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2 Department of Biology, Universidad Nacional de Colombia, Bogotá, Colombia

ABSTRACT
Gene co-expression networks (GCNs) are graphic representations that depict the
coordinated transcription of genes in response to certain stimuli. GCNs provide
functional annotations of genes whose function is unknown and are further used in
studies of translational functional genomics among species. In this work, a method-
ology for the reconstruction and comparison of GCNs is presented. This approach
was applied using gene expression data that were obtained from immunity experi-
ments in Arabidopsis thaliana, rice, soybean, tomato and cassava. After the evaluation
of diverse similarity metrics for the GCN reconstruction, we recommended the mu-
tual information coefficient measurement and a clustering coefficient-based method
for similarity threshold selection. To compare GCNs, we proposed a multivariate
approach based on the Principal Component Analysis (PCA). Branches of plant
immunity that were exemplified by each experiment were analyzed in conjunction
with the PCA results, suggesting both the robustness and the dynamic nature of the
cellular responses. The dynamic of molecular plant responses produced networks
with different characteristics that are differentiable using our methodology. The
comparison of GCNs from plant pathosystems, showed that in response to similar
pathogens plants could activate conserved signaling pathways. The results confirmed
that the closeness of GCNs projected on the principal component space is an indica-
tive of similarity among GCNs. This also can be used to understand global patterns of
events triggered during plant immune responses.

Subjects Computational Biology, Statistics
Keywords Gene co-expression networks, Similarity measures, Similarity threshold, Principal
Component Analysis, Networks comparison, Plant immunity

INTRODUCTION
Molecular biological high-throughput techniques have provided a great amount of diverse

and informative gene expression data, currently available in genomic databases. These

data, if properly analyzed, allow for a better understanding of the biological processes

in different organisms. The construction of functional gene networks that are based

on gene expression data are termed gene co-expression networks (GCNs), which reflect

information based on the relationships between genes (and/or the proteins they encode)

that indicate a coordinated participation in a common biological process or pathway
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(Atias, Chor & Chamovitz, 2009; Hwang et al., 2011). GCNs predict functional annotations

for genes whose function is unknown (Ficklin & Feltus, 2011). Some studies have also con-

firmed through experimental validation that the predictions are accurate (Seo et al., 2011).

Several methodologies have been used for the construction of GCNs in plants in order

to understand important biological processes (López-Kleine, Leal & López, 2013), trying to

represent as much information as possible using gene expression data from heterogeneous

experiments (Atias, Chor & Chamovitz, 2009). Most of these methodologies share four

main steps that are solved in different manners: (1) gene expression data selection and the

construction of expression matrices, (2) the selection of a similarity measurement and the

construction of gene similarity matrices (Butte & Kohane, 2000; Mahanta et al., 2012), (3)

similarity threshold selection (Elo et al., 2007; Luo et al., 2007) and (4) the comparison of

GCNs that were obtained from different samples or species, as has been proposed as the

final step by several works (Elo et al., 2007; Skinner et al., 2011).

The confidence in the obtained GCNs depends on the reliability and objectiveness of the

approach used at each of these steps. Additionally, when heterogeneous gene expression

samples are used in conjunction, special care is required to maintain a high signal/noise

ratio. Selecting a similarity metric that captures the relationship between gene expression

profiles is the first critical decision in the methodology (Zhang & Horvath, 2005). The

Pearson Correlation Coefficient (PCC) is the most used similarity metric due to its simple

implementation and appropriateness for this task (Edwards et al., 2010; Ouyang et al.,

2012). Nevertheless, as expression profiles can be correlated non-linearly, many genes with

an interesting coordinated co-expression are not retained for inclusion in the final GCN

using PCC (Bandyopadhyay & Bhattacharyya, 2011). Furthermore, the PCC is affected

by outlying observations that originate pairs of genes that are co-expressed incorrectly

(Mutwil, 2010). Studies have confirmed that the PCC is high even if genes are neither

overexpressed nor underexpressed across conditions (Bandyopadhyay & Bhattacharyya,

2011) and that it also fails in the detection of proximity between expression profiles

(Mahanta et al., 2012). Several metrics have been introduced to detect any dependence

between expression profiles while enhancing the robustness if noisy data are available

(Numata, Ebenhöh & Knapp, 2008; Bandyopadhyay & Bhattacharyya, 2011). Metrics

that are based on information theory, such as the Non-linear Correlation coefficient

based on Mutual Information (NCMI), perform well with expression data, due to the

lack of distribution assumptions and the fact that these metrics are not affected by data

transformations (Numata, Ebenhöh & Knapp, 2008). Recently, the Normalized Mean

Residue Similarity (NMRS) showed good performance in detecting shifted patterns of

expression profiles (Mahanta et al., 2012). An evaluation of these metrics compared to the

PCC is essential to establish their strengths or weaknesses in capturing functional lineal

and non-lineal relationships between genes.

Once an appropriate similarity measure has been applied, the second step is selecting

the similarity threshold. Selecting a similarity threshold is a decision that frequently

relies on subjective criteria or previous biological knowledge (Ala et al., 2008). Elaborated
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approaches for selecting the threshold objectively have been proposed (Nayak et al.,

2009). Methods based on the clustering coefficient of graphs (Elo et al., 2007), spectral

graph theory (Perkins & Langston, 2009) and random matrix theory (Luo et al., 2007)

attempt to differentiate true co-expressed genes from random noise. In these methods,

the structure of GCNs is revealed in a systematic way without subjective intervention

(Luo et al., 2007). However, their complexity and dependence on assumptions makes them

restrictive. Among these methods, clustering coefficient-based methods are robust and

intuitive (Elo et al., 2007).

Regarding the comparison of networks as a final step in most of the studies constructing

GCNs, some strategies aim to study conserved topological or biological information

between GCNs (Mutwil et al., 2011). The comparison of networks using graph variables

and multivariate approaches has also been developed (Costa et al., 2005; Elo et al., 2007).

Only topological or spectral variables are used to characterize networks, therefore,

genomic information is not reflected in graph properties, and biological conclusions

are not revealed. An efficient strategy to characterize and compare GCNs based on a

multivariate analysis, allowing researchers to include and also obtain valuable genomic

data from networks and to infer global similarities, is still not available.

