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ABSTRACT 

The incorporation of AI models into bioinformatics has brought about a revolutionary era in the analysis and interpretation of 

biological data. This mini-review offers a succinct overview of the indispensable role AI plays in the convergence of computational 

techniques and biological research. The search strategy followed PRISMA guidelines, encompassing databases such as PubMed, 

Embase, and Google Scholar to include studies published between 2018 and 2024, utilizing specific keywords. We explored the 

diverse applications of AI methodologies, including machine learning (ML), deep learning (DL), and natural language processing 

(NLP), across various domains of bioinformatics. These domains encompass genome sequencing, protein structure prediction, drug 

discovery, systems biology, personalized medicine, imaging, signal processing, and text mining. AI algorithms have exhibited 

remarkable efficacy in tackling intricate biological challenges, spanning from genome sequencing to protein structure prediction, and 

from drug discovery to personalized medicine. In conclusion, this study scrutinizes the evolving landscape of AI-driven tools and 

algorithms, emphasizing their pivotal role in expediting research, facilitating data interpretation, and catalyzing innovations in 

biomedical sciences. 
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Introduction 
1Bioinformatics serves as a crucial bridge between 

different aspects of biology and computational analysis, 

unlocking hidden patterns and insights from complex 

datasets, and providing the essential tools and methods 

to analyze, interpret, and extract meaningful knowledge 

from these massive data (1). The past decade has 
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witnessed a transformative shift in the field of 

bioinformatics, traditionally characterized by the 

application of computational tools to analyze biological 

data. The emergence of artificial intelligence (AI) has 

created a powerful engine for revolutionizing biological 

research approaches and the onset of a new era of 

innovation (2, 3). The exponential growth of biological 

data (Big Data), powered by high-throughput 

sequencing and other cutting-edge technologies, has 

faced us with a significant challenge due to its time-

consuming and complex nature (3). Machine 

algorithms, such as support vector machines (SVM), 

random forests, and neural networks, are becoming 

widely used indispensable tools in bioinformatics. 

These powerful techniques are empowering researchers 
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to tackle complex challenges across various fields, 

including deciphering the genetic codes (4), predicting 

protein structures and drug development with 

remarkable accuracy, together with disease diagnosis, 

and identifying novel biomarkers (5, 6).  

These are just a few examples of the transformative 

power of AI in bioinformatics. In essence, AI is rapidly 

transforming bioinformatics, paving the way for a 

deeper understanding of life processes, revolutionizing 

disease diagnosis, and ultimately leading to the 

development of personalized medical strategies (7-10). 

However, it is crucial to acknowledge that AI is not a 

panacea. Ethical considerations surrounding data 

privacy, algorithmic bias, and the potential for misuse 

necessitate careful attention. By embracing this 

powerful technology responsibly, ethically, and 

collaboratively, we can unlock a new era of 

personalized medicine, improved healthcare, and a 

deeper appreciation for the intricate complexities of 

life. In the current review, we have summarized key 

categories of emerging and established bioinformatics 

applications that have been significantly impacted by 

AI. Of note is also the importance of AI-driven tools 

and algorithms in speeding up research, improving data 

interpretation, and driving innovation in biomedical 

sciences (Table 1). 

Table 1. Summary of examples illustrating the usage of AI in bioinformatics 

Field of bioinformatics Input data AI algorithms examples References 

1. Prediction of molecular 

interactions, modeling, and 

drug discovery 

Protein sequences, 

protein structures 

1- Support Vector Machines (SVMs): Classify 

protein-protein interactions and predict drug-

binding sites. 

2- Deep Learning (Convolutional Neural 

Networks - CNNs): Predict protein structures 

and model protein-protein interactions. 

Cai et al. (65) 

 

 

 

Strokach  et al. (66) 

2. Omics: Genomics, 

Transcriptomics, Epigenomics, 

Proteomics, Metagenomics 

DNA sequences, 

RNA sequences, 

epigenetic data, 

protein sequences, 

metagenomics data 

1- Clustering algorithms (K-means, Hierarchical): 

Identify co-expressed genes/proteins with similar 

expression patterns. 

2-  Random Forest (RF,) Support Vector 

Machine (SVM), and  Extreme Gradient 

Boosting (XGBoost): Identify differentially 

expressed  genes/proteins  

Wu (67), Wei et al. 

