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Abstract
Background: The amino acid substitution model is the core component of many protein analysis systems such as 
sequence similarity search, sequence alignment, and phylogenetic inference. Although several general amino acid 
substitution models have been estimated from large and diverse protein databases, they remain inappropriate for 
analyzing specific species, e.g., viruses. Emerging epidemics of influenza viruses raise the need for comprehensive 
studies of these dangerous viruses. We propose an influenza-specific amino acid substitution model to enhance the 
understanding of the evolution of influenza viruses.

Results: A maximum likelihood approach was applied to estimate an amino acid substitution model (FLU) from ~113, 
000 influenza protein sequences, consisting of ~20 million residues. FLU outperforms 14 widely used models in 
constructing maximum likelihood phylogenetic trees for the majority of influenza protein alignments. On average, FLU 
gains ~42 log likelihood points with an alignment of 300 sites. Moreover, topologies of trees constructed using FLU and 
other models are frequently different. FLU does indeed have an impact on likelihood improvement as well as tree 
topologies. It was implemented in PhyML and can be downloaded from ftp://ftp.sanger.ac.uk/pub/1000genomes/lsq/
FLU or included in PhyML 3.0 server at http://www.atgc-montpellier.fr/phyml/.

Conclusions: FLU should be useful for any influenza protein analysis system which requires an accurate description of 
amino acid substitutions.

Background
The majority of statistical methods used for analyzing
protein sequences require an amino acid substitution
model to describe the evolutionary process of protein
sequences. Amino acid substitution models are fre-
quently used to infer protein phylogenetic trees under
maximum likelihood or Bayesian frameworks [[1,2], and
references therein]. They are also used to estimate pair-
wise distances between protein sequences that subse-
quently serve as inputs for distance-based phylogenetic
analyses [3]. Moreover, these models can be used for
aligning protein sequences [4]. These and other applica-
tions of the amino acid substitution model are reviewed
in [5].

Many methods have been proposed to estimate general
amino acid substitution models from large and diverse
databases [[1,6], and references therein]. These methods

belong to either counting or maximum likelihood
approaches. The first counting method was proposed by
Dayhoff et al. [7] to estimate the PAM model. As more
protein sequences accumulated, Jones et al. [8] used the
same counting method to estimate the JTT model from a
larger protein data set. However, the counting methods
are limited to only closely related protein sequences.

The maximum likelihood method was proposed by
Adachi and Hasegawa [9] to estimate the mtREV model
from 20 complete vertebrate mtDNA-encoded protein
sequences. The mtREV model outperformed other mod-
els when analyzing the phylogenetic relationships among
species based on their mtDNA-encoded protein
sequences. Whelan and Goldman [10] proposed a maxi-
mum likelihood method to estimate the WAG model
from 182 globular protein families. The WAG model pro-
duced better likelihood trees than the Dayhoff and JTT
models for a large number of globular protein families.

Recently, Le and Gascuel [6] improved the maximum
likelihood method by incorporating the variability of evo-
lutionary rates across sites into the estimation process.
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The method was used to estimate the so-called LG model
from the Pfam database. Experiments showed that the LG
model gave better results than other models both in
terms of likelihood values and tree topologies.

Although a number of general models have been esti-
mated from large and diverse databases comprising mul-
tiple genes and a wide range of species, they might be
inappropriate for a particular set of species due to differ-
ences in the evolutionary processes of these species. A
number of specific amino acid substitution models for
important species have been introduced [11,12], e.g.
HIV-specific models that showed a consistently superior
fit compared with the best general models when analyz-
ing HIV proteins.

In recent years, the world has encountered a series of
emerging influenza epidemics, including H5N1 ('avian
flu') or H1N1. These have caused serious problems in
economics and human health. Theoretical and experi-
mental studies have been extensively conducted to under-
stand the evolution, transmission and infection processes
of influenza viruses [13-17]. We propose here our FLU
model which was specifically estimated for modeling the
evolution of influenza viruses. Experiment results show
that FLU is robust and better than other models in ana-
lyzing influenza proteins. Thus, it could enhance studies
of the evolution of influenza viruses.

Results and Discussion
We used the maximum likelihood approach introduced
by Le and Gascuel [6] to estimate an influenza-specific
amino acid substitution model (called FLU) from data set
D comprising 992 influenza protein alignments. In the
following sections, the main properties and performance
of FLU in comparison with 14 widely used models will be
analyzed.