In the present work, we constructed GCNs based on gene expression data that were

obtained from plant immunity experiments. The plants represent an important source of

nutrients for most organisms. To gain access to these nutrients, pathogens have to survive

the plant responses. Plant immunity has been classified into two branches according the

molecules involved in the recognition (Jones & Dangl, 2006). The first branch depends

on the recognition of microorganism-associated molecular patterns (MAMPs) by pattern

recognition receptors (PRRs). This immunity is named MAMP-triggered immunity (MTI

also known as PTI) (Zipfel, 2009). The second branch of plant immunity depends on the

recognition of pathogen effector proteins, which are translocated and recognized in the

plant cytoplasm by resistance (R) proteins. This branch has been called effector-triggered

immunity (ETI) (Jones & Dangl, 2006). The PTI and/or ETI induce a systemic acquired

resistance (SAR) that confers a broad-spectrum and long-term resistance (Durrant &

Dong, 2004). The recognition of MAMPs or effectors triggers a diverse array of responses,

including ion fluxes, the production of reactive oxygen species (ROS) and the activation of

MAP kinase signaling pathways, leading to the activation of transcription factors that in its

turn modulate the host gene expression (Dodds & Rathjen, 2010). The changes (induction

and repression) in gene expression during different plant immune responses have been

studied in several plant pathosystems (Glazebrook, 2005; Birkenbihl & Somssich, 2011), but

Arabidopsis thaliana-Pseudomonas syringae remain the primary models for the study of

plant–pathogen interactions (Nishimura & Dangl, 2010).

In the present work, we performed the four steps of GCN construction, carefully

evaluating the statistical robustness and objectivity during each step. The careful selection

of the best method and some improvements during the threshold selection step allowed

us to obtain a general picture of gene expression reprogramming during plant pathogen

immunity through the GCN construction. Pathogen resistance microarray datasets from
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Arabidopsis, rice (Oryza sativa), soybean (Glycine max), tomato (Solanum lycopersicum)

and cassava (Manihot esculenta) were used. We evaluated the performance of the Absolute

value of the Pearson Correlation Coefficient (APCC) against two metrics, NCMI and

NMRS. For the similarity threshold selection, a modification of the clustering coefficient-

based method is proposed to select the similarity thresholds. For the comparison step,

the GCNs were characterized and a Principal Component Analysis was performed. The

GCNs were clustered based on the principal component (PC) space using the K-means

clustering algorithm. We found that the distance between the GCNs in the PC space can

be used to analyze their structural and functional similarities within and between species.

The comparative analyses allowed for the identification of common elements, indicating

cross-talk between the different signaling responses to pathogens in the studied plant

species.

MATERIALS & METHODS
Expression matrices construction
Pathogen resistance microarray data was used in this work. GEO DataSet repositories were

queried for the expression data from microarray experiments (http://www.ncbi.nlm.nih.

gov/geo/). A total of 40 non-processed datasets for Arabidopsis thaliana, 8 for rice, 5 for

soybean and 3 for tomato were collected. Three cassava microarray datasets were obtained

from previous studies (López et al., 2005).

The datasets were independently pre-processed through noise reduction, normalization

and log2 transformation. The Robust Multiarray Average (RMA) method (Bolstad et al.,

2003) was applied to Affymetrix data using the R affy library (R Development Core Team,

2011), while the two-color microarray data were pre-processed using the marray and

Agi4x44PreProcess libraries.

The probe IDs were converted into gene IDs using a conversion table for each platform.

Single probes that matched more than one gene were removed. For those multiple probes

that matched a single gene, the maximum expression was assigned to the gene.

A filter of the samples and genes was applied to the datasets to reduce missing data. First,

a common gene list was obtained, and those samples representing less than 50% of the

common genes were removed. Afterwards, those genes that were represented in less than

75% of the total samples were removed.

At this point, two groups of expression matrices were constructed from pre-processed

datasets. The first group of expression matrices was obtained by merging all of the

expression data from one species (see Fig. 1A). The GCNs that were constructed with

these expression matrices were called GCNs based on multiple experiments (M-GCNs).

The second group of expression matrices was constructed for each microarray experiment

independently (see Fig. 1B). For each experiment, genes showing differential expression

were identified and retained using the Significance Analysis of Microarrays (SAM) (Tusher,

Tibshirani & Chu, 2001).

The GCNs that were constructed using this approach were called GCNs from single

experiments (S-GCNs).
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Figure 1 The overall steps for the construction and comparison of the GCNs. (A) The expression data from several microarray experiments were
pre-processed and merged into a single expression matrix. Then, a similarity measurement was used to calculate a similarity matrix. A similarity
threshold was chosen, and the adjacency matrix was calculated. The resulting GCN was termed a multiple-experiment GCN (M-GCN). (B) The
expression data from a single microarray experiment were processed to assemble the expression matrix. The remaining steps were executed as in
(A). The resulting GCN was termed a single-experiment GCN (S-GCN). (C) The adjacency matrices from the GCNs were characterized with the
graph variables. The characterization based on network variables was constructed, and the PCA was used to compare the GCNs.

Similarity measurement selection
A square similarity matrix (Snxn) was calculated for every single Enxp. The elements of

Snxn or similarities (si,j) between pairs of genes i and j were calculated using a similarity

measure. We evaluated three similarity measures: the Absolute value of the Pearson

Correlation Coefficient (APCC) (Zhang & Horvath, 2005), the Non-linear Correlation
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coefficient based on Mutual Information (NCMI) (Dionisio, Menezes & Mendes, 2004;

Numata, Ebenhöh & Knapp, 2008) and the Normalized Mean Residue Similarity (NMRS)

(Mahanta et al., 2012) (see Article S1, section 1). These measures were used to calculate

the dependence between Xi and Xj, where Xi is a continuous random variable denoting

the expression level of the ith gene across samples (Meyer, Lafitte & Bontempi, 2008).

These similarity measures take values in the same interval [0, 1], where 0 indicates

non-dependence between Xi and Xj, and 1 indicates total dependence or maximum

similarity. A detailed description of each similarity measure is given in the Article S1,

section 1.

The Snxn were contrasted in dispersion plots. The similarity measurement that better

detected not only the linear dependences between Xi and Xj but also the non-linear and

scaled patterns was chosen.