(68) 

 

Pragya et al. (69),   

Hoque et al. (70), 

Abbas, et al. (71) 

3.  Phylogenetic assessments DNA sequences, 

protein sequences 

1-Nearest Neighbors: Identify the closest 

evolutionary neighbors of a sequence. 

2-Maximum Likelihood Estimation: 

Reconstruct phylogenetic trees based on 

sequence data. 

Collienne (72) 

 

 

Lin et al. (73) 

4.  System Biology Omics data, protein-

protein interaction 

data, metabolic 

pathway data 

1-- Bayesian Networks: Model relationships 

between genes/proteins in a biological system. 

2- Ordinary Differential Equations (ODEs): 

Model the dynamics of biological processes. 

Largo et al. (74) 

 

 

Liu et al. (75) 

 

 

5. Personalize Medicine: 

Diagnostic, Prognostic, and 

Predictive biomarkers 

Genomic data, clinical 

data, biomarker levels 

1- Machine Learning models (Logistic 

Regression, Random Forests): Predict disease 

risk based on an individual's genetic data. 

2- Deep Learning (ANN, CNN): Analyze 

biomarkers and data from medical images for 

disease diagnosis and prognosis. 

Peng et al. (76) 

 

 

 

Guadiana-Alvarez et 

al. (77) 

6.  Medical Visual Data:  

Biomedical imaging, Signal 

processing 

Medical images (X-

rays, CT scans, 

MRIs), biomedical 

signals (ECG, EEG, 

etc.) 

1- Deep Learning (CNNs): Segment medical 

images, identify abnormalities, and classify 

diseases. 

2- Computer vision techniques: Extract features 

from medical images for analysis. 

Sarvamangala (78) 

 

 

Litjens (79) 

7.  Biomedical text mining Biomedical texts 

(scientific articles, 

clinical records)  

1-- Natural Language Processing (NLP) techniques: 

Extract information from text, and identify entities 

and relationships. 

2- Machine Learning models (topic modeling, 

sentiment analysis): Identify relevant information 

and classify documents. 

Zeng (80) 

 

 

Liu (81) 
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Methods 

Relevant articles were identified through a 

comprehensive search strategy conducted in PubMed, 

Embase, and Google Scholar. The search included 

studies published between 2018 and 2024. The process 

of study screening is delineated in the PRISMA 

flowchart displayed in Figure 1. For this review, we 

initially retrieved 524 pieces of literature, subsequently 

excluding irrelevant studies by assessing their titles and 

abstracts. Furthermore, after conducting a full-text 

review, certain studies were excluded due to 

inconsistencies in their findings, being conference or 

unpublished papers, focusing solely on AI or 

bioinformatics, or falling outside the timeframe of our 

study. Finally, 52 original research, plus some relevant 

review and survey articles were included for further 

assessments. The literature search was independently 

conducted by two individuals, and any uncertainties 

were resolved through consultation with another author. 

The keywords used were: ("Artificial Intelligence" OR 

"AI" OR "Machine Intelligence") AND 

("Bioinformatics" OR "Biological Data Analysis") 

AND ("Machine Learning" OR "ML") AND ("Deep 

Learning" OR "DL") AND ("Natural Language 

Processing" OR "NLP") AND ("Genome Sequencing" 

OR "Genomic Analysis") AND ("Protein Structure 

Prediction") AND ("Drug Discovery") AND ("System 

Biology") AND ("Personalized Medicine") AND 

("Imaging") AND ("Signal Processing") AND ("Text 

Mining"). Finally, the reference lists of the retrieved 

publications were also manually searched to find any 

possibly related research.  

Exploring the Transition from 

Classical to Smart Bioinformatics 

 
Figure 1. PRISMA flowchart of study design 
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Classical bioinformatics traditionally relied on rule-

based algorithms, statistical methods, and manual 

interpretation of biological data. However, the 

exponential growth of biological data generated by 

high-throughput technologies such as next-generation 

sequencing has rendered classical methods inadequate 

for managing the complexity and scale of data (11). 

The shift from classical to smart bioinformatics marks a 

significant advancement in the field, primarily driven 

by breakthroughs in AI, ML, and big data analytics. 

The integration of AI and ML into bioinformatics not 

only enhances the efficiency and accuracy of analyses 

but also opens new avenues for understanding complex 

biological systems (12, 13). 