Model analysis
FLU, as an amino acid substitution model, includes a
symmetric amino acid exchangeability matrix and an
amino acid frequency vector. Thus, we analyze FLU with
other models by comparing their amino acid exchange-
abilities and frequencies. Table 1 presents low correla-
tions between FLU and other models, which means that
FLU is highly different from existing models. HIVb and
HIVw are among the models that are most highly corre-
lated with FLU, since they were also estimated from RNA
virus proteins.

In the following, we compare FLU with HIVb (a HIV-
specific model) and LG (the best general model) in detail.
Figure 1 displays the amino acid frequencies of these
models and the empirical amino acid frequencies
(denoted Influenza) that were counted from all align-
ments of data set D. Amino acid frequencies of FLU and
Influenza are nearly identical (correlation ~0.94), the cor-

relation being much higher than that of Influenza with
the 2 other models, HIVb (~0.84) and LG (~0.84). Nota-
bly, we observe large differences between the amino acid
frequencies of Influenza and the others. For example, the
frequency of leucine (L) in Influenza (~7%) is much lower
than that in HIVb (~10%) and LG (~10%). These results
indicate that FLU represents the amino acid frequencies
of influenza proteins more accurately than other models.

The exchangeability coefficients of FLU, HIVb, and LG
models (Figure 2), in principle, describe similar biologi-
cal, chemical and physical properties of the amino acids,
e.g. the high exchange rate between lysine (a positively
charged, polar amino acid) and arginine (a positively
charged, polar amino acid) or the low exchange rate

Table 1: The Pearson's correlations between FLU and 14 
widely used models. The low correlations indicate that FLU 
is highly different from existing models.

model exchangeability 
matrix

frequency 
vector

JTT 0.88 0.79

HIVb 0.86 0.71

HIVw 0.83 0.83

WAG 0.83 0.76

LG 0.82 0.71

CpREV 0.81 0.73

Blosum62 0.77 0.73

MtREV 0.77 0.48

RtREV 0.76 0.66

VT 0.75 0.76

MtMam 0.74 0.48

DCMut 0.74 0.69

Dayhoff 0.74 0.69

MtArt 0.70 0.45

Figure 1 Amino acid frequencies of FLU, HIVb, LG models and the 
empirical frequencies counted from all alignments (denoted In-
fluenza).
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between lysine and cysteine (a neutral, nonpolar amino
acid). However, they differ considerably when we look in
their relative differences (Figure 3). For example, 41 out of
190 coefficients in FLU are at least 5 times as large as cor-
responding ones in the HIVb model. Table 2 summarizes
the relative differences between FLU and HIVb, LG mod-
els.

In a nutshell, FLU is very different from existing models
in both amino acid exchangeabilities and frequencies.

FLU performance
We compared the performance of FLU and other models
in constructing maximum likelihood trees for influenza
protein alignments. Maximum likelihood trees were con-
structed by PhyML with 4 discrete gamma rate categories
(+Γ = 4), invariant sites (+I), and -F/+F options [18].
Global test
In the global test, we used FLU and other models to con-
struct maximum likelihood trees for 992 protein align-
ments of D. Since we estimated and tested FLU on the

same data set D, it contains more free parameters than
other models, i.e. 208 with -F option or 189 with +F
option. To compare the performance of FLU and other
models, the AIC criterion was used [19].

The average AIC of FLU is higher than that of other
models (Table 3). For example, FLU gains 0.3 AIC per site
when compared with the second best model, HIVb. In the
case where 2 models have the same number of free
parameters, 0.3 AIC per site is equivalent to ~45 log like-
lihood points per alignment of 300 sites. The last column
of Table 3 shows the AIC differences between +F and -F
options. The +F option would improve the AIC only
when the amino acid frequencies of the model are signifi-
cantly different from the empirical frequencies. However,
the +F option might lead to the loss of AIC due to the
penalty of 19 additional free parameters. Table 3 shows
that the +F option did not improve the AIC for most of
the models due to the slight difference between the Influ-
enza and the amino acid frequencies of the models,
except MtREV, MtMam, and MtArt estimated from mito-
chondrial proteins. In these cases, the +F option signifi-
cantly improved the AIC because of the high difference
between the amino acid frequencies of influenza and
mitochondrial proteins (correlation ~0.54).
Two-fold cross validation
In the two-fold cross validation, we randomly divided D
into halves D1 and D2 where either one served as the
learning data set and the other acted as the testing data
set. Due to the low number of protein types (see Table 4),
D1 and D2 might contain alignments of the same protein
types. We first estimated FLU1 (FLU2) model from D1
(D2), and then used FLU1 (FLU2) to construct maximum
likelihood trees for alignments of D2 (D1). Consequently,
we obtained 992 maximum likelihood trees inferred
using either FLU1 or FLU2. For the sake of simplicity, we
denote FLU as the overall model for FLU1 and FLU2 in
analyzing the two-fold cross validation. Since learning
and testing data sets are independent, there is no penalty
for additional free parameters when comparing FLU with
other models, i.e., we could directly compare log likeli-
hoods of trees inferred using FLU and other models.