Similarity threshold selection
Once the Snxn was calculated using the chosen similarity measure, a similarity threshold

τ ∗ was selected. The τ ∗ allowed us to determine the GCN edges according to the adjacency

function given by Eq. (1) (Zhang & Horvath, 2005). Each GCN was represented by an

adjacency matrix Anxn whose elements ai,j take the value of 1 when the genes/nodes i

and j are connected by an edge. We restricted the GCNs to have undirected edges and no

self-loops; therefore, Anxn is symmetric with diagonal elements equal to 0. The GCNs were

drawn using Cytoscape (Shannon et al., 2003).

ai,j =


1 if si,j ≥ τ ∗

0 if si,j < τ ∗.
(1)

In this work, we followed an intuitive method based on the network’s topological

properties for τ ∗ selection (Elo et al., 2007). The observed clustering coefficient in the GCN

C(τv) was compared with the expected clustering coefficient Cr (τv) for a randomized GCN

with the same degree distribution of the original GCN (Newman, 2003). Both clustering

coefficients are contrasted as the similarity threshold increased (Eqs. (2) and (3)).

C(τv) =
1

K


ki>1

2Di

ki(ki − 1)
. (2)

In Eq. (2), the observed clustering coefficient C(τv) is the average of the clustering

coefficients of all the nodes in the GCN, so it could be also called “average clustering

coefficient”; ki denotes the number of neighbors of gene i or node degree; Di denotes the

number of edges between the neighbors of gene i. K is the number of genes with ki > 1.

Cr (τv) =


kd − k̄

2

k̄3N
. (3)

In Eq. (3): N denotes the number of connected nodes in the GCN, k̄ = 1/N
N

i=1ki, and

kd = 1/N
N

i=1k2
i .

Leal et al. (2014), PeerJ, DOI 10.7717/peerj.610 6/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.610/supp-1
http://dx.doi.org/10.7717/peerj.610/supp-1
http://dx.doi.org/10.7717/peerj.610/supp-1
http://dx.doi.org/10.7717/peerj.610/supp-1
http://dx.doi.org/10.7717/peerj.610


According to Elo et al. (2007), the similarity threshold selection is determined by finding

the minimum threshold τv for which the difference between the clustering coefficients is

maximum. Although this strategy is useful for a wide broad of networks, it is not suitable

for those networks where (C(τv) − Cr (τv)) < 0. Here, we use the absolute difference

between clustering coefficients (Eq. (4)). Thus, τ ∗ is the first local maximum of the curve

|C(τv) − Cr (τv)|.

τ ∗
=

min

v
{τv : |C(τv) − Cr (τv)| > |C(τv+1) − Cr (τv+1)|}. (4)

In Eq. (4), τ ∗ is the selected similarity threshold; τv+1 = τv + 0.01 with τv ∈ [0.01, 0.99].

The validity of this modification was evaluated with simulated networks. The

simulation procedure and results are described in Article S1, section 2; Fig. S3.

GCN comparison by Principal Component Analysis (PCA)
The GCNs were characterized by eight graph variables (Fig. 1C). These informative

measurements were selected following different requirements. Initially, we selected a

subset of four variables that explain topological properties of reconstructed networks.

For example, to study the structure of networks and their tendency to form sets of tightly

connected edges, the clustering coefficient was used. Besides, the density of edges allowed

us to measure whether the network is tight or cohesive (Horvath & Dong, 2008). To average

the importance of nodes in terms of its centrality a measure of centralization was used. This

measure assumes that the greater the number of paths in which a node participates, the

higher the importance for the network (Costa et al., 2005). Equally, networks could show

high variance in their nodes connectivity, especially in scale-free topologies. We assessed

the heterogeneity measure to reveal whether the networks have heterogeneous connectivity

(Horvath & Dong, 2008).

Subsequently, we planned to study the structure of networks adding external informa-

tion. For this purpose, a subset of four variables was proposed as follows. Given that nodes

in coexpression networks also represent coded proteins with different biological functions,

it’s interesting to consider that nodes are not homogenous. To measure how much the

nodes link to others with similar or dissimilar characteristics, a pair of assortativity

coefficients was introduced. These coefficients merge current topological information

with external Gene ontology (GO) annotations and PFAM annotations.

In the same way, we used graph theory to study the relationship between gene

significance and connectivity. We assessed the correlation between node degree and

presence of typical domains found in the immunity proteins. The correlation takes a

reference dataset of genes encoding proteins involved in defense. We evaluated whether

highly connected hub nodes are central to the network structure but also biologically

significant in immune responses.

As this work focused on plant pathogen interactions, the tolerance to attacks as

represented by the action of the effectors as suppressors of plant immunity was considered

important. It was recently demonstrated that effector proteins from pathogens are directed

to hubs of plant immunity networks (Mukhtar et al., 2011). Here, we analyzed the
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resistance to these perturbations by means of the average path length (Albert & Barabasi,

2002). A detailed description of these eight variables is annexed in the Article S1, section 3.

The M-GCNs and S-GCNs were compared in separated collections after characteriza-

tion. Initially, the characterization matrices Tgxt of g networks by t variables were formed

for M-GCNs and S-GCNs. Subsequently, a PCA for every single Tgxt was conducted

(Jolliffe, 2002). Those principal components (PCs) retaining more variance were selected.

The M-GCNs and S-GCNs were analyzed using the PCs planes. In addition, two

procedures were considered for S-GCNs comparison:

(i) We classified every S-GCN by the treatment studied in the experiment. In this work,

the experiments included stresses caused not only by pathogens but also by chemical

substances that are related to pathogen activity and the plant immune system. Those

stresses sharing similar pathogens or chemical substances were grouped (Table 1).

Subsequently, those S-GCNs belonging to the same stress group were depicted on the

PCs planes.

(ii) The K-means algorithm was used to find clusters of S-GCNs on the PCs planes. We

selected the optimum number of clusters based on the Bayesian Information Criterion

(BIC). This selection was achieved using the R adegenet library (R Development Core

Team, 2011). The clusters were analyzed with the stress groups as previously defined.

The R code for the construction and comparison of GCNs is given in the Script S1.

RESULTS
With the aim of generating a general picture of the immunity networks, microarray data

from different plants in response to pathogens were used to construct GCNs. The general

methodology that was followed to construct and compare the GCNs involved four steps:

(1) the construction of expression matrices, (2) the selection of a similarity measurement

and the construction of gene similarity matrices, (3) the similarity threshold selection and

(4) the comparison of GCNs (Fig. 1).

Expression matrices construction
A total of 59 raw microarray datasets from pathogen-infected plants were obtained from

publicly available data that were pre-processed and filtered (see Methods and Table 1).