Classical bioinformatics methods have notable 

limitations, including their struggles with handling 

intricate data, reliance on manual feature engineering, 

and lack of adaptability. Also, classical bioinformatics 

methods often encounter challenges when dealing with 

noisy data. Noisy data refers to data that contain 

random fluctuations or errors, which can arise from 

various sources such as experimental limitations, 

measurement inaccuracies, or biological variability. 

These noisy elements can distort the accuracy and 

reliability of analyses conducted using classical 

bioinformatics techniques (14). Thus, AI-based 

bioinformatics approaches offer several advantages, 

addressing the shortcomings of classical methods: (1) 

Automated feature learning: AI-based techniques can 

autonomously identify relevant features from data, 

eliminating the need for manual feature engineering. 

This capability has the potential to unveil hidden 

patterns and relationships within the data. (2) 

Adaptability: AI-based methods exhibit high 

adaptability, capable of being deployed across a diverse 

array of biological tasks such as classification, 

regression, clustering, and sequence analysis. (3) 

Cutting-edge performance:  AI-based approaches have 

often demonstrated state-of-the-art performance across 

various bioinformatics tasks, including but not limited 

to protein structure prediction, gene expression 

analysis, and drug discovery (15-17).  

Combining AI methods with bioinformatics 

effectively addresses various limitations and issues 

encountered in both fields. This integration allows for a 

more comprehensive analysis that leverages the 

strengths of both disciplines. Firstly, by integrating AI 

techniques such as machine learning and deep learning 

with bioinformatics, researchers can overcome 

limitations in traditional computational methods. AI 

algorithms can efficiently handle large-scale biological 

data, enabling more accurate and detailed modeling of 

biological processes (18). Secondly, this combination 

enhances the accuracy, specificity, and sensitivity of 

predictive models. AI algorithms can identify complex 

patterns and relationships within biological data that 

may not be apparent through conventional methods 

alone. By integrating AI with bioinformatics, 

researchers can develop predictive models that are not 

only more accurate but also more robust and reliable 

(19). Furthermore, the synergy between AI and 

bioinformatics enables the discovery of novel insights 

and associations in biological systems. This integrated 

approach facilitates the identification of biomarkers, 

drug targets, and disease mechanisms, leading to 

advancements in personalized medicine and drug 

development (20, 21). 

The role of AI in bioinformatics 

Prediction of molecular interactions, 

drug discovery, and modeling 

Despite advancements in high-throughput screening 

of molecular interactions, the vast number of potential 

drug-target combinations and the complexity of model 

prediction pose a significant challenge in drug 

discovery, making it time-consuming and costly (22). 

AI is revolutionizing drug discovery through various 

applications. Graph neural networks (GNNs) predict 

how potential drug molecules interact with targets and 

guide drug selection. Generative adversarial networks 

(GANs) as another ML (ML) method, design novel 

drug molecules with desired properties, accelerating the 

discovery process. Additionally, AI models simulate 

and predict the outcome of drug treatment, enabling 

personalized medicine and optimized targeted therapy 

strategies (23, 24). 

Omics 

"Omics," as a wide concept, includes fields such as 

genomics, proteomics, and metabolomics, studying the 

vast molecular landscape within living organisms. AI 

by recruiting ML and DL (DL) algorithms, is 

revolutionizing Omics by analyzing these complex 

datasets, helping researchers understand biological 
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processes, diagnose diseases, and even design 

personalized therapies (25). 

Genomics  

AI methods, particularly ML algorithms, have 

shown promise in tasks such as variant calling, 

comparative genomics, and gene prediction. 

Convolutional neural networks (CNNs) and recurrent 

neural networks (RNNs), two types of DL models, have 

shown impressive results in sequence analysis tasks, 

such as DNA motif, transcription factor binding site, 

and non-coding RNA element prediction. For example, 

CNNs break the sequence into pieces, analyze them 

with filters, and identify important features. These 

features are then used to predict labels (e.g., binding 

targets in DNA). In comparison, the RNNs process the 

sequence one element at a time, considering the context 

of each element based on its neighbors and their 

predicted labels (e.g., differentiating between exons and 

introns in DNA) (26). DeepVariant is an AI-powered 

tool for identifying genetic variations in DNA. 