It is clear from Tables 5 and 6 that FLU outperforms all
other models. It helps to construct the best likelihood
trees for 680 out of 992 alignments (69%) and the second

Table 2: Relative differences between FLU and HIVb (LG) models.

FLU > HIVb HIVb > FLU FLU > LG LG > FLU

Twice 67 40 20 90

Five 41 21 2 53

The value at the row 'Twice' and column 'FLU>HIVb' indicates the number of exchangeability coefficients in FLU that are at least twice as large 
as corresponding ones in the HIVb model. Similar explanations can be given for other entries.

Figure 2 The exchangeability coefficients in FLU, HIVb and LG 
models. The black bubble at the intersection of line X and column Y 
presents the exchangeability between amino acid X and amino acid Y 
in FLU. Similarly, the grey and white bubbles present exchangeabilities 
between amino acids in the LG and HIVb models, respectively. These 
bubbles show remarkable differences between these models.
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best trees for 131 other alignments (13%). FLU trees also
have the highest average likelihoods, which is 0.14 log
likelihood point per site higher than the second best
model, HIVb (Table 7). This means that FLU gains about
~42 log likelihood points on average when applied to an

alignment of 300 amino acids. HIV models, as expected,
are the second and third best models since they were also
estimated from RNA virus proteins. Since HA and NA
proteins are the most crucial proteins of influenza
viruses, a large number of HA and NA protein sequences

Figure 3 The bubbles display the relative differences between exchangeability coefficients in FLU and HIVb (left), and FLU with LG (right). 
On the left side, each bubble represents the value of (FLUij - HIVbij)/(FLUij + HIVbij) where FLUij (HIVbij) is the exchangeability coefficient in FLU (HIVb). 
Values 1/3 and 2/3 mean that the FLU coefficient is 2 and 5 times as large as that of HIVb, respectively. Values -1/3 and -2/3 mean that HIVb is 2 and 5 
times larger than FLU, respectively. Similar explanations can be also given on the right side, but now between FLU and LG models.

Table 3: Average AIC per site of FLU and other models. FLU has better AIC than other models.

without F option with F option difference between

(-F) (+F) +F and -F options

FLU -21.01 -21.09 -0.08

HIVb -21.31 -21.34 -0.03

JTT -21.37 -21.37 -0.00

HIVw -21.43 -21.42 0.01

CpREV -21.49 -21.54 -0.05

LG -21.57 -21.56 0.01

WAG -21.58 -21.51 0.07

VT -21.79 -21.68 0.11

Dayhoff -21.79 -21.62 0.17

DCMut -21.79 -21.62 0.17

RtREV -21.80 -21.70 0.10

Blosum62 -21.85 -21.82 0.03

MtREV -22.48 -21.76 0.72

MtMam -22.73 -21.97 0.76

MtArt -22.86 -22.15 0.71
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were available to estimate the model (see Table 4). FLU
outperforms other models in ~98% of HA and NA align-
ments. It is significantly better than HIVb in ~95%
(~92%) of HA (NA) alignments. However, it is worse than
HIVb when analyzing M2 and PB1-F2 protein align-
ments.