Arabidopsis and rice were represented by more experiments than were the other species; 40

and 8 experiments, respectively. In Arabidopsis, studies with the pathogens Botrytis cinerea

and Pseudomonas syringae pv. tomato were the most abundant. For rice, experiments

involving Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae were the most common.

Soybean, tomato and cassava are less studied plants and, therefore, the number of

experiments using these species was scarce. A total of 5, 3 and 3 experiments, respectively,

involving these species were used.

Two groups of expression matrices were constructed from pre-processed datasets.

The expression matrices used to construct the M-GCNs are summarized in Table 2.

The expression matrices used to construct the S-GCNs are summarized in Table S1. As
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Table 1 Pathogen resistance microarray data collected.

Id. GEO dataset Plant Stress group Stress

1 GSE12856 Arabidopsis PTI Non-host

2 GSE13739 Arabidopsis Induced resistance Induced resistance (SA)

3 GSE14961 Arabidopsis Induced resistance Induced resistance (SA)

4 GSE15236 Arabidopsis Fungi Fusarium oxysporum

5 GSE16471 Arabidopsis PTI PTI

6 GSE16472 Arabidopsis PTI PTI

7 GSE16497 Arabidopsis Induced resistance Induced resistance (Aphid)

8 GSE17382 Arabidopsis PTI PTI

9 GSE17875 Arabidopsis Fungi Botrytis cinerea

10 GSE19273 Arabidopsis Bacteria Ralstonia solanacearum

11 GSE20188 Arabidopsis Induced resistance Induced resistance (insecticides)

12 GSE21762 Arabidopsis Induced resistance Induced resistance (JA)

13 GSE21920 Arabidopsis Bacteria Pseudomonas syringae

14 GSE26679 Arabidopsis Fungi Golovinomyces cichoracearum

15 GSE26973 Arabidopsis Induced resistance Induced resistance (exudates)

16 GSE28800 Arabidopsis Induced resistance Induced resistance (chemistry)

17 GSE431 Arabidopsis Fungi Erysiphe cichoracearum

18 GSE5513 Arabidopsis Induced resistance Induced resistance (PTI)

19 GSE5752 Arabidopsis Induced resistance Induced resistance (SA)

20 GSE5753 Arabidopsis Induced resistance Induced resistance (SA)

21 GSE5754 Arabidopsis Induced resistance Induced resistance (SA)

22 GSE5755 Arabidopsis Induced resistance Induced resistance (SA)

23 GSE5756 Arabidopsis Induced resistance Induced resistance (SA)

24 GSE5757 Arabidopsis Induced resistance Induced resistance (SA)

25 GSE5758 Arabidopsis Induced resistance Induced resistance (SA)

26 GSE6176A Arabidopsis PTI PTI

27 GSE6176B Arabidopsis Bacteria Pseudomonas syringae

28 GSE6831 Arabidopsis Induced resistance SAR (JA)

29 GSE8319 Arabidopsis PTI PTI

30 GSE10426 Arabidopsis Fungi Plasmodiophora brassicae

31 GSE10713 Arabidopsis Fungi Fusarium oxysporum pv. raphani

32 GSE13390 Arabidopsis Bacteria Pseudomonas syringae pv. tomato

33 GSE15880 Arabidopsis Fungi Botrytis cinerea

34 GSE15881 Arabidopsis Fungi Botrytis cinerea

35 GSE18757 Arabidopsis Bacteria Ralstonia solanacearum

36 GSE25838 Arabidopsis Fungi Botrytis cinerea

37 GSE34081 Arabidopsis Bacteria Pseudomonas syringae pv. tomato

38 GSE7990 Arabidopsis Induced resistance Induced resistance (ISR, Bradyrhizobium)

39 GSE8877 Arabidopsis Fungi Plasmodiophora brassicae

40 GSE31230 Arabidopsis Bacteria Ralstonia solanacearum

41 GSE19239 Rice Bacteria Xanthomonas oryzae pv. oryzicola
(continued on next page)
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Table 1 (continued)
Id. GEO dataset Plant Stress group Stress

42 GSE32582 Rice Oomycetes Pythium graminicola

43 GSE33411 Rice Bacteria Xanthomonas oryzae pv. oryzae

44 GSE7256 Rice Fungi Magnaporthe grisea

45 GSE8216 Rice Induced resistance Induced resistance (cellulase)

46 GSE16470 Rice Fungi Magnaporthe oryzae

47 GSE28308 Rice Fungi Magnaporthe oryzae

48 GSE36093 Rice Bacteria Xanthomonas oryzae pv. oryzae

49 GSE29740A Soybean Fungi Phakopsora pachyrhizi

50 GSE29740B Soybean Fungi Soybean rust

51 GSE33410 Soybean Fungi Soybean rust

52 GSE8432 Soybean Fungi Phakopsora pachyrhizi

53 GSE9687 Soybean Oomycetes Phytophthora sojae

54 GSE21999 Tomato Fungi Colletotrichum coccodes

55 GSE14637 Tomato Fungi Botrytis cinerea

56 GSE33177 Tomato Oomycetes Phytophthora infestans

57–59 — Yuca Bacteria Xanthomonas axonopodis pv. manihotis

Table 2 Main results for M-GCN construction: expression matrices dimensions, similarity thresholds
and network sizes.

Plant Expression matrix Similarity threshold M-GCN size

Samples Genes Nodes Edges

Arabidopsis 560 21,122 0.91 1,563 4,489

Rice 136 32,475 0.89 744 3,065

Soybean 385 13,853 0.92 762 6,356

Tomato 33 7,405 0.92 674 5,794

Cassava 87 3,736 0.94 307 739

expected, the number of samples and genes in the expression matrices was higher for plants

with more experiments (Arabidopsis and rice).

Similarity measurement selection and construction of similarity
matrices
Three similarity measurements were evaluated to assess the similarity matrix between

genes. We compared the dispersion plots of the similarities that were calculated using the

APCC (sAPCC
i,j ), NCMI (sNCMI

i,j ) and NMRS (sNMRS
i,j ); formally sAPCC

i,j vs. sNCMI
i,j and sAPCC

i,j

vs. sNMRS
i,j (Fig. S1).