Traditional methods struggle with various factors 

including sample preparation, sequencing technology, 

and biological variations. DeepVariant utilizes CNNs to 

analyze raw sequencing data directly, avoiding these 

biases and achieving higher accuracy in variant calling 

(26). In a recent study, various genomic datasets 

including RNASeq, SNP, and CNV data were 

combined with clinical follow-up information sourced 

from TCGA. The dataset was then randomly divided 

into training and validation sets. Utilizing Random 

Forest (RF) analysis, six key genes (CD24, RCC2, 

MRGPRX, CASP8, PRRG1, and IQSEC3) were 

identified as top-ranking features. This unique 6-gene 

signature, developed within the study, emerged as a 

promising prognostic biomarker for breast cancer (BC) 

patients. It represents a novel prognostic marker with 

the potential to offer both diagnostic and prognostic 

insights, as well as serve as a foundation for identifying 

therapeutic targets across this patient population (27). 

Transcriptomics 

Transcriptomics, the comprehensive assessment of 

RNA transcripts, including their structure, interactions, 

and functions is crucial in understanding gene expression 

and regulation. The advent of AI has revolutionized this 

field by enabling researchers to analyze the vast and 

complex data generated from RNA-sequencing 

technologies (28). AI algorithms, particularly CNNs and 

RNNs, are tackling diverse challenges in transcriptomics 

including RNA structure prediction, RNA-protein 

interaction prediction, and Non-coding RNA (ncRNA) 

analysis (29, 30). Takeshita et al. pioneered an ML-based 

prognostic framework tailored to hormone receptor-

positive breast cancer (BC). Employing logistic 

regression (LR) and hierarchical clustering algorithms, 

they pinpointed a distinctive nine-gene expression 

profile. This signature, comprising genes such as 

C1orf64, AGL, CYP4F22, KIF20A, TUBA3D, S100P, 

PRC1, LAD1, and HNMT was found to be closely 

associated with the prognosis of triple-negative breast 

cancer (TNBC) patients. Notably, this model 

demonstrated its efficacy in stratifying prognosis across 

diverse patient cohorts, effectively reflecting critical BC 

therapeutic pathways and the tumor immune 

microenvironment. Further, the model's effectiveness 

was substantiated by the observed therapeutic responses 

to chemotherapy and endocrine therapy (31). 

Epigenomics 

AI empowers researchers in epigenomics, the study 

of modifications that affect gene expression without 

altering the DNA sequence, to analyze complex data 

from chromatin immunoprecipitation sequencing 

(ChIP-seq) and DNA methylation profiling. Algorithms 

such as CNNs and SVM handle diverse tasks such as 

identifying regulatory elements. For example, CNNs 

determine DNA regions influencing gene expression, 

including enhancers, crucial for understanding gene 

regulation and developing therapies. In addition, SVM 

models are used for predicting disease risk to identify 

individuals at higher risk for specific diseases, paving 

the way for early intervention strategies (32, 33). A 

recent study revealed that LIHC data encompass four 

distinct categories: methylation, histone modifications, 

human genome information, and RNA sequences. 

These data were accessed using open-source 

technologies within the R programming language, 

leveraging The Cancer Genome Atlas (TCGA). The 

study employed a methodology that assessed 1,000 

features spanning these four data types. Nine distinct 

feature selection techniques were employed, alongside 

the comparison of eight classification methods, in order 

to identify the optimal model using 5-fold cross-

validation and various training-to-test ratios. The most 
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effective model emerged when utilizing 140 features 

selected through ReliefF feature selection in 

conjunction with the XGBoost classification method, 

yielding an AUC of 1.0 and an accuracy of 99.67% in 

predicting liver cancer (34). 