The likelihood difference between 2 trees inferred
using 2 different models M1 and M2 might fluctuate due
to various error factors, e.g., numerical problems and
local optimizations. To assess the statistical significance
of the difference between M1 and M2, we used a simple
nonparametric version of the Kishino-Hasegawa (KH)
test [20] as used in [6]. As explained in [6], the test avoids
any normality assumption and selection bias that would
favor one model compared with the other (refer to [6,21]
for detailed explanations and calculations). Table 8 shows
that FLU is significantly better than other models for the
majority of alignments. For example, the KH test deter-
mined 484 (~49%) alignments where FLU trees had sig-
nificantly higher likelihood values than HIVb trees. The
number increases to 731 (~74%) or 907 (~92%) when
compared with the JTT and LG, respectively. FLU was
significantly worse than one of 14 compared models in
only ~7% of alignments. These comparisons lead to the
conclusion that FLU describes the evolution of influenza
viruses better than other models, thus resulting in more
accurate phylogenetic trees.

Tree analysis
We observed a large number of alignments where tree
topologies of FLU and other models were different (Table

9). For example, FLU trees and HIVb trees are topologi-
cally different for 917 (~92%) alignments, of which FLU is
better than the HIVb for 655 (~72%) alignments.

To measure the difference between 2 tree topologies,
we used the Robinson-Fould (RF) distance, which is the
number of bi-partitions present in one of the two trees
but not the other, divided by the number of possible bi-
partitions. Thus, the smaller the RF distance between 2
trees, the closer their topologies. Note that the RF ranges
from 0.0 to 1.0.

Figure 4 shows that tree topologies inferred using FLU
are highly different from those inferred using other mod-
els. For example, the RF distance between FLU trees and
HIVb trees is ~0.2 (~0.4) for about 25% (12.5%) of align-
ments. The average branch length of FLU trees (0.037) is
longer than that of trees inferred using general trees, e.g.
LG (0.032), JTT (0.031). This finding indicates that FLU
trees capture more hidden substitutions that might have
occurred along the branches and therefore might better
characterize the evolutionary patterns of influenza
viruses than trees inferred using general models (see [22]
for discussions on tree length).

Robustness of model
We investigated the robustness of FLU by measuring the
correlations between FLU, FLU1 and FLU2. Table 10
shows extremely high correlations (> 99%) between FLU,
FLU1 and FLU2 in both amino acid frequencies and
exchangeability coefficients. Thus, the data set D is suffi-
ciently large to estimate a robust amino acid substitution
model for influenza proteins.

Table 4: A summary of influenza viruses.

Type A Type B Type C proportion (%)

HA v v v 30,63

NA v v 14,67

PA v v 9,06

PB2 v v v 8,93

PB1 v v v 7,97

NS1 v v v 7,65

NP v v v 6,87

M2 v 4,13

NS2 v v v 3,49

PB1-F2 v 3,29

M1 v v v 3,10

NB v 0,11

BM2 v 0,04

CM2 v 0,03

P3 v 0,02

The last column shows proportions of proteins used to estimate the FLU model.
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We also examined the influence of the temporal aspect
of influenza evolution on FLU. To this end, the data set D
was divided into 2 nearly equal subsets Dt1 (27,752 pro-
tein sequences before 2004) and Dt2 (23,397 protein
sequences since 2004). We used subset Dt1 (Dt2) to esti-

mate model FLUt1 (FLUt2). FLUt1 and FLUt2 were nearly
identical (correlation ~0.99). Moreover, FLUt1 and FLUt2
were highly correlated to FLU (correlation ~0.97). The
high correlations indicate that the influence of the tem-
poral aspect of influenza evolution on estimating the

Table 5: Comparisons of FLU and 14 other models in constructing maximum likelihood trees (-F option).

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

FLU 680 129 147 19 2 4 4 4 1 1 1 0 0 0 0

HIVb 200 405 198 46 33 64 18 8 7 6 7 0 0 0 0

HIVw 91 115 200 178 64 58 144 20 29 16 16 61 0 0 0

JTT 14 274 290 398 14 0 1 0 1 0 0 0 0 0 0

LG 5 15 26 75 168 394 189 15 64 21 16 4 0 0 0

CpREV 2 25 54 204 542 112 13 20 8 7 4 1 0 0 0

WAG 1 28 70 55 134 278 357 43 25 1 0 0 0 0 0

Dayhoff 0 1 0 1 8 18 94 196 209 235 200 24 5 1 0

VT 0 0 3 9 17 30 74 226 192 164 178 71 24 4 0

Blosum62 0 0 3 7 8 18 28 103 84 139 95 436 24 47 0

DCMut 0 0 1 0 1 9 35 103 176 207 249 199 8 4 0

RtREV 0 0 0 0 1 5 29 234 175 174 190 157 14 13 0

MtMam 0 0 0 0 0 2 5 12 10 15 16 14 49 638 230

MtREV 0 0 0 0 0 0 1 8 11 6 20 25 849 69 3

MtArt 0 0 0 0 0 0 0 0 0 0 0 0 19 216 757

The number on the cell of model M and column p indicates the number of alignments where M model stands at the rank p over 15 models tested. 
For example, FLU model stands at the first rank for 680 out of 992 alignments.