For low sAPCC
i,j in which no linear similarity is detected, the high values of sNCMI

i,j

and sNMRS
i,j evidence a nonlinear correlation (Fig. S1). In other words, for low Pearson

coefficients in which no linear similarity is detected, the NCMI and NMRS were able to

detect nonlinear correlation. The genes with linearly correlated expression profiles are
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Figure 2 The application of methodology for the similarity threshold selection in the M-GCN. The
differences between the observed clustering coefficients C(τv) and the expected clustering coefficients for
a randomized network Cr(τv) are shown when the similarity threshold (τv) is increased.

placed in the upper right corner, and the genes with nonlinearly correlated expression

profiles can be found in the upper left corner. Based on these comparisons, we concluded

that NMRS and NCMI are both useful measures in detecting linear and non-linear

correlations. Nevertheless, non-linear correlations were better revealed by NCMI. This

result is especially important when a similarity threshold τ ∗ is chosen based on the gene

pairwise similarity matrix, because some gene pairs with a non-linear correlation would

be included in the final gene network. Moreover, for any τ ∗ > 0.5, the number of edges

from the non-linearly correlated profiles will be greater if sNCMI
i,j is used (Fig. S1). Given

that our goal was to construct GCNs including linear and non-linear relationships between

genes, we decided that NCMI was the best metric among the three approaches that were

evaluated.

Similarity threshold selection and GCN construction
The similarity matrices were used to test the methodology for the threshold selection. In

the M-GCN construction, Fig. 2 shows the difference between the expected clustering

coefficient of the random network Cr (τv) (Elo et al., 2007) and the real clustering

coefficient that was based on the constructed network C(τv) (see Methods). The curves

show a first phase of continuous growth where the non-significant edges are gradually

removed (Fig. 2). The maximum difference is reached when well-defined clusters are

formed due to the removal of non-relevant edges. The clustering coefficient of the random

network should remain lower than that of the real network, as assumed by Elo et al. (2007);

however, the curve of Arabidopsis did not show the expected behavior.

The Arabidopsis curve (Fig. 2) showed that the methodology proposed by

Elo et al. (2007) is not suitable for networks where (C(τv) − Cr (τv)) < 0, indicating

that Cr (τv) > C(τv). In this work, a minor adaptation of the method was proposed (see

Eq. (4) in Methods). Indeed, several alternative ways to utilize the clustering coefficient

in the threshold selection can be studied (Elo et al., 2007) and the global optimization
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Figure 3 The M-GCNs for the five plants. (A) Arabidopsis, (B) rice, (C) soybean, (D) tomato and (E)
cassava. The nodes that have high clustering coefficients are mapped to dark colors.

problem expressed in Eq. (4) is not unique. Through simulation we determined that the

absolute value of the differences between C(τv) and Cr (τv) is suitable for the threshold

selection. Accordingly, the maximum absolute value between clustering coefficients is still

a reference point to identify the transition between the underlying biological system and

those random relationships embedded in the similarity matrix. The adaptation relies

also in the basis that the maximum the absolute value, the maximum the difference

between real and randomized systems. We successfully applied this adaptation for the

entire threshold selections performed in our work.

The similarity threshold that was obtained for the Arabidopsis M-GCN was the lowest

(0.89), and its network was the largest among the five plants (Table 2; Fig. 3). The

thresholds for the S-GCNs had a wide range of values (0.27–0.93) for all of the species

(Table S1). The largest S-GCNs (ids: 8, 44, 6, 13, 40) had more than 1,500 nodes and

belonged to experiments that used Arabidopsis and rice.
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From Table 2 and Fig. 3 we inferred that the species with more expression data or

experiments have larger M-GCNs. Indeed, an association between the number of nodes

and the number of samples in the expression matrix was found: PCC = 0.98 (p-value

= 0.002). Consequently, the size of the M-GCNs is due to the inclusion of very diverse

experiments. When a greater number of different types of experiments are included in

the expression matrix, the number of nodes/genes required to represent the underlying

immunity system is higher. This requirement is because more information about several

functions is presented as different experiments are used.

For the S-GCNs, however, we did not found a clear relationship between the quantity of

expression data and the network size. The correlation between the number of nodes and

the number of samples from each S-GCN is very low: PCC = −0.24 (p-value = 0.004). In

other words, although the size of the S-GCNs is highly variable, this variation is neither

correlated with the number of experimental data points nor dependent on the organism.

Comparison of GCNs by Principal Component Analysis (PCA)
For these analyses, we focused on the two groups of GCNs, 59 S-GCNs (summarized in

Table S1) and 5 M-GCNs (summarized in Table 2). We aimed to compare the obtained

networks between species and experiments. The networks were characterized by eight

graph variables: (1) the clustering coefficient, (2) the centralization, (3) the coefficient

of variation of the node degree (also known as heterogeneity), (4) the network density,

(5)–(6) assortativity coefficients, (7) the tolerance to attacks and (8) the correlation

between the node degree and the presence of immunity domains (see Methods).

The characterization matrices for the S-GCNs and M-GCNs were constructed with

these variables (Tables S1 and S2). These variables were then summarized using the PCA.

The S-GCNs and M-GCNs were projected in the principal component (PC) space (Fig. 4;

Fig. S2).

Analysis of PCs used to project S-GCNs
The first three PCs were selected and used to represent the data structure in 2D plots

(Fig. 4). PC1, PC2 and PC3 explain 33%, 20% and 14% of the total variance, respectively.

Accordingly, 67% of the total information is represented in these plots. The PC1 (33%)

explains primarily the information that is contained in the variables of heterogeneity and

density, the clustering coefficient and the assortativity coefficient (PFAM), predominantly

topological information (see Fig. 4C; Table S3 shows each variable’s contribution to the

principal components). The PC2 (20%) explains the assortativity coefficient and the

centralization, primarily non-topological information. The PC3 (14%) explains the

tolerance to attacks and the dependence between node degree and immunity domains

(see Fig. 4D). These last variables were not explained by PC1 or PC2; consequently, PC3 is

associated mainly with the robustness of the immunity processes.

The dependence of the graph variables with the network size was also studied to verify

that characterization of networks was not affected by their size. The PCC between the

number of nodes and the graph variables clearly shows that all of the variables exhibited a
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Figure 4 The differentiation of the S-GCNs using the PCA. (A), (B) The projection of the S-GCNs in
the planes (A) PC1–PC2 and (B) PC1–PC3. The networks were numbered with the same ids. from Table 1
and are represented with symbols according to the stress group. The axes labels show the percentage of the
explained variance (EV) by each principal component. (C), (D) The correlation circles for the variables
in the planes (C) PC1–PC2 and (D) PC1–PC3. The bar plot consists of Eigenvalues. The variables are
represented with labels: the clustering coefficient (CC), the centralization (Cen), the heterogeneity (Het),
the density (Den), the assortativity coefficient from the GO (AsG), the assortativity coefficient from the
PFAM (AsP), the tolerance to attacks (Tol) and the correlation between the node degree and the presence
of immunity domains (KI).
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very small correlation with the size of the network (Table S3); this assures that the PCA was

not affected or biased by differences in the S-GCN sizes.