Proteomics 

Within the field of proteomics, which investigates the 

structure, function, and interactions of proteins, AI is 

rapidly emerging as a powerful tool for deciphering the 

intricate complexities of these multifaceted 

macromolecules. Algorithms such as CNNs and GNNs 

tackle various challenges, including predicting structures 

of proteins, crucial for drug development (35), 

understanding protein-protein interactions to unravel 

cellular processes (36), analyzing post-translational 

modifications (PTMs) for targeted therapies (37), as well 

as identifying and classifying enzymes for drug 

discovery (38). In a recent investigation, researchers 

fused machine learning with microfluidic technologies to 

scrutinize extracellular vesicles (EVs) in TNBC. They 

inspected the EV proteomes of 100 individuals with 

breast cancer and 30 individuals without any illness. By 

employing a microfluidic chip-based technique to extract 

tumor-derived EVs from minimal plasma samples, they 

successfully eliminated impurities such as albumin and 

immunoglobulins. By leveraging a machine learning 

algorithm, they pinpointed a distinctive pattern 

composed of three EV proteins—extracellular matrix 

protein 1 (ECM1), biotinidase (BTD), and mannose-

binding lectin 2 (MBL2), which accurately distinguished 

TNBC patients from healthy individuals. This pattern not 

only served as a diagnostic instrument but also exhibited 

associations with unfavorable prognosis and heightened 

recurrence rates in TNBC (39). 

Metagenomics 

The growing area of metagenomics, analyzing the 

collective genomes of microbial communities, is being 

revolutionized by AI. ML algorithms, such as random 

forests and DL models, are tackling complex tasks such 

as taxonomic classification (identifying microbial 

species) and functional prediction (understanding the 

roles of microbes)(40). In a study, Harris et al. explored 

the application of random forest models to analyze 

massive datasets of microbial communities 

(metagenomes). They achieved high accuracy (91%) in 

both identifying the origin of a metagenome sample 

and predicting unknown samples based on their 

taxonomic profile. This exemplifies the immense 

potential of AI in unlocking the secrets of microbiomes 

as well as their impact on human health (41). Another 

research demonstrated enhancing the accuracy of 

colorectal cancer disease status prediction through 

random forest classification utilizing metagenomic 

shotgun sequencing data. The study indicated that 

utilizing microbial relative abundance profiles 

estimated by Centrifuge generally yields superior 

prediction performance compared to those estimated by 

MetaPhlAn2 and Bracken. Furthermore, a pioneering 

approach has been devised to amalgamate relative 

abundance profiles of both established and newly 

discovered microbial organisms, thereby amplifying the 

predictive capability for colorectal cancer detection 

from metagenomic datasets (42). 

Phylogenetic assessments 

Evolutionary biology also benefits from the 

transformative power of AI, particularly in dealing with 

large genomic data and inaccuracies in interpretation 

resulting from missing data. Researchers are 

increasingly utilizing AI methods such as phylogenetic 

network inference and ancestral state reconstruction to 

analyze complex evolutionary relationships and 

understand the intricate web of life. For instance, 

Bhattacharjee et al. successfully applied two ML 

methods i.e. matrix factorization (MF) and autoencoder 

(AE) to impute missing entries for estimating 

phylogenetic trees, especially in the case of missing 

data in distance matrices. The authors suggest that 

machine-learning techniques can improve the accuracy 

of phylogenetic trees (43). An investigation explored 

tumor classification through phylogenetic methods 

applied to expression data. Their approach was tested 

on two distinct datasets: one comprising 87 tissues, 

predominantly small, round, blue-cell tumors 

(SRBCTs), and another consisting of 22 breast tumors. 

In the first dataset, the method effectively categorized 

samples into four major clusters, precisely aligning 

with neuroblastomas, rhabdomyosarcomas, Burkitt's 

lymphomas, and Ewing's family of tumors. Utilizing 

the breast cancer data, the classification tree 

differentiated tumors with BRCA1 mutations from 

those with BRCA2 mutations, along with sporadic 

tumors, which were also distinguished from each other. 
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They also observed the adaptability of our class 

discovery method through standard resampling 

techniques such as jackknifing and noise perturbation. 

To address the class prediction challenge, we 

constructed a classification tree using the learning set 

and then optimized the placement of each test sample 

within this tree. This method was successfully validated 

on the SRBCT dataset, accurately classifying each 

tumor (44). Azer et al. demonstrated that in tumor 

phylogeny reconstruction using single-cell sequencing, 

the primary objective is to construct the most accurate 

phylogenetic tree from the genotype matrix, which 

captures genotype information from individual cells but 

is inherently noisy. They propose rapid deep-learning 

methodologies to address the challenges of determining 

whether the most probable tree exhibits a linear (chain-

like) or branching structure, as well as assessing the 

feasibility of constructing a perfect phylogeny from a 

given genotype matrix. Additionally, they introduced a 

reinforcement learning technique for reconstructing the 

most probable tumor phylogeny. This preliminary 

research underscores the potential of data-driven 

approaches in capturing crucial aspects of tumor 

evolution (45). 