Table 6: Comparisons of FLU and 14 other models in constructing maximum likelihood trees (+F option).

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

FLU 635 123 202 19 5 2 2 1 2 0 1 0 0 0 0

HIVb 196 375 105 109 61 25 21 22 22 16 35 5 0 0 0

HIVw 148 146 290 73 36 41 22 11 17 56 36 93 19 3 1

JTT 6 168 218 540 23 20 9 5 1 2 0 0 0 0 0

MtREV 3 1 2 9 77 127 102 66 43 38 115 91 307 10 1

MtMam 2 4 6 7 52 62 53 60 42 62 39 92 71 343 97

WAG 1 166 124 52 33 96 146 130 89 63 55 25 12 0 0

CpREV 1 3 5 18 451 159 158 64 95 28 4 3 3 0 0

VT 0 3 11 21 34 35 46 80 83 135 73 101 206 151 13

LG 0 1 16 110 131 240 134 83 140 53 42 40 2 0 0

Dayhoff 0 1 11 19 60 93 151 227 145 147 91 28 13 5 1

Blosum62 0 1 1 3 1 2 5 11 25 20 115 192 106 203 307

DCMut 0 0 1 11 24 73 108 153 213 143 145 88 26 6 1

MtArt 0 0 0 1 3 1 5 4 4 5 12 32 137 219 569

RtREV 0 0 0 0 1 16 30 75 71 224 229 202 90 52 2

The number on the cell of model M and column p indicates the number of alignments where M model stands at the rank p over 15 models tested. 
For example, FLU model stands at the first rank for 635 out of 992 alignments.



Dang et al. BMC Evolutionary Biology 2010, 10:99
http://www.biomedcentral.com/1471-2148/10/99

Page 7 of 11
amino acid substitution model is insignificant. Thus, FLU
is applicable to analyze both old and recent influenza pro-
teins.

Conclusions
We propose the FLU model that has been specifically
estimated for modeling the evolution of influenza viruses.
Analyses revealed significant differences between FLU
and existing models in both amino acid frequencies and
exchangeability coefficients. Experiments showed that

FLU better characterizes the evolutionary patterns of
influenza viruses than general models.

Both the global test and 2-fold cross validation con-
firmed that FLU is better than existing models in con-
structing maximum likelihood trees. Using the KH test,
FLU proved significantly better than other models for a
majority of alignments tested. Nevertheless, there were a
few alignments (typically from M2 and PB1-F2 proteins)
where FLU was significantly worse than the HIV-specific
models or general models, e.g. LG, or JTT. In this study,

Table 7: Comparisons of FLU and 14 other models in constructing maximum likelihood trees.

LogLK/site LogLK/site

without F option (-F) with F option (+F)

FLU -10.51 -10.49

HIVb -10.65 -10.61

HIVw -10.71 -10.65

JTT -10.68 -10.63

LG -10.78 -10.82

cpREV -10.74 -10.93

WAG -10.78 -10.70

Dayhoff -10.89 -10.71

VT -10.89 -10.78

Blosum62 -10.92 -10.72

DCMut -10.89 -10.75

RtREV -10.89 -10.85

MtMam -11.36 -10.75

MtREV -11.23 -11.01

MtArt -11.42 -10.79

FLU trees have the highest average likelihoods.

Table 8: Pairwise comparisons between FLU and HIVb, HIVw, JTT, LG models.