Differentiation of S-GCNs between species
The PCA plots allowed us to differentiate S-GCNs among species. The Arabidopsis

S-GCNs are spread over the planes PC1–PC2 and PC1–PC3 (Figs. 4A and 4B). Due to

this dispersion, we deduced that Arabidopsis S-GCNs have very different graph variables

depending on the experiment analyzed.

In contrast, S-GCNs from other plants were more similar based on the eight variables

and, therefore, clustered into specific zones (Figs. 4A and 4B). For example, there was

a clear difference between cassava and tomato S-GCNs on PC1. Tomato S-GCNs are

denser and more clustered than cassava S-GCNs. Cassava S-GCNs have high heterogeneity.

Furthermore, the cassava and soybean S-GCNs were significantly more tolerant to attacks

than those of the other species.

Another example of differentiation among species was found in rice. There is a

defined group of 5 rice S-GCNs near to the center of the PC1–PC2 plane (Fig. 4A).

Their assortativity coefficients are slightly higher than other S-GCNs, indicating that

co-expressed genes in rice networks shared more functional annotations than did genes

from other plants. These examples demonstrate that variables used for the characterization

were useful in differentiating S-GCNs among species. In Article S1, section 4, we explain

the position of S-GCNs by the contribution of each variable to the PCs.

Differentiation of S-GCNs between stress groups
The PCA plots allowed us to find similar S-GCNs based on stress groups. A total of five

stress groups were defined: Bacteria, fungi, induced resistance, oomycetes and PTI (see

Table 1). These stress groups are highlighted using different symbols in Fig. 4.

Networks that were constructed under conditions from the same stress group were

found close to each other. For instance, we found that networks 27, 41, 43 and 48 are

close to each other and no separation is observed in both planes (Fig. 4). These networks

are associated with studies of bacteria in Arabidopsis (id 27; Pseudomonas syringae pv.

tomato) and rice (ids 41, 43, 48; Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae

pv. oryzicola). In this way, they showed similar graph variables but also could represent

comparable immunity process against bacteria in these two species.

Some S-GCNs sharing similar stress groups were also identified in quadrant I of the

PC1–PC2 plane (Fig. 4A). For example, networks 34 and 47, which are related to fungi

experiments in Arabidopsis (ids 34; Botrytis cinerea) and rice (id 47; Magnaporthe oryzae).

In the PC1–PC2 plane, they are forming a closer pair; therefore, their topological variables

(clustering coefficient, density, heterogeneity and centralization) are analogous. Because of

their position in PC2, we can conclude that they are disassortative and their linked genes

do not share many functional annotations. Both networks are also close in the PC1–PC3

plane. Therefore, we can infer that the immunity processes that are represented in these

networks (derived from plant–pathogen interactions of rice-Magnaporthe oryzae and

Arabidopsis-Botrytis cinerea) could share some similarities.
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Figure 5 The results of the S-GCN clustering using the K-means algorithm. A graphic view of the
cross-Tables comparing the clusters (cls) and (A) stress groups or (B) species. The square size increases
with the number of S-GCNs.

Despite the previous examples, some networks from the same group of stresses were also

found separated. An example of opposing S-GCNs is the pair of networks 9–39. They are

related to fungal (Botrytis cinerea, Plasmodiophora brassicae) experiments in Arabidopsis.

Both networks are in total opposition in the three PCs. While network 9 is robust and

assortative, network 39 is less tolerant to attacks and shows high heterogeneity. A similar

result was observed for Arabidopsis networks 10, 35 and 45 from Ralstonia solanacearum.

Consequently, even when two networks are associated with the same stress or group of

stresses, their graph variables could differ.

Clustering of S-GCNs using the K-means algorithm
The K-means algorithm was used with the aim of finding clusters of S-GCNs (see

Methods). We selected an optimum of 10 clusters (Fig. S4). Mainly, induced resistance

experiments were gathered together in cluster 7, and PTI stresses were in cluster 8 (Fig. 5).

Bacteria and fungi were present in almost all of the clusters.

Possible associations between clusters and stress groups were revealed (Fig. 5A;

Table S1). For example, cluster 9 grouped some Arabidopsis, rice and tomato networks.

In this cluster, networks 36 (Botrytis cinerea) and 54 (Colletotrichum coccodes) share the
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same stress group (Fungi). Networks 27 and 32 (Pseudomonas syringae pv. tomato) were

both from bacteria stresses. Also, networks 7, 18 and 45 were related to induced resistance

experiments. This result shows that, for specific networks, a small distance in the PC space

could have a biological meaning in correspondence with the experiment.

Besides, experiments related to PTI and salicylic acid (SA) were grouped together

(Table S1). For instance, in cluster 5, we found that network 26 from PTI was grouped

with network 21 from SA. In cluster 7, network 29 from PTI was grouped with networks

19, 20, 23, 24 and 25 from SA. These findings implied that some stress groups, such as PTI

and the induced resistance by SA, are potentially related to similar co-expression behaviors.

As expected, some clusters are enriched with S-GCNs from specific species (Fig. 5B).

For instance, cluster 3 is useful to compare experiments from soybean and cassava. While

clusters 4, 5, 6 and 8 are exclusively conformed by Arabidopsis networks. Accordingly, the

clustering of S-GCNs with the K-means algorithm allowed a straightforward identification

of theoretically similar networks based on topological and biological characteristics.

Comparison of M-GCNs
In relation to the M-GCNs comparison, two PCs were analyzed (Fig. S2). We verified

that networks with low clustering coefficients had high heterogeneity. Both assortativity

coefficients showed information that was different from that of the topological variables,

such as the density and clustering coefficient.

From the PCA plot, we conclude that Arabidopsis M-GCN constitute a network with

high heterogeneity, but is also more tolerable to attacks. Cassava M-GCN is a disassortative

and non-centralized network, and rice, tomato and soybean M-GCNs constitute highly

clustered and dense networks.