System Biology 

Systems and network biology is a branch of biology 

focused on comprehensively understanding biological 

systems, encompassing their structures, functions, and 

interactions. Multi-omics data empower researchers to 

uncover fresh perspectives on the intricate interplays 

within biological systems, such as the relationships 

among genes, proteins, and cells. AI techniques such as 

ML and DL are used to model complex biological 

systems. These models can integrate various types of 

omics data (genomics, transcriptomics, proteomics, 

etc.) to capture the interactions and dynamics within 

biological systems (46, 47). A key objective in 

bioinformatics is to integrate various types of biological 

data, known as omics data. However, AI currently faces 

limitations in effectively handling this integration, 

which is expected to be addressed in the future. Thus, 

there is a growing recognition of the necessity for 

enhanced interpretability in the integration methods 

employed. To achieve this, ongoing efforts involve 

combining machine learning algorithms with methods 

that incorporate biological knowledge, such as graph 

representations or imposing strict constraints on 

parameter representations (20, 48). A study unveiled 

the potential of machine learning algorithms and 

systems biology analysis in predicting the 

chemoresistance trait of cancer cell lines. Among the 

six classifiers trained to differentiate between cisplatin-

resistant and sensitive samples, Naïve Bayes and KNN 

algorithms emerged as the most promising tools based 

on various evaluation metrics. Additionally, systems 

biology analysis identified several genes associated 

with chemoresistance, with CTNNB1, IFNG, 

YWHAH, CTNNB1, EDNRB, ANKRD50, ACSL6, 

and PTGER3 being highlighted as particularly 

significant in terms of network topology. These 

findings lay the groundwork for further experimental 

investigations in this field (49). AI offers significant 

potential to revolutionize systems biology by 

expediting data analysis, predictive modeling, and 

personalized medicine. Nevertheless, several 

challenges must be tackled to fully exploit its 

capabilities. These include ensuring data quality, 

managing the complexity of data interpretation, 

addressing ethical and privacy concerns related to data 

usage, and mitigating automation bias (50). 

AI and personalized medicine 

A personalized medicine, or precision medicine, 

approach tailors medical treatment and prevention 

strategies by considering the unique genetic makeup, 

environmental factors, and lifestyle of each individual. 

AI is revolutionizing the field of personalized 

medicine, offering unique opportunities for medical 

treatment and care to individual patients (51, 52). AI 

techniques, including ML and DL algorithms, facilitate 

the discovery and validation of biomarkers by 

efficiently analyzing large-scale biological and clinical 

datasets, identifying complex patterns, and generating 

actionable insights that can inform personalized 

treatment decisions (53, 54). The merging of AI 

technologies with advancements in molecular biology, 

genetics, and clinical research is enhancing 

personalized medicine, making it more accurate and 

efficient. This approach provides targeted therapies for 

individual patients, especially in detecting and using 

diagnostic, prognostic, and predictive biomarkers (7, 

55). Khalili-Tanha et al. utilized bioinformatic analysis 

to anticipate significant gene markers in colorectal 
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cancer (CRC) by employing various ML algorithms 

including SVM, k-nearest neighbors (KNN), logistic 

regression, decision trees (DTs), and random forest 

(RF). They reported that RF algorithm demonstrated 

the highest accuracy and Area Under the Curve (AUC), 

making it the most suitable algorithm for this prediction 

task. Different studies utilized several ML techniques 

such as RF, max voting, adaboost, gradient boosting 

machines (GBM), and extreme gradient boosting 

(XGB) to analyze differentially expressed genes 

(DEGs) and discover new prognostic biomarkers in 

pancreatic cancer. Among these methods, XGBoost 

was found to be particularly effective, offering 

improved performance and faster processing compared 

to other ML algorithms and deep learning models (56). 

Chang et al. utilized ML techniques including support 

vector machine, logistic regression, random forest, and 

naïve Bayes to develop a reliable predictive model for 

detecting biomarkers in Alzheimer's Disease patients 

(57). Sayed et al. employed various machine learning 

algorithms, such as XGboost, bagging, AdaBoost, 

SVM, and lightGBM, to detect vocal biomarkers for 

Parkinson's disease. Among these algorithms, 

lightGBM demonstrated the highest sensitivity and 

specificity in identification (58). 