LogLK/site #M1 > M2 #M2 > M1

M1 M2 M1 > M2 (p < .05) (p < .05)

FLU (-F) HIVb (-F) 0.14 696 484 49

FLU (-F) HIVw (-F) 0.19 843 689 46

FLU (-F) JTT (-F) 0.17 926 731 10

FLU (-F) LG (-F) 0.26 971 907 6

FLU (+F) HIVb (+F) 0.12 674 437 89

FLU (+F) HIVw (+F) 0.16 734 561 84

FLU (+F) JTT (+F) 0.13 958 755 3

FLU (+F) LG (+F) 0.23 988 954 0

LogLK/site: the log likelihood difference between trees inferred using M1 and M2; a positive (negative) value means M1 is better (worse) than 
M2. #M1 > M2: the number of alignments among 992 alignments where M1 results in better likelihood value than M2. #M1 > M2 (p < 0.05): the 
number of alignments where the Kishino-Hasegawa test indicates that M1 is significantly better than M2. #M2 > M1 (p < 0.05): the same as #M1 
> M2, but now M2 is significantly better than M1.
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amino acid sequences were aligned by Muscle [23] to pro-
duce alignments that serve as inputs for estimating FLU.
Recently, Liu et al. [24] proposed a method for coestimat-
ing sequence alignments and phylogenetic trees, and
showed that it improved tree and alignment accuracy
compared with 2-phase methods for large DNA data sets.
Although previous studies showed that models estimated
using near-optimal phylogenetic trees are relatively stable
[[10], and references therein], it would be interesting to
assess the influence of the coestimation method on the
estimation of amino acid substitution models in future
work. The occurrence of homologous recombination
within influenza virus genes has been reported, however,
it is rare and controversial [25,26]. Therefore, the FLU
was estimated in a standard phylogenetic framework.
The effect of the homologous recombination, if it occurs
at all, on the FLU model would be discovered in future
work. In summary, FLU model is useful for any influenza
protein analysis system that demands an accurate

description of amino acid substitutions. It should
enhance our understanding of the evolution, transmis-
sion and infection processes of influenza viruses.

Methods
Data
Influenza viruses are RNA viruses from the Orthomyxo-
viridae family, which is divided into 3 types: influenzas A,
B, and C. Influenza A viruses frequently cause serious
epidemics and pandemics, such as Spanish flu H1N1,
Asian flu H2N2, Hong Kong flu H3N2, or avian flu H5N1
(see Table 4 for a short summary of influenza viruses).
Influenza viruses have been isolated since the beginning
of the 20th century, and a huge number of their proteins
have been sequenced and stored at the NCBI [13,16].

To estimate the amino acid substitution model for
influenza viruses, we downloaded the entire influenza
database at NCBI (July 26th 2009 version) [16], including
112,450 protein sequences (103,626 for A; 7,892 for B;
and 932 for C). The sequences were processed before
estimating the model.

• Cleaning step: Only distinct sequences were kept.
The set consisted of 51,061 sequences, i.e. 46,909 for
A; 3,845 for B; and 307 for C.
• Dividing step: These distinct sequences were ran-
domly divided into small groups such that each group
contained from 5 to 100 homologous sequences (the
same protein type) of the same virus type. This
resulted in 1046 groups.
• Aligning step: The 1046 groups were aligned by
Muscle, a multiple alignment program [23]. The
alignments were cleaned by the GBLOCKS [27] to
eliminate sites containing many gaps. We selected 992
alignments which contain at least 5 sequences and 50
sites for estimating the model.

Table 9: Pairwise comparisons between FLU and HIVb, HIVw, JTT, LG models.

#T1 > T2 #T2 > T1

M1 M2 #T1 > T2 (p < .05) (p < .05)

FLU (-F) HIVb (-F) 655/917 454 40

FLU (-F) HIVw (-F) 792/932 655 41

FLU (-F) JTT (-F) 890/938 710 6

FLU (-F) LG (-F) 921/935 868 5

FLU (+F) HIVb (+F) 627/916 412 83

FLU (+F) HIVw (+F) 701/932 540 78

FLU (+F) JTT (+F) 887/912 705 3

FLU (+F) LG (+F) 922/924 897 0

T1 (T2) is the tree inferred using M1 (M2) model. #T1 > T2: the number of alignments where topologies of T1 and T2 are different and the likelihood 
of T1 is higher than the likelihood of T2 (the first number), and the number of alignments where topologies of T1 and T2 are different (the 
second number). #T1 > T2 (p < 0.05): special cases of #T1 >T2, where T1 is significantly better than T2. #T2 > T1 (p < 0.05): the same as #T1 > T2 (p 
< 0.5), but now T2 is significantly better than T1.