DISCUSSION
With the aim of obtaining a general representation of the events that are triggered during

plant immune responses and to compare these responses in different plants against diverse

pathogens or pathogen response stimuli, GCNs were constructed from the available

microarray data from Arabidopsis, rice, soybean, tomato and cassava. A careful selection

of the methodology at each step was undertaken to fulfill two main criteria: enhanced

objectiveness and enhanced information extraction from the gene expression data.

The careful analyses of the linear and non-linear relationships between gene expression

profiles allowed us to select NCMI as the best metric approach. Then, the similarity

thresholds were defined by the clustering coefficient method. The GCNs were obtained for

the different plants in response to different stimuli. Networks were characterized by graph

variables and a PCA was applied. Each network showed a specific pattern and topology,

indicating that the networks are species-specific, dynamic entities, and even for the same

species in response to the same pathogen, the networks can be quite different (Fig. 4).

The comparative GCN analyses between species allowed for the identification of some

common elements, indicating a cross-talk between the different signaling responses to

pathogens (Fig. 5).
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We investigated different factors that should be considered when GCNs are used to pro-

pose biological hypotheses. For some plant species, both the number of experiments and

the completeness of the genome annotations were inadequate. In some cases, expression

data were missing for several genes. These factors reduced the data representativeness,

especially for tomato, cassava and soybean, for which expression data were not available for

all of the genes of the genome. We observed that the genes in the expression matrices from

these plants were incomplete, considering the number of genes that were reported in their

genomes (Table 2). The microarray data for Arabidopsis and rice were of better quality,

and the expression matrices contained information for almost all of the known genes.

These differences in data availability were reflected in the final GCNs in the sense that the

information represented in the networks from the plants with less data was also sparse.

Regardless of differences in the quantity and quality of the data, the experiments covered

a broad spectrum of conditions. We considered experiments using plants inoculated

with bacteria, fungi and oomycetes, including ETI and PTI responses and induced

resistance experiments. This choice of experiments allowed for the gathering of a broad

representation of immunity processes. Fifty-nine experiments offered a good balance

between the representation of plant immunity processes and a sufficient number of

samples for statistical analyses (Steuer et al., 2002).

Our methodology aims to have a simple application, low-level computational resources

and accurate results to be easily implemented. This methodology for the construction of

GCNs falls in a group of methodologies that are usually termed Relevance Networks based

on their pairwise measures of similarity (Butte & Kohane, 2000). Evidently, more elaborate

strategies involving further mathematical and statistical complexities at each step can be

studied (López-Kleine, Leal & López, 2013); however, our interest was neither to study the

molecular mechanisms in detail nor causal regulatory relationships among gene products.

In this sense, at each step of the methodology, we objectively chose the best method from

several available options. We recommend the following methods:

(1) NCMI as the similarity measurement: although the NCMI estimation was more

complex than that of the APCC or NMRS, its advantages included the detection

of non-linearly correlated pairs of genes and flexibility in detecting any type of

dependence between expression profiles.

(2) The threshold definition based on the modified clustering coefficient method: among

the methods proposed to objectively select a threshold, we used a method based on

the topological features of graphs (Elo et al., 2007) that is easy to implement and is

based on a simpler mathematical background (Luo et al., 2007). The method was

slightly adapted to consider networks with high heterogeneity, as was the case for the

Arabidopsis M-GCN.

(3) The characterization and comparison of GCNs using a PCA: the network comparison

based on the topological variables such as density, heterogeneity or centrality allowed

for the discovery of only similar patterns of morphology between GCNs. We added

new non-topological variables to characterize the GCNs, including tolerance to
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pathogen attacks, assortativity coefficients related to functional annotations and

dependence between node degree and immunity domains. These variables produced

a better differentiation of GCNs in the PCs space and revealed biological conclusions

about the co-expression systems studied.

The characterization of GCNs depends on the use of variables able to extract the

most relevant features. There is an unlimited set of variables that could be selected to

characterize networks (Costa et al., 2005). Thus, the inclusion or exclusion of variables

relies on the knowledge of the problem. Here, we aimed to compare global patterns of

immune responses reflected in coexpression networks. We included a set of variables that

mutually exposed the differences among the studied phenomena and extract as much

information as possible. However, we found that variables like the density and clustering

coefficient were highly correlated, implying redundancy (Figs. 4C and 4D). Similarly,

both assortativity coefficients contained equivalent information. We could expect that

results will not be drastically altered after removing some of these variables. The clustering

coefficient and the assortativity coefficient from GO could summarize adequately the

variability observed in their counterparts. Alternatively, removing non-correlated variables

could obscure the variability observed and results will change. For example, excluding

the tolerance to attacks will reduce the differences between soybean S-GCNs and those

of the other species (Fig. 4B). Likewise, adding new variables could reveal relationships

not presented in our plots. As expressed by Costa et al. (2005), before altering the

characterization matrix, it is of importance to have a good knowledge not only of the

most useful variables, but also of their properties and interpretation.

The confidence in the constructed S-GCNs allowed for us to analyze the networks that

were obtained for extracting biological knowledge and especially for comparing behaviors

between and within species. As stated before, most of the experiments that were analyzed in

this study were from Arabidopsis. A broad spectrum of gene expression data for this model

plant is available (Schenk et al., 2000; Tao et al., 2003; Zipfel, 2009). The zigzag model that

was developed to explain the evolution of plant immunity was constructed based on the

knowledge of the pathosystem Arabidopsis-Pseudomonas (Jones & Dangl, 2006; Nishimura

& Dangl, 2010). In this sense, the S-GCNs that were constructed during the SAR response

or that were induced by SA were based on Arabidopsis data; these and other experiments

have contributed significantly to a major understanding of this phenomenon (Schenk et al.,

2000), including the identification and action mode of NPR1 and the WRKY transcription

factors (Wang, Amornsiripanitch & Dong, 2006; Dempsey & Klessig, 2012).

We compared S-GCNs that were obtained from a deeply studied plant such as

Arabidopsis with S-GCNs that were obtained from an almost unstudied plant with

scarce transcriptomic data such as cassava. The S-GCNs comparison between these

two plants showed that there are few common elements and that their topologies are

different. However, the K-means allowed us to obtain a cluster that grouped Arabidopsis

and cassava networks (cluster 10). This result is important because, for some genes with

unknown functions in cassava, a role in immunity processes could be assigned based on
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these networks. Several studies have reported the utility of this strategy in assigning a

putative function to unknown genes (Ficklin & Feltus, 2011; Hwang et al., 2011). Further

experiments employing mutant versions of these genes and using silencing approaches will

help to determinate the function of these genes in plant immunity.