Diagnostic Biomarkers: These are biological 

markers that serve to either detect or validate the 

existence of a particular disease or condition or to 

pinpoint an individual belonging to a specific subtype 

of the ailment. AI algorithms can analyze vast amounts 

of patient data including genetic information, medical 

imaging results, and clinical data to identify patterns 

and correlations that may serve as diagnostic 

biomarkers. For instance, AI algorithms can analyze 

imaging scans to detect early signs of diseases such as 

cancer or analyze genetic data to identify mutations 

associated with specific disorders (59). 

Prognostic Biomarkers: Prognostic biomarkers 

provide information about the likely course or outcome 

of a disease. AI can help in identifying patterns and 

relationships within patient data that can predict disease 

progression or treatment response. By analyzing 

various factors such as genetic profiles, medical 

history, lifestyle factors, and environmental influences, 

AI algorithms can generate personalized prognostic 

assessments for individual patients, allowing healthcare 

providers to tailor treatment plans accordingly (56, 60). 

Predictive Biomarkers: Predictive biomarkers 

indicate the likelihood of a patient's response to a 

particular treatment or intervention. AI-driven 

predictive modeling can analyze diverse datasets 

including genomic data, clinical records, and treatment 

outcomes to identify biomarkers associated with 

response or resistance to specific therapies. This 

information enables clinicians to select the most 

effective treatment strategies for individual patients, 

optimizing therapeutic outcomes while minimizing 

potential adverse effects (60, 61). 

Medical Visual Data 

Biomedical imaging 

Biomedical imaging involves visualizing the body's 

interior, enabling healthcare professionals to see 

various structures, functions, and processes within the 

body, aiding in disease detection, diagnosis, and 

monitoring. Common modalities of biomedical imaging 

include X-ray Imaging, computed tomography (CT), 

magnetic resonance imaging (MRI), ultrasound 

imaging, single photon emission computed tomography 

(SPECT), positron emission tomography (PET), 

fluorescence Imaging, and optical coherence 

tomography (OCT) (62). AI techniques, in particular 

DL, have demonstrated significant success in analyzing 

medical images. They can aid in tasks such as 

segmentation (identifying and delineating structures or 

regions of interest), classification (identifying diseases 

or abnormalities), registration (aligning images from 

various modalities or time points), image reconstruction 

(enhancing image quality, removing noise and artifacts, 

and improving resolution), and real-time image analysis 

(offering immediate feedback to clinicians during 

procedures or examinations) (63, 64). De Haan et al. 

investigated the progress of computational microscopy 

and optical sensing systems using deep neural 

networks. They explained the basics of solving inverse 

problems in optical microscopy and suggested DL as a 

viable solution, particularly through supervised 

methods. The authors demonstrated how DL can be 

applied to achieve single-image super-resolution and 

improve images in these datasets, showcasing the 

advancements made in the field (65).  

Elsewhere, Gong et al. discussed the increasing use 

of machine learning alongside rapid waveform digitizers 

to forecast the location and arrival time of high-energy 
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photons. They highlighted its role in quantitative image 

reconstruction, where it aids in estimating correction 

factors such as scattered events and attenuation images, 

as well as reducing statistical noise in reconstructed 

images. This involves replacing time-intensive 

computations with faster machine learning alternatives, 

such as in scatter estimation, or employing data-driven 

approaches to define functions, including estimating 

attenuation maps for PET/MR scans (66).  

Medical video analysis is a burgeoning field where 

computer vision and machine learning techniques are 

employed to scrutinize medical videos for diverse 

purposes. Among these, video action recognition 

garners increasing interest from computer vision 

researchers. A recent study examined the efficacy, 

reproducibility across tests, inter-modality consistency, 

as well as the correlation between deep features and 

clinical indicators such as tumor volume and TNM 

staging. Radiomics, serving as the benchmark image 

biomarker, was integrated into the analysis. CT scans 

were transformed into videos for deep feature 

extraction, utilizing the pre-trained Inflated 3D 

ConvNet (I3D) video classification network 

architecture. The findings revealed that deep features 

can surpass radiomics in predicting tumor prognosis 

from alternative perspectives compared to traditional 

measures such as tumor volume and TNM staging. 