Figure 4 The Robinson-Foulds distance between trees inferred 
using FLU and HIVb (LG, JTT, HIVw) models. The horizontal axis in-
dicates the RF distance between 2 tree topologies, whereas the vertical 
axis indicates the number of alignments.
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Model
We assume, as usual, that amino acid sites evolve inde-
pendently, and the process has remained constant
throughout the course of evolution. The substitution pro-
cess between amino acids is modeled by a time-homoge-
neous, time-continuous, time-reversible, and stationary
Markov process [[1,2,28], and references therein]. The
central component of the process is the so-called instan-
taneous substitution rate 20 × 20-matrix Q = {qxy} where
qxy (x ≠ y) is the number of substitutions from amino acid
x to amino acid y per time unit. The diagonal elements qxx
are assigned such that the sum of each row equals zero.
The matrix Q can be decomposed into symmetric
exchangeability rate matrix R = {rxy} and amino acid fre-
quency vector π = {πx} such that qxy = rxyπy and qxx = -Σy≠x
qxy.

The likelihood of a multiple sequence alignment D =
{d1, ..., dn} of n sites given their phylogenetic tree T and
the model Q is

where L(T, Q|di) is the likelihood of site di given tree T
and model Q that can be efficiently calculated by a prun-
ing algorithm [29].

In Equation 1, we assumed the same substitution rate
across amino acid sites. To incorporate the variability of
substitution rates across sites we used the combination of
invariant model [30,31] and Γ-distribution model [32].
The heterogeneous rate model r assumes a fraction θinv of
sequence sites to be invariant, and other sites are variant
with global substitution rates following the Γ-distribution
[33].

The likelihood of D given the phylogenetic tree T, sub-
stitution model Q, and rate model r is computed as

where L(inv|di) is the likelihood of site di following the
invariant model, that is, L(inv|di) is equal to πx if site di is
constant and contains only amino acid x, otherwise zero
when the site di is not constant; rcT denotes the tree T
with all branch lengths being multiplied by rc.

Model estimation
Given a set of m protein alignments D = {D1, ..., Dm}, the
substitution model Q can be estimated by the counting or
the maximum likelihood approach [[1], and references
therein]. A number of studies have shown that the maxi-
mum likelihood approach can avoid systematic errors
and makes more efficient use of information in the pro-
tein alignments compared with the counting approach
[10]. We applied the maximum likelihood approach,
introduced by Le and Gascuel in [6], to estimate the
model Q.

The model Q is estimated by maximizing the likelihood
L(D):

where Ti and ri are the phylogenetic tree and rate model
of the alignment Di, respectively. Optimizing the likeli-
hood L(D) is a difficult problem because we have to con-
struct all phylogenetic trees (topologies and branch
lengths), Q coefficients and rate parameters. Fortunately,
previous studies discovered that the estimated coeffi-
cients of Q remained nearly unchanged when near-opti-
mal phylogenetic trees and rate parameters were used
[[10], and references therein]. Thus, the Equation 2 can
be simplified and approximated to:

where  and  are near-optimal phylogenetic tree

and rate model of Di, respectively. We designed a 5-step

procedure to estimate the model Q (see Figure 5):
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Table 1: 0Correlations between FLU, FLU1 and FLU2 models.

exchangeability matrix frequency vector

FLU vs FLU1 99.95% 99.98%

FLU vs FLU2 99.95% 99.98%

FLU1vs FLU2 99.81% 99.94%

The exchangeability (frequency) column gives the correlations between exchangeability matrices (frequency vectors) of these models.
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• Step 1: Collect all influenza protein sequences from
the influenza database at NCBI (112,450 protein
sequences).
• Step 2: Process retrieved sequences as described in
the 'Data' section to obtain 992 multiple alignments.
• Step 3(Q = LG as the default): Estimate trees, rates,
etc., using Q and the phylogenetic software PhyML
[18].
• Step 4: Estimate a new model Q' using the approach
introduced in [6] and the XRate software [34].
• Step 5: Compare 2 models Q and Q'. If Q' is nearly
identical to Q, return Q' and consider it as the model
for influenza viruses. Otherwise, Q � Q' and goto Step
3.

FLU was obtained after two iterations.
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Figure 5 Flowchart to estimate the influenza-specific amino acid 
substitution model.
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