We observed that the S-GCNs that were generated from Arabidopsis-Pseudomonas

syringae pv. tomato DC3000 (PstDC3000) were very distant, even when they came from

the same pathosystem (ids. 13, 27, 32, 37). However, even though these experiments

belonged to the same plant–pathogen interaction (Arabidopsis-Pseudomonas), some of

them used pathogens (ids. 13, 27 and 32) or plants (ids. 13 and 37) exhibiting mutations

in particular genes. Furthermore, the samples were taken at different time-points in all of

the experiments (see link to summary of experiments in Table 1). Taking together, these

results suggest that minor changes, such as the mutation of individual genes in the plant or

the pathogen, produce networks with different topologies. In addition, networks seem very

dynamic given the important changes they suffer considering different time-points during

the immune responses. This aspect indicates that the construction of a network represents

only a reduced aspect of the whole gene co-expression in the cell at a given moment, and no

generalization can be made for the entire life cycle of a plant cell.

The PTI and ETI responses shared similar responses (ion fluxes, production of ROS and

activation of Map kinases); we expected to observe more similarities for the PTI and ETI

networks. However, we observed that several PTI networks (ids. 5, 6, 8) were not similar

to ETI GCNs, due to the highly dynamic nature of these cellular responses. Similar results

were obtained experimentally, where the expression of only a few genes showed an overlap

between the PTI and ETI (Navarro et al., 2004).

On the other hand, we observed that different networks that were constructed from

experiments involving the PTI were very similar to each other, even when they correspond

to induction for different MAMPs. For example, networks 5 and 29 are closer in PC2

and exemplify the induction of different MAMPs: flg22 and chitin. Previous studies have

reported a very similar response to flagellin and Elongation Factor Tu (Zipfel, 2009).

A similar situation was observed with networks that were constructed from induced

resistance and that were grouped together (cluster 7). This result suggests that the PTI

and induced responses are robust and are not strongly influenced by other environmental

conditions. These types of robust responses were previously reported for incompatible

interactions (Tao et al., 2003).

It is also interesting to note that the GCNs that were obtained from the PTI and induced

responses were also similar (clusters 7 and 5), supporting previous experimental studies

(Tsuda et al., 2008). The ETI has been considered a stronger but very specific response for

a particular race of pathogens (Jones & Dangl, 2006). The distal-induced resistance that is

activated once the ETI has started or the response induced by hormones such as SA also

produces a weak but efficient response against a broad spectrum of pathogens. The PTI is

weak as well but can confer resistance to a larger group of non-adapted pathogens. It would

be interesting to study more in detail whether there is a relationship between a robust, weak

response and the spectrum of resistance.
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The rice networks in response to two different bacteria (X. oryzae pv. oryzae and X.

oryzae pv. oryzicola) showed a high degree of similarity (ids. 41, 43, 48, Fig. 4). This

result is interesting given that the two bacteria employ different strategies of infection.

The first bacteria colonize the vascular system, and the others reside on the apoplast.

Consequently, both bacteria produce different symptoms (Hajri et al., 2012). The similar

network topologies that were observed in our study suggest that, although the colonization

is different, the molecular plant responses and genes involved are related in both cases.

Another example comprises the network 46. This network was obtained from rice plants

that were inoculated with X. oryzae pv. oryzae, but also shows some degree of similarity

with a network from Magnaporthe oryzae (id. 41). Some of the pathways can be shared

in response to different pathogens at particular times during the infection or response.

Consequently, the networks can exhibit this type of similarity.

In response to similar pathogens, plants can activate conserved signaling pathways.

For example, we observed that two unrelated plants such as Arabidopsis and rice

(dicotyledonous and monocotyledonous) react in similar ways in response to bacteria

(ids. 27, 41, 43, 48, Fig. 4). This response does not indicate that the genes are the same, but

rather that some degree of conservation of their function exists. Therefore, it is possible

that some plant responses to a particular group of pathogens can be more “stable” and

conserved. Considering all of these observations, it is important to consider aspects such

as the type of interaction (compatible, incompatible, non-host) evolutionary relationship

and mode of colonization between pathogens, as well as the time-points after pathogen

inoculation when identifying common or shared elements between the networks.

The networks that were constructed for a species by merging several experiments are

different from each other. They have also different characteristics from the networks that

were constructed from only one microarray experiment. Differences between S-GCNs

and M-GCNs are especially striking for Arabidopsis, which questions the validity of the

global network merging all of the experiments. Our results indicate that a global immunity

process gene co-expression network is very difficult to construct and could hardly resume

global information on this complex process. Moreover, the high level of diversity found

between S-GCNs indicates that, depending on the pathogen and type of immunity

process that is triggered, the obtained network will be different. Therefore, we conclude

that global networks such as those that were previously constructed by Atias, Chor &

Chamovitz (2009), Pop et al. (2010) and Mutwil et al. (2011) could mask important gene

relationships that are characteristic of a particular process. Also, these global networks

could enhance relationships that are specific to only one biological process. Those gene

relationships that arise only under special environmental and biological circumstances

are better represented by process-oriented networks such as those that were previously

constructed by Nakashima, Ito & Yamaguchi-Shinozaki (2009) and Lee et al. (2011).

CONCLUSIONS
As a major finding, the closeness of GCNs on the principal component space is indicative

of similar plant immune responses and conserved signaling pathways. The comparison
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of GCNs suggests cross-talk between the different responses to pathogens within plant

species. It is possible that some plant responses to a particular group of pathogens are not

only conserved but also more robust. Theses similarities between S-GCNs are a valuable

source of predictions that can be considered in future works.

The representation of coordinated transcription through GCNs is necessary to gain

comprehensible knowledge from the underlying transcriptomes. We showed that global

immunity process should not be explored using the M-GCN approach. The comparative

S-GCNs analyses allowed to conclude that dynamic of molecular plant responses produce

networks with different characteristics. As a consequence, M-GCNs cannot properly

summarize the experimental data.

Neither a high level of computational resources nor intricate algorithms were used.

Thus, methods from this work are still applicable to expression data that are generated

by any biological processes. Our strategy to extract relevant information from networks

provides a shortcut to advanced studies in translational functional genomics, assuring that

current biological knowledge for model organisms and less studied species is analyzed in

conjunction.
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