However, deep features exhibit lower reproducibility 

and interpretability compared to radiomic features (67). 

Signal processing 

Signal processing refers to the manipulation, 

analysis, and interpretation of signals. In the context of 

biomedical applications, signals can include 

physiological data including ECG (Electrocardiogram), 

EEG (Electroencephalogram), and EMG 

(Electromyogram), as well as data from biomedical 

imaging modalities. AI methods can complement signal 

processing by learning complex patterns from the data 

to enhance the quality of signals, extract relevant 

information, remove noise, detect patterns or 

abnormalities, and monitor health conditions (68-70). 

An et al. utilized a deep belief network (DBN) to 

analyze the frequency components of EEG signals to 

distinguish between left and right-hand motor imagery. 

Their study compared the recognition accuracy of the 

DBN classifier with that of the Support Vector 

Machine (SVM), indicating that the DBN classifier 

consistently outperformed the SVM in all tested 

scenarios. This research introduces a novel deep-

learning approach for accurately classifying EEG data 

based on motor imagery (71). Jia et al. introduced an 

innovative semi-supervised deep learning approach for 

recognizing affective states from EEG signals. Their 

framework, distinct from prior models, is specifically 

tailored to address EEG classification challenges, 

offering enhanced adaptability and performance (72). 

Biomedical Text Mining 

The extensive biomedical literature is a valuable 

knowledge source for researchers. Text mining 

techniques are increasingly used to extract and analyze 

information from various biomedical texts, including 

research articles, clinical notes, and electronic health 

records. This process involves natural language 

processing (NLP) algorithms for text understanding, 

ML models for information classification and 

extraction, and data mining techniques for identifying 

patterns and relationships in the data. In addition to 

textual content, figures such as biological pathways in 

publications convey valuable knowledge, offering 

visual representations of molecular events in biological 

processes or diseases. The objective is to expedite 

biomedical research, support clinical decision-making, 

and enhance healthcare outcomes by efficiently 

utilizing the wealth of information present in textual 

form within the biomedical field (73, 74). Named 

Entity Recognition (NER) indeed plays a vital role in 

extracting knowledge, especially in domains such as 

biomedicine where precise identification of terms such 

as genes, proteins, diseases, and drugs is crucial for 

further analysis and understanding. NER involves 

identifying and classifying named entities within a 

body of text, which enables automated systems to 

understand and extract relevant information accurately 

(75). ML methods, such as SVM, hidden Markov 

models (HMM), conditional random fields (CRFs), and 

maximum entropy (ME), are currently extensively 

employed for named entity recognition (76-81). 

Discussion 

Classic bioinformatics methods, while foundational, 

have limitations in handling the ever-growing biological 

data. Traditional approaches often rely on pre-defined 
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rules and require significant human expertise, leading to 

slow and potentially overlooking complex associations. 

In contrast, AI-powered bioinformatics offers exciting 

possibilities. Machine learning algorithms can handle 

massive datasets, uncovering hidden patterns and 

generating more accurate predictions. There are still 

challenges such as model interpretability and potential 

biases; nevertheless, AI is opening a new era in 

bioinformatics with the potential for better healthcare. 

These advancements hold immense promise for 

accelerating drug discovery, personalizing medicine, and 

unlocking a deeper understanding of biological systems 

(82, 83) (101-103). 

Conclusion 

In conclusion, this mini-review briefly outlined the 

essential role of AI within the realm of bioinformatics, 

where computational techniques meet the analysis of 

biological data. Our examination encompassed the 

diverse applications of AI techniques such as ML, DL, 

and NLP, elucidating their contributions to tasks such 

as genome sequencing, protein structure prediction, 

drug discovery, system biology, personalized medicine, 

imaging, signal processing, and text mining. 

Additionally, we delved into the evolving landscape of 

AI-driven tools and algorithms, highlighting their 

significance in accelerating research, enhancing data 

interpretation, and fostering innovations in biomedical 

sciences. In the future, the application of artificial 

intelligence in medicine will involve integrating 

various types of multi-omics data. These encompass 

genomics, epigenomics, transcriptomics, proteomics, 

metabolomics, single-cell multi-omics, microbiomics, 

radiomics, and spatial transcriptomics. This integration 

will be accomplished by combining various types of 

machine learning algorithms aimed at enhancing 

modeling and predictive capabilities. 
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