2 in the presence of ASC-exosomes
compared to cells without exosomes (Figure 9C).

Altogether these results underline the neuroprotective role of exosomes in counteracting a stress
stimulus, giving an explanation of our previous published data in which we found an increase of cell
survival after exosomes treatment compared to cells exposed to only H2O2 [14].
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Figure 9. Expression profile of apoptotic markers in NSC-34(G93A) cells. The blots show western blot
analysis of Cleaved Caspase 3 (A), Bax (B) and Bcl-2 α (C) proteins performed in NSC-34(G93A) cells
(used as control, CNTR), NSC-34 (G93A) cells treated with H2O2 and NSC-34 (G93A) cells treated with
H2O2 and exosomes (EXO). Amido Black staining was used as total loading control (D).

4. Discussion

The great interest of the scientific community in relation to the possible use of exosomes in
a pathological condition is due to their role in intercellular communication [8]. Moreover, in the
therapeutic application of stem cells, there is evidence that these cells exert their beneficial effect
through the release of exosomes instead of their engraftment [7]. These extracellular vesicles, after
their release, can be taken up from the other living cells, where they modify cell behavior. In recent
years, several studies highlight the potential therapeutic use of exosomes in different diseases [4,29,30].
The effect of exosomes is strictly correlated to their content, that depends on the origin cells [29]. In view
of a therapeutic application of exosomes, it is crucial to know the content of these vesicles to understand
their mechanism of action. Moreover, this knowledge could open the way to manipulate the origin
cells to obtain exosomes that are rich in the molecule directly implicated in the neuroprotective action.
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Several studies report the proteomic content of extracellular vesicles isolated from different sources
such as bone marrow MSC, umbilical cord, placenta, human ASC and human milk [31–34]. In our
study we describe, for the first time, a comprehensive proteomic analysis of exosomes isolated from
murine adipose stem cells. The ASC-exosomes proteomic profiling was performed to elucidate their
neuroprotective mechanism of action pointed out in our previous data in an in vitro model of ALS [14]
and this was confirmed in this study. We demonstrated that the presence of ASC-exosomes protects
NSC-34 cells, transfected with different mutations of the human SOD1 gene, from oxidative damage,
increasing cell viability [14].

The proteomic analysis of ASC-exosomes revealed the presence of 189 exosomal proteins, that are
mainly implicated in cellular pathways crucial to the protective effect of the vesicles, e.g., cell adhesion
and negative regulation of the apoptotic process. As shown by the protein network and pathway
analysis, this reveals the identity of the proteins and their interaction in a specific cellular pathway; the
major proteins are implicated in response to stress and in the PI3K-Akt signaling pathway.

In ALS, oxidative stress and alteration of axonal transport are typical features of the disease
pathogenesis [4]. In relation to this, the presence of proteins involved in the response to stress in
ASC-exosomes, such as SOD1 and SOD3 are able to destroy free superoxide radicals and cytoskeleton
proteins involved in cytoplasmic transport, and this could explain their protective effect on in vitro
model of ALS. Moreover, the presence of SOD1 could replace the enzymatic function of mutated SOD1,
improving the response of ALS motoneurons to oxidative stress.

Besides, the presence of the ribonuclease RNase 4 in ASC-exosomes could be potential contributors
to exosomes neuroprotection. The RNase 4 protein, displaying an angiogenic action, seems to be
critical for ALS. In fact, the angiogenic, neurogenic and neuroprotective activities of RNase 4 have
been recently demonstrated [35]. In addition, mutations in the RNase 4 gene were reported in ALS
patients [36], confirming a potential use of ASC-exosomes as therapy in ALS.

Concerning the proteins involved in the PI3K-Akt signaling pathway, the analysis points out
the presence of Igf1, the insulin-like growth factors. The Igf1 protein, by binding the receptor Igf1R,
promotes cell proliferation and inhibits apoptosis by blocking the pro-apoptotic protein BAD and by
phosphorylating apoptosis signal-regulating kinase 1 [37,38]. In relation to this, a study demonstrated
that blocking the Igf1R and avoiding their binding to the Igf1 protein, an increase in pro-apoptotic
proteins and a decrease in anti-apoptotic proteins, like Bcl-2 was observed, enhanced the apoptotic
cascade [39].

Notably, Cytoscape/KEGG pathway analysis revealed also exosomal proteins implicated in
the regulation of actin cytoskeleton, ECM-receptor interaction and focal adhesion. Recent findings
suggested that cytoskeleton alteration contribute to motoneuron degeneration [40], and that either
ECM-receptor interaction and focal adhesion are pathways in which are implicated the up-regulated
genes of ALS patients [41]. In addition, ECM-receptor interaction was identified as reduced in
iPSC-derived motor neurons of patients with C9ALS [42] and has been showed to affect motor neuron
in ALS model mouse [43].

We demonstrated that exosomes induce a neuroprotective effect modulating the apoptotic pathway
after their internalization by the cells. In particular, we observed a decrease of pro-apoptotic proteins,
as cleaved-caspase 3 and Bax, and an increase of anti-apoptotic protein Bcl-2 α in cells treated with
ASC-exosomes. The presence of proteins involved in the PI3K-Akt signaling pathway in ASC-exosomes,
like Akt, could represent one of the possible mechanism of action by which these vesicles exert their
effect in an in vitro ALS model.

Several studies point out that, in ALS patients as well as in the murine models of disease, the
motoneuron death is due to the activation of the apoptotic pathway [44–49]. In the SOD1(G93A)
murine model, the inhibition of caspase-1 and caspase-3 have a protective role in ALS, delaying the
symptom progression and improving survival of animals [44]. Kaspar and colleagues report that the
delivery of Igf1 in the same murine model prolongs life and delays the ALS progression through the
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PI3K-Akt pathway [47]. These evidences underline that an approach that counteracts the apoptotic
pathway could be used as a possible therapy in ALS.

5. Conclusions

This study presents a comprehensive proteomic analysis of exosomes derived from murine ASC,
indicating the possible mechanisms by which ASC-exosomes act. Since these extracellular vesicles
contain proteins involved in several pathways that stimulate cell survival and proliferation, they
represent a promising therapeutic approach in different neurodegenerative disease, including ALS.
Studies conducted with an in vivo model of ALS will be necessary to confirm the possibility of using
exosomes as therapy.

Moreover, this study provides the basis to ameliorate the efficacy of this possible non-cell based
therapy. Indeed, the effect mediated by exosomes could be improved through the use of engineered
ASC in order to obtain exosomes that contain a higher amount of the molecules responsible for their
neuroprotective effect.